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Abstract
Context: Tropical montane habitats support high biodiversity and are hotspots of 
endemism, with grasslands being integral components of many such landscapes. The 
montane grasslands of the Western Ghats have seen extensive land-use change over 
anthropogenic timescales. The factors influencing the ability of grassland-dependent 
species to persist in habitats experiencing loss and fragmentation, particularly in 
montane grasslands, are poorly known.
Objectives: We studied the relationship between the Nilgiri pipit Anthus nilghiriensis, 
a threatened endemic bird that typifies these montane grasslands, and its habitat, 
across most of its global distribution. We examined what habitat features make rem-
nant grasslands viable, which is necessary for their effective management.
Methods: We conducted 663 surveys in 170 sites and used both single-season occu-
pancy modeling and N-mixture modeling to account for processes influencing detec-
tion, presence, and abundance.
Results: Elevation had a positive influence on species presence, patch size had a 
moderate positive influence, and patch isolation had a moderate negative influence. 
Species abundance was positively influenced by elevation and characteristics related 
to habitat structure, and negatively influenced by the presence of invasive woody 
vegetation.
Conclusions: The strong effect of elevation on the highly range-restricted Nilgiri pipit 
is likely to make it vulnerable to climate change. This highly range-restricted species 
is locally extinct at several locations, and persists at low densities in remnants of 
its habitat left by recent fragmentation. Our findings indicate a need to control and 
reverse the spread of exotic woody invasives to preserve the grasslands themselves 
and the specialist species dependent upon them.
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1  | INTRODUC TION

Tropical montane habitats are highly biodiverse and harbor high 
endemicity (Dimitrov, Nogués-Bravo, & Scharff,  2012; Ricketts 
et al., 2005). They are also hotspots of extinction risk, due to the pres-
ence of threatened species with restricted distributions (Hoffmann 
et al., 2010; Ricketts et al., 2005). Montane specialists may also be 
threatened by climate change, which can trigger elevational range 
shifts (Stuhldreher & Fartmann, 2018). Where such shifts are con-
strained by topography, species may face habitat decline and 
local extinctions (Forero-Medina, Joppa, & Pimm,  2011; Freeman, 
Scholer, Ruiz-Gutierrez, & Fitzpatrick,  2018; Parmesan,  2006). 
Habitat losses often also cause habitat fragmentation, which has 
experimentally been shown to have negative effects on biodiver-
sity and species persistence over and above the effects of habitat 
loss alone (Fahrig, 2003; Haddad et al., 2015). Declines in species 
abundances may occur after a significant time-lag following an envi-
ronmental perturbation, creating an extinction debt, and causing the 
effects of habitat disturbance to be underestimated (Haddad et al., 
2015; Kuussaari et al., 2009; Tilman, May, Lehman, & Nowak, 1994). 
Globally, extinction debt averages over 20% and may affect as much 
as 75% of a local species assemblage (Haddad et al., 2015). The ef-
fects of climate change may interact with those of habitat loss and 
fragmentation (Fahrig, 2003), threatening montane habitats and the 
unique species assemblages they host.

The Western Ghats mountain range in southern India is a global 
biodiversity hotspot (Myers, Mittermeier, Mittermeier, Da Fonseca, 
& Kent, 2000) that includes locations of high extinction risk (Ricketts 
et al., 2005). The sky islands at the highest elevations of the Western 
Ghats host a naturally bi-phasic mosaic of evergreen forest and 
grassland known as the shola ecosystem. Above 2,000 m, this eco-
system is dominated by montane grasslands (Thomas & Palmer, 2007; 
Das, Nagendra, Anand, & Bunyan, 2015), which harbor unique spe-
cies assemblages (Biju, Garg, Gururaja, Shouche, & Walujkar, 2014; 
Sankaran, 2009). As with other tropical grasslands, these are poorly 
studied, despite the presence of several endemic species, and others 
of conservation concern (Bond & Parr, 2010).

This grassland biome faces severe anthropogenic threats. 
Although the forests are celebrated for their biodiversity, histori-
cally, the ecological role of the grasslands has not been recognized, 
and they have been intensively exploited for the establishment of 
commercial plantations (Joshi, Sankaran, & Ratnam,  2018). Many 
timber species thus introduced, including Acacia mearnsii (black 
wattle), Eucalyptus species, and Pinus species, have turned invasive 
(Thomas & Palmer, 2007; Arasumani et al., 2018; Joshi et al., 2018). 
Grassland loss to these species has been extensive and is variously 
estimated at 83% overall (Sukumar, Suresh, & Ramesh, 1995), 66% 
in the Palani hills region (Arasumani et al., 2018) and 38% overall 
(Arasumani et al., 2019), depending on the spatial scale and time-
frame over which this change is measured. In addition to reducing 
habitat extent, the spread of exotic tree species has caused the 
grasslands, already a naturally patchy ecosystem (Robin, Gupta, 
Thatte, & Ramakrishnan,  2015), to become further fragmented. 

These changes threaten the wildlife of the habitat, including 
endemic species such as the Nilgiri tahr Nilgiritragus hylocrius 
(Rice, 1984) and nonendemics that are supported by the grasslands 
(Sankaran, 2009). Effective conservation of these habitat special-
ists therefore requires understanding factors determining the per-
sistence of native grassland-dependent species in the context of 
ongoing changes to the habitat.

The Nilgiri pipit, endemic to these montane grasslands, is an 
ideal case study to examine species persistence in this habitat. It is 
a locally common insectivore, resident in its breeding range, with 
no records of long-distance movement (Vinod, 2007). Additionally, 
the effects of habitat characteristics on the distribution and abun-
dance of the Nilgiri pipit are of wider interest in applied ecology: 
though features at both local and landscape scales have been 
shown to affect the presence and abundance of grassland birds 
(Jacoboski, Paulsen, & Hartz, 2017), their habitat requirements in 
montane habitats have received little attention. Changes to vegeta-
tion structure, including dominant grass height, in native grasslands 
has been found to favor habitat generalists over bird species that 
were dependent on specific grass types (Jacoboski et  al.,  2017). 
Microhabitat diversity within grasslands has been found to sup-
port a broader suite of grassland species (Dias, Bastazini, & 
Gianluca, 2014) and increased abundance of grassland-depen-
dent species (Azpiroz et al., 2012; Muchai, Lens, & Bennun, 2002). 
More generally, structural changes in vegetation can affect spe-
cies even in areas where native vegetation cover is high (Fischer 
& Lindenmayer,  2007). Habitat heterogeneity in grasslands and 
montane habitats has generally received little attention (Tews 
et al., 2004). At the scale of a habitat fragment, area and isolation 
of grassland both have been found to affect grassland bird popula-
tions. Fragment area usually affects species' occurrence; however, 
this effect may disappear beyond a certain threshold, which may 
be species-specific (Guttery et al., 2017). Local and landscape-level 
factors can have additive effects on occupancy (Reidy, Thompson, 
Amundson, & O'Donnell, 2016). Features that create heterogene-
ity at small scales may be responsible for fragmentation at larger 
scales (Tews et al., 2004): Such features may therefore have com-
plex impacts on occupancy and abundance, depending on the scale 
at which they are examined (Blevins & With, 2011).

Finally, the Nilgiri pipit is itself a species of conservation concern. 
It is classified as vulnerable by the IUCN, due to its small and frag-
mented range, which is declining in both extent and quality (BirdLife 
International, 2018). Recent surveys have failed to detect the species 
across a significant portion of its historical range (Robin, Vishnudas, 
& Ramakrishnan, 2014; Vinod, 2007), suggesting that the contem-
porary range of the species is much smaller than expected. In this 
context, examining the habitat factors allowing the species to persist 
assumes greater importance. In this study, we assessed factors driv-
ing patterns of distribution and abundance of the Nilgiri pipit across 
most of its known range. We used the single-season occupancy 
model of Mackenzie et al. (2002) to understand the factors driving 
distribution and the N-mixture model of Royle (2004) to understand 
grassland patch-specific variation in abundance. Specifically, we 
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explored the following, nonmutually exclusive hypotheses; that the 
Nilgiri pipit's presence and density would be positively affected by 
elevation; positively affected by microhabitat variation; positively 
affected by grassland patch size; negatively affected by exotic vege-
tation; and negatively affected by habitat isolation (Table 1).

2  | MATERIAL S AND METHODS

2.1 | Study area

Robin , Vishnudas, & Ramakrishnan (2014) suggested that the Nilgiri 
pipit was restricted to areas above 1,900 m above sea level (a.s.l.). 
Conservatively, we limited our survey to grasslands above 1,600 m 
a.s.l. and also confined our study to areas in which verifiable con-
temporary records of the Nilgiri pipit exist. This region encom-
passes the two major high-altitude plateaux of the Western Ghats; 
the Nilgiris and the Anamalai-Palani Hills. Although the species has 
been reported elsewhere, photographic evidence or capture records 
for these locations do not exist and intensive surveys across the 
smaller northern and southern grasslands have failed to detect the 
species (Robin & Sukumar, 2002; Robin, Sukumar, & Thiollay, 2006; 
Sasikumar, Vishnudas, Raju, Vinayan, & Shebin, 2011) (Figure 1).

Within the area thus selected, we mapped the extent of montane 
grasslands using Sentinel-2A imagery. We obtained imagery from 

the USGS Global Visualization Viewer (GloVis; https://glovis.usgs.
gov/). Satellite imagery was obtained from the dry season (February 
2017), when cloud cover was low. We removed atmospheric compo-
nents such as dust particles, water vapor, and atmospheric tempera-
tures in the satellite images by generating ground reflectance images 
using the Sen2Cor processor in SNAP v. 5.0.8 (ESA, 2017). We used 
a combination of supervised and unsupervised classification to map 
montane grasslands (see supplementary methods for further detail). 
The overall accuracy of this classification, determined using 100 
ground-truth GPS locations across the entire study area, was 96.5%, 
while the Kappa coefficient was 0.93 (following Congalton, 1991).

The final selected area represented 434.98 km2, or 85%, of the 
511 km2 of grassland above 1,600 m in the Western Ghats. It con-
sisted of 1,449 discrete grassland patches, varying in size from <1 ha 
to 120,000 ha. These extremes represented patches that were far 
too small to host independent Nilgiri pipits, to patches that could 
have had considerable variation in occupancy and density within 
them. We therefore treated the grassland patches in three ways, 
depending on their size. Grassland patches between 4 and 25  ha 
were designated as sample units, encompassing the range of our 
estimates for Nilgiri pipit home range (Vinod, 2007; personal com-
munication, 2018). We laid a 500 m grid across all grassland patches 
larger than 25 ha, designated each grid cell a separate site, and re-
moved all patches smaller than 4 ha. We placed patches between 
1 and 4  ha into clusters, if each patch was within a maximum of 

F I G U R E  1   (a) Map depicting the sky islands of the Western Ghats, and their position in the Indian subcontinent (inset). (b, c) The 
grasslands (green) and sampling locations (black) in the Nilgiris (b) and the Anamalai-Palani Hills (c): areas in yellow are above the 1,600 m 
contour

https://glovis.usgs.gov/
https://glovis.usgs.gov/
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200 m away from at least one other (based on information about 
pipit movement; Vinod, personal communication, 2018), ensuring 
that slightly fragmented grasslands effectively larger than 4 ha were 
not discarded. We determined the total area of each cluster, and dis-
carded clusters or individual patches totaling less than 4 ha as these 
were unlikely to support the species' occurrence. We randomly se-
lected 202 sites from the remaining 2,378 potential sampling units 
and surveyed 170 of these (see Methods in Appendix S1 for more 
details of survey design and site selection).

2.2 | Survey methods

To allow us to disentangle ecological processes shaping the presence 
and density of Nilgiri pipits from confounding processes related to 

observation that affected where pipits were more or less likely to 
be seen when present, we visited each site multiple times (maximum 
visits = 4:11 sites visited three times, one site twice, one site once). 
In order to equalize sample effort per unit area (and, therefore, de-
tection probability per unit area) across patches of unequal size, the 
duration of each visit was set proportional to site area, with the time 
spent moving through each site and searching for the species. We 
expended 2 min of survey effort per hectare, which we determined 
to be optimal based on reconnaissance surveys. Thus, surveys were 
between 8 and 50 min long. Surveys were conducted on foot; Nilgiri 
pipit surveys were recorded based on visual and auditory detec-
tions strictly within the sampling site. Surveys attempted to cover 
the sampling site as completely as possible given the limitations of 
rugged terrain. Surveys were conducted between October 2017 and 
April 2018, during a single dry season in the study region.

TA B L E  3   Estimated β coefficients for each predictor of abundance from models with QAIC weight ≥ 0.02

Abundance structure
β
MXELEV

β
WTMAT

β
EUC

β
WAT

β
RHODO

β
GH

β
BU QAIC ∆QAIC QAICWeight

Cum. 
QAIC 
weightImm. Mat. Int. Tall

MXELEV + WTMAT + EUC + WAT + GH + BU 1.424 ± 0.370 0.313 ± 0.189 −0.434 ± 0.247 −0.377 ± 0.168 0.504 ± 0.106 0.398 ± 0.193 −1.663 ± 1.010 0.231 ± 0.122 1,018.63 0 0.298 0.298

MXELEV + WTMAT + EUC + WAT + RHODO + GH + BU 1.303 ± 0.383 0.310 ± 0.188 −0.390 ± 0.247 −0.365 ± 0.168 0.464 ± 0.110 0.192 ± 0.147 0.371 ± 0.195 −1.661 ± 1.007 0.192 ± 0.125 1,018.92 0.281 0.259 0.557

MXELEV + WTMAT + EUC + WAT + RHODO + GH 1.310 ± 0.386 0.356 ± 0.187 −0.332 ± 0.246 −0.367 ± 0.169 0.474 ± 0.110 0.241 ± 0.143 0.303 ± 0.191 −1.713 ± 1.006 1,019.26 0.630 0.218 0.775

MXELEV + WTMAT + WAT + RHODO + GH + BU 1.24 ± 0.382 0.374 ± 0.184 −0.339 ± 0.247 0.471 ± 0.111 0.211 ± 0.148 0.410 ± 0.197 −1.725 ± 1.007 0.195 ± 0.126 1,021.68 3.046 0.065 0.840

MXELEV + WTMAT + WAT + GH + BU 1.380 ± 0.369 0.381 ± 0.185 −0.377 ± 0.247 0.511 ± 0.107 0.436 ± 0.196 −1.750 ± 1.018 0.234 ± 0.123 1,021.72 3.083 0.064 0.904

MXELEV + WTMAT + WAT + RHODO + GH 1.246 ± 0.385 0.412 ± 0.184 −0.287 ± 0.246 0.481 ± 0.111 0.258 ± 0.144 0.344 ± 0.193 −1.744 ± 0.988 1,022.07 3.434 0.054 0.957

Note: In each model presented below, detectability was modeled as a function of (Weather + Day +Plantation cover). Variable abbreviations are  
provided in Table 1.

TA B L E  2   Estimated β coefficients for each predictor of occupancy from models with AIC weight ≥ 0.02

Occupancy structure
β
MXELEV

β
PCHSZ

β
LGSEP

β
WTMAT

β
EUC

β
PLEXT

β
RHODO

β
GH

AIC ∆AIC AIC Weight
Cum. AIC 
weightImm. Mat. Int. Tall

MXELEV + LGSEP 9.01 ± 2.68 −0.570 ± 0.266 537 0 0.173 0.173

MXELEV + PCHSZ 8.86 ± 2.43 0.573 ± 0.251 537 0.04 0.170 0.343

MXELEV + LGSEP + PLEXT 9.55 ± 2.62 −0.466 ± 0.277 −1.37 ± 1.33 538 1.11 0.0992 0.442

MXELEV + PCHSZ + PLEXT 9.39 ± 2.56 0.464 ± 0.299 −0.939 ± 1.42 538 1.61 0.0772 0.520

MXELEV + PLEXT 10.8 ± 2.57 −2.09 ± 1.21 539 1.79 0.0708 0.590

MXELEV 10.7 ± 2.83 539 2.05 0.0623 0.653

MXELEV + WATMAT 13.0 ± 3.45 −2.45 ± 1.58 −2.15 ± 1.14 539 2.05 0.0623 0.715

MXELEV + PLEXT + GH 9.34 ± 2.23 −2.31 ± 1.07 1.78 ± 1.09 −0.44 ± 1.48 539 2.45 0.0506 0.766

MXELEV + PCHSZ + RHODO + GH 7.75 ± 2.69 0.548 ± 0.222 0.123 ± 0.888 1.61 ± 0.981 −0.15 ± 1.57 540 3.51 0.0300 0.795

MXELEV + PLEXT + RHODO 11.4 ± 3.38 −2.21 ± 1.32 −0.348 ± 1.02 540 3.67 0.0277 0.823

MXELEV + RHODO 11.6 ± 3.99 −0.437 ± 1.13 541 3.88 0.0249 0.848

MXELEV + EUC 10.4 ± 2.87 −0.314 ± 0.942 541 3.94 0.0241 0.872

MXELEV + LGSEP + RHODO + GH 7.71 ± 2.76 −0.533 ± 0.239 0.0134 ± 0.947 1.49 ± 1.11 −1.09 ± 1.55 541 4.04 0.0230 0.895

MXELEV + LGSEP + PLEXT + RHODO + GH 8.68 ± 3.17 −0.385 ± 0.256 −0.165 ± 1.22 −0.0461 ± 1.01 1.53 ± 1.04 −0.696 ± 1.44 541 4.26 0.0205 0.915

Note: In each model presented below, detectability was modeled as a function of (Weather + Day + Grass height + Wattle maturity + Eucalyptus +  
Rhododendron + Water + Burn + Grassland within 500 m). Variable abbreviations are provided in Table 1.
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Covariates were recorded at the site-level and the visit-level 
(covariates used in analyses listed in Table S1: see Appendix S1 for 
further details). Site-level covariates were generated either from GIS 
data or field observations: Visit-level covariates were recorded in the 
field. Of the 22 site-level independent variables measured, six were 
eliminated based on collinearity with other independent variables, 
and five were eliminated because there was insufficient variation in 
them across our sites. Covariates displaying moderate collinearity 
were not included within the same model. Of the 11 remaining co-
variates, two were expected to affect abundance but not occupancy, 
and some were used only as detection covariates in modeling pipit 
occupancy.

Covariates included the presence or absence of two types of ex-
otic vegetation, black wattle (Acacia mearnsii), and Eucalyptus, both 
known as invasive taxa contributing to grassland loss; and one native 

taxon, Rhododendron, which may be expected to influence local hab-
itat heterogeneity. The extent to which all exotic trees were present 
within the site was also recorded. The presence or absence of recent 
burns was recorded, as accidental and controlled burns are both reg-
ular features of this landscape, and may be expected to affect habi-
tat suitability. Distance to large grasslands was included to examine 
whether dispersal from large patches was shaping occupancy in 
small patches; grassland extent within a buffer zone was assessed to 
determine whether pipits required functionally larger patches than 
their observed home range size. The size of this buffer was chosen 
to be 500 m, based on Vinod's observations (2007) of Nilgiri pipit 
movement. Microhabitat type within grasslands had previously been 
observed to affect pipit presence (Vinod, 2007, personal communi-
cation, 2018); grass height and the presence of water sources were 
included as covariates to assess this effect.

TA B L E  3   Estimated β coefficients for each predictor of abundance from models with QAIC weight ≥ 0.02

Abundance structure
β
MXELEV

β
WTMAT

β
EUC

β
WAT

β
RHODO

β
GH

β
BU QAIC ∆QAIC QAICWeight

Cum. 
QAIC 
weightImm. Mat. Int. Tall

MXELEV + WTMAT + EUC + WAT + GH + BU 1.424 ± 0.370 0.313 ± 0.189 −0.434 ± 0.247 −0.377 ± 0.168 0.504 ± 0.106 0.398 ± 0.193 −1.663 ± 1.010 0.231 ± 0.122 1,018.63 0 0.298 0.298

MXELEV + WTMAT + EUC + WAT + RHODO + GH + BU 1.303 ± 0.383 0.310 ± 0.188 −0.390 ± 0.247 −0.365 ± 0.168 0.464 ± 0.110 0.192 ± 0.147 0.371 ± 0.195 −1.661 ± 1.007 0.192 ± 0.125 1,018.92 0.281 0.259 0.557

MXELEV + WTMAT + EUC + WAT + RHODO + GH 1.310 ± 0.386 0.356 ± 0.187 −0.332 ± 0.246 −0.367 ± 0.169 0.474 ± 0.110 0.241 ± 0.143 0.303 ± 0.191 −1.713 ± 1.006 1,019.26 0.630 0.218 0.775

MXELEV + WTMAT + WAT + RHODO + GH + BU 1.24 ± 0.382 0.374 ± 0.184 −0.339 ± 0.247 0.471 ± 0.111 0.211 ± 0.148 0.410 ± 0.197 −1.725 ± 1.007 0.195 ± 0.126 1,021.68 3.046 0.065 0.840

MXELEV + WTMAT + WAT + GH + BU 1.380 ± 0.369 0.381 ± 0.185 −0.377 ± 0.247 0.511 ± 0.107 0.436 ± 0.196 −1.750 ± 1.018 0.234 ± 0.123 1,021.72 3.083 0.064 0.904

MXELEV + WTMAT + WAT + RHODO + GH 1.246 ± 0.385 0.412 ± 0.184 −0.287 ± 0.246 0.481 ± 0.111 0.258 ± 0.144 0.344 ± 0.193 −1.744 ± 0.988 1,022.07 3.434 0.054 0.957

Note: In each model presented below, detectability was modeled as a function of (Weather + Day +Plantation cover). Variable abbreviations are  
provided in Table 1.

TA B L E  2   Estimated β coefficients for each predictor of occupancy from models with AIC weight ≥ 0.02

Occupancy structure
β
MXELEV

β
PCHSZ

β
LGSEP

β
WTMAT

β
EUC

β
PLEXT

β
RHODO

β
GH

AIC ∆AIC AIC Weight
Cum. AIC 
weightImm. Mat. Int. Tall

MXELEV + LGSEP 9.01 ± 2.68 −0.570 ± 0.266 537 0 0.173 0.173

MXELEV + PCHSZ 8.86 ± 2.43 0.573 ± 0.251 537 0.04 0.170 0.343

MXELEV + LGSEP + PLEXT 9.55 ± 2.62 −0.466 ± 0.277 −1.37 ± 1.33 538 1.11 0.0992 0.442

MXELEV + PCHSZ + PLEXT 9.39 ± 2.56 0.464 ± 0.299 −0.939 ± 1.42 538 1.61 0.0772 0.520

MXELEV + PLEXT 10.8 ± 2.57 −2.09 ± 1.21 539 1.79 0.0708 0.590

MXELEV 10.7 ± 2.83 539 2.05 0.0623 0.653

MXELEV + WATMAT 13.0 ± 3.45 −2.45 ± 1.58 −2.15 ± 1.14 539 2.05 0.0623 0.715

MXELEV + PLEXT + GH 9.34 ± 2.23 −2.31 ± 1.07 1.78 ± 1.09 −0.44 ± 1.48 539 2.45 0.0506 0.766

MXELEV + PCHSZ + RHODO + GH 7.75 ± 2.69 0.548 ± 0.222 0.123 ± 0.888 1.61 ± 0.981 −0.15 ± 1.57 540 3.51 0.0300 0.795

MXELEV + PLEXT + RHODO 11.4 ± 3.38 −2.21 ± 1.32 −0.348 ± 1.02 540 3.67 0.0277 0.823

MXELEV + RHODO 11.6 ± 3.99 −0.437 ± 1.13 541 3.88 0.0249 0.848

MXELEV + EUC 10.4 ± 2.87 −0.314 ± 0.942 541 3.94 0.0241 0.872

MXELEV + LGSEP + RHODO + GH 7.71 ± 2.76 −0.533 ± 0.239 0.0134 ± 0.947 1.49 ± 1.11 −1.09 ± 1.55 541 4.04 0.0230 0.895

MXELEV + LGSEP + PLEXT + RHODO + GH 8.68 ± 3.17 −0.385 ± 0.256 −0.165 ± 1.22 −0.0461 ± 1.01 1.53 ± 1.04 −0.696 ± 1.44 541 4.26 0.0205 0.915

Note: In each model presented below, detectability was modeled as a function of (Weather + Day + Grass height + Wattle maturity + Eucalyptus +  
Rhododendron + Water + Burn + Grassland within 500 m). Variable abbreviations are provided in Table 1.
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Visit-level covariates included the weather, date, time of day, and 
observer identity. Weather was observed to have effects on detec-
tion during preliminary surveys. The effect of observer identity was 
assessed in preliminary analysis, but was not used in subsequent 
modeling, as no substantial variation was seen. The number of days 
since the first survey was recorded as a proxy for season. Time of 
day was transformed into time away from solar noon, to account 
from a known bimodal pattern in the diurnal activity of the Nilgiri 
pipit (Vinod, 2007, personal communication, 2018).

2.3 | Statistical analysis

We first examined our covariates and eliminated some based on 
extreme collinearity between covariates or insufficient varia-
tion among our sites. Our expected effects on (i) individual detec-
tion, (ii) occupancy, (iii) species-level detection, and (iv) density 
(Table  1) were based on previous literature (Robin, Vishnudas, & 
Ramakrishnan, 2014; Vinod, 2007), our collective prior knowledge 
of the species' biology, and preliminary surveys. Based on our un-
derstanding of Nilgiri pipit biology, we constructed plausible com-
binations of covariates that we expected to influence (i)–(iv) above 
as a first step in constructing models of variation in Nilgiri pipit 
occupancy or abundance. Covariates that had substantial, but not 
extreme, collinearity (Pearson's |r| > .7; Dormann et al., 2013) were 
retained in the model set but never included in the same model.

In investigating variation in either pipit occurrence (using oc-
cupancy modeling) or pipit abundance (using N-mixture modeling), 
we were faced with the intractable problem of having to model all 
plausible combinations of covariates for the observation process 
(species-level detection in occupancy modeling; individual-level 
detection in N-mixture modeling) with all combinations of the co-
variates for occupancy or abundance, respectively. We therefore 
chose to use a two-step modeling procedure, where we used a fairly 

general covariate structure to describe variation in the occupancy 
and abundance while examining various covariate combinations 
for the observation processes. The most supported covariate com-
binations for the observation processes were then used with var-
ious covariate combinations for occupancy and for abundance, to 
determine the final best-supported model (see Doherty, White, and 
Burnham (2012) for a discussion of such two-step modeling proce-
dures). We recognize that this precludes some analytical options, 
such as the use of summed Akaike weights to assess covariate im-
portance, as the model set is inherently unbalanced. Analyses were 
carried out using the package “unmarked” (Fiske & Chandler, 2011) 
in the statistical software R (R Core team, 2018).

2.3.1 | Modeling Nilgiri pipit occupancy

Counts were reduced to detections and nondetections for the occu-
pancy analysis. We used a combination of three covariates to model 
variation in probability of occupancy while assessing support for dif-
ferent covariate combinations for modeling variation in probability 
of detection. We modeled additive effects of combinations of covar-
iates, except in the case of time and weather, which we expected to 
interact in determining detectability. By setting our survey duration 
per site proportional to the area of that site, we ensured that spe-
cies detection was equal across sites of variable size, thus dispensing 
with the need to include site area as a covariate for detectability. 
Model selection was carried out based on Akaike's information crite-
rion (AIC). Conservatively sampling to the bottom of the Nilgiri pip-
it's known elevational range, as we did, created the possibility that 
our analysis was predisposed to detect a strong effect of elevation. 
We therefore repeated our analysis on the subset of sites for which 
the maximum elevation was greater than 1,800 m a.s.l. (N = 151).

We tested 127 detection covariate combinations using three co-
variates to model occupancy and used the best-fitting combination to 

F I G U R E  2   (a–c) Model-averaged predicted occupancy of the Nilgiri pipit in response to the three covariates with the largest effects; 
maximum elevation within a site (a), log (grassland patch area) (b), and log (distance to the nearest grassland larger than 1.5 km2) (c). All other 
variables are set to mean values. Predicted probability of occupancy is plotted over the observed range of values of each predictor. Bands 
represent 95% confidence intervals
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fit 56 occupancy covariate combinations. The best-fitting occupancy 
covariate combinations (AIC weight > 0.02) are in Table 2. Adequate 
model fit (p = .8392) was indicated by the chi-square goodness-of-fit 
test from 5,000 parametric bootstrap simulations on the most gen-
eral model (MacKenzie & Bailey, 2004), for the subset of sites visited 
four times (N = 156); we excluded sites visited fewer than four times 
from our assessment of goodness-of-fit, as sample sizes were too 
low to treat these as separate cohorts. Since no single model re-
ceived overwhelming support in the second step, model-averaged 
predictions were used to derive response curves for each covariate 
(Burnham & Anderson, 2002). Since the final set of sites visited was 
nonrandom due to attrition of sites (see Appendix S1 for details), we 
did not attempt to estimate overall occupancy (proportion of area 
occupied) of Nilgiri pipits across the survey landscape.

2.3.2 | Modeling Nilgiri pipit abundance

We used model-averaged occupancy predictions to esti-
mate occupancy for each site. To avoid over-dispersion in 

site-specific abundance due to zero-inflation (Joseph, Elkin, Martin, 
& Possingham,  2009), only 112 sites with a predicted occupancy 
above 0.4, based on a clear threshold in a plot of estimated occu-
pancy, were used for analysis using N-mixture models (Royle, 2004). 
A total of 22 detection covariate combinations were tested with a 
global abundance covariate combination. We used the best-fitting 
covariate combination for detection to fit 91 covariate combinations 
for abundance: Six had an AIC weight of >0.02 (Table 3). Seven of the 
11 independent variables appeared in covariate combinations with 
substantial support. The area of a sampling site was expected to be 
proportional to the number of individuals observed in it; we there-
fore used log(site area) as an offset in all N-mixture models to con-
trol for site area, and so estimates of site-specific abundance λ may 
be interpreted as expected Nilgiri pipit density per hectare. Despite 
excluding sites with a low probability of occurrence, the chi-square 
goodness-of-fit test based on 5,000 parametric bootstrap simula-
tions implemented in the R package “AICcmodavg” (Mazerolle, 2016) 
indicated moderate over-dispersion of latent abundances relative to 
the model (ĉ = 1.93). Estimated ĉ was therefore used to derive QAIC 
values for model selection and to adjust estimated variances.

F I G U R E  3   (a–g) Model-averaged predicted density (per hectare) of the Nilgiri pipit in response to all covariates appearing in models 
with AIC weight > 0.01; maximum elevation within a site (a), maturity of wattle (b), grass height (c), presence of Eucalyptus (d), presence of 
Rhododendron (d), presence of water (f), and presence of a recently burned area (g). All other variables are set to mean or model values for 
continuous and categorical covariates, respectively. Predicted density is plotted over the observed range of values of each predictor. Band 
and error bars represent 95% confidence intervals
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3  | RESULTS

3.1 | Nilgiri pipit occupancy

We detected the Nilgiri pipit in 109 of 170 sites (naïve occu-
pancy  =  0.641). The best-fitting model for detectability, was 
“Weather + Day + Grass height + Wattle maturity + Eucalyptus + Rh
ododendron + Water + Burn + Grassland within 500 m.” Occupancy 
covariate combinations fit using this covariate combination for de-
tection that had an AIC weight ≥0.02 are listed in Table 2. Model-
averaged results show that maximum site elevation had a strong 
positive effect on occupancy, while patch isolation and patch area 
(fit only in separate models, as they were strongly correlated) had 
moderate negative and positive correlations with occupancy, re-
spectively (Figure 2). All 14 best-fitting models included maximum 
site elevation as a covariate, while the top four included either patch 
isolation or grassland patch area. All but one (quantity of grassland 
within 500 m of the site) of the putative occupancy predictors ap-
peared in one or more model with substantial support. Models 
comprising combinations of isolation, area, and elevation had compa-
rable AIC weights to those including additional covariates: However, 
each of these other covariates had extremely small effects on oc-
cupancy. When the analysis was repeated on sites with maximum 
elevation greater than 1,800  m a.s.l., the identity of most models 
with high support did not change, and AIC weights were comparable 
(Table  S2). Model-averaged response curves showed relationships 
between habitat covariates and species presence indistinguishable 
from those found with the full data set (Figure S3).

3.2 | Nilgiri pipit abundance

In the 144 sites with ψ  >  0.4, we detected 0 to 14 individuals 
(mean = 3.76). The best-supported covariate combination for detect-
ability was “Weather + Day + Plantation cover.” Covariate combina-
tions fit to density data using this detection covariate combination that 
had an AIC weight ≥ 0.02 are listed in Table 3. Model-averaged results 
showed that elevation had a strongly positive effect on bird density: 
the predicted density at the maximum sampled elevation was more 
than twice that at the lowest elevation. The best-fitting six models 
all included elevation, grass height, wattle maturity, and water, while 
Rhododendron, Eucalyptus, and recent burns appeared in three of the 
four best-fitting models. Eucalyptus negatively affected density, while 
the presence of water positively affected density. The presence of 
both Rhododendron and burned area had marginally positive effects 
on density. Grassland patch size and isolation, and plantation extent, 
were not part of models that had any substantial support (Figure 3).

4  | DISCUSSION

We found that maximum site elevation, grassland patch size, and dis-
tance to the nearest large grassland were the only covariates that 

had substantial effects on pipit occupancy. In contrast, abundance 
was shaped by maximum site elevation in combination with many 
site-level habitat characteristics, each of which had a substantial ef-
fect on predicted abundance.

Nilgiri pipit occupancy and abundance both have strong rela-
tionships with elevation. Only sites above 1,800 m have high prob-
abilities of occupancy. As there are no other montane grassland 
specialists in the Western Ghats (Rasmussen & Anderton,  2012), 
the Nilgiri pipit is likely to be the most elevationally restricted bird 
species in the Indian subcontinent south of the Himalaya. The only 
detection of Nilgiri pipits below 1,700 m was at the southwestern 
extremity of the Anamalai plateau, with anomalously high exposure 
to the southwest monsoon and a local climate consistent with higher 
areas elsewhere. This dependence of occurrence and abundance 
on elevation are similar to the distribution patterns of other mon-
tane flora, including Rhododendron (Giriraj et  al., 2008), and fauna 
(Mizel, Schmidt, Mcintyre, & Roland,  2016; Yandow, Chalfoun, & 
Doak,  2015), including habitat-specialist birds (Watson,  2003) like 
the Sholicola (Robin & Sukumar, 2002).

This species–habitat relationship suggests that the Nilgiri pipit 
is likely to be extremely vulnerable to climate change. Vulnerability 
to climate change may be strongly influenced by species traits 
(MacLean & Beissinger, 2017; Pacifici et al., 2017). Additionally, our 
study is limited by our use of elevation as a proxy for bioclimatic con-
ditions that directly affect the species; we emphasize that detailed 
investigation of the effects of these variables is necessary to better 
understand the ecology of the Nilgiri pipit and other montane grass-
land specialists. Nonetheless, we believe that the strength of the re-
lationships between species presence and elevation, and abundance 
and elevation, clearly suggest that the species is highly dependent 
on extremely specific habitat conditions, which climate change 
is likely to disrupt. In particular, any upward shift in the species' 

F I G U R E  4   Total available grassland above successive 100 m 
contours in the Western Ghats. Available grassland declines rapidly 
with elevation, implying that the range of the Nilgiri pipit would 
decline rapidly if it is forced upward by climate change
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elevational range is likely to lead to substantial range contraction 
(Parmesan, 2006; Sekercioglu, Schneider, Fay, & Loarie, 2008), given 
the distribution of area with respect to elevation in the two plateaux 
(Figure  4). Although such range shifts vary greatly in magnitude 
based on species ecology, the likelihood of such a shift is strength-
ened in this case by the nature of the montane grassland ecosys-
tem. Montane grassland becomes the dominant biome only above 
2,000  m (Das et  al.,  2015) and is maintained by temperature-me-
diated frost regimes that are likely to be shifted by anthropogenic 
climate warming (Joshi, Ratnam, & Sankaran, 2019).

Any loss of habitat for range-restricted species such as the 
Nilgiri pipit can be severely detrimental. Our sampling did not in-
clude patches of dense, mature, plantations of invasive woody 
species, as these habitats are not viable for grassland specialists. 
Within the sampled grasslands, the presence of these invasives did 
not affect the occupancy of the Nilgiri pipit, but negatively affected 
abundance. The exception was the patch condition “immature wat-
tle,” which had a higher predicted abundance than either “mature 
wattle” or “no wattle.” We suggest two possible explanations for 
this anomaly. First, areas with immature wattle but without mature 
wattle largely (19 of 28 sites) occur within the two largest grassland 
patches, Eravikulam and Mukurthi National Parks, which have high 
Nilgiri pipit densities, and where management practices include re-
moval of mature wattle. Second, immature wattle may temporarily 
contribute to habitat heterogeneity (a factor that increases abun-
dance, as discussed below) without substantially degrading habitat 
quality. However, due to wattle's rapid growth, this effect is likely 
to be transient.

Our findings suggest that while Nilgiri pipit presence may be 
constrained by habitat availability, its abundance is shaped by local 
habitat quality. It is probable that low-density populations in areas 
affected by invasive species are nonviable. Woody monocultures 
are driving declines in abundance: Such declines may cause func-
tional extinction even in areas where the species is present (Dirzo 
et al., 2014). Furthermore, woody invasives are replacing grassland 
over longer timescales (Arasumani et al., 2018) and thereby are likely 
to also constrain occupancy. Several studies have found detrimental 
impacts of spreading woody exotic species on grassland avifauna, 
including in the Brazilian Pampas (Azpiroz et  al.,  2012; Jacoboski, 
Paulsen, & Hartz,  2017) and South African highland grasslands 
(Allan, Harrison, Navarro, Van Wilgen, & Thompson, 1997), suggest-
ing that such a spread is a widespread phenomenon globally, requir-
ing broader attention.

In grasslands that are remnants of century-old habitat loss in the 
eastern Nilgiris (Joshi et  al.,  2018), we found a complete absence 
of Nilgiri pipits (Figure  S1), but grassland remnants in the Palani 
Hills, invaded and fragmented severely since 1973 (Arasumani 
et al., 2018) supported low-density populations. We conclude that 
grasslands in the eastern Nilgiris have experienced local extinc-
tions, as historical records clearly indicate the species' presence in 
that region (Robin, Vishnudas, & Ramakrishnan, 2014). Furthermore, 
high-altitude habitat specialists are often strongly affected by patch 
area (Watson, 2003), but Nilgiri pipit presence showed only a weak 

correlation with patch size and isolation, which is unexpected for a 
poor disperser (Rosenzweig, 1995), such as the Nilgiri pipit (Vinod, 
personal communication, 2018). We note that this species–habitat 
relationship is specific to the landscape under consideration; in this 
case, grassland patches deemed large enough to encompass the 
home range of an individual Nilgiri pipit. Exploring whether and 
how the species uses smaller patches may change the strength of 
the relationship with patch size and isolation. These findings may 
represent a substantial extinct debt in grassland recently affected 
by invasive species in the Palani hills and the southern Anamalais. 
The effects of local extinctions on population structure and viability 
is likely to be stronger in non-avian grassland endemics, since birds 
have greater dispersal abilities (Watson, 2003), particularly in long-
lived species that are likely to have greater extinction debt (Krauss 
et al., 2010).

The abundance of the Nilgiri pipit showed a strong positive 
correlation with intermediate or mixed grass height: such a pref-
erence for specific grass height has also been documented for a 
suite of avian species in the Brazilian pampas (Jacoboski, Paulsen, 
& Hartz, 2017). We found moderate positive correlations with other 
variables contributing to local habitat heterogeneity and vegetation 
structure, a correlation supported by the behavioral observations of 
Vinod (2007), who found that Nilgiri pipits preferred marshy habitat 
with tall grass for nesting, and more open habitat for feeding. We 
note that although grass height may be a labile variable at the scale 
of a grassland patch, the categories we used reflect variation in the 
nature of available grassland at the landscape scale. The response of 
grassland birds to  habitat heterogeneity is complex, with both pos-
itive and negative relationships documented (Pavlacky, Possingham, 
& Goldizen,  2015; Wiens & Rotenberry,  1981). While further in-
vestigation of the functional effects of structural complexity in the 
montane grasslands of the Western Ghats is merited, our findings 
show a broad dependence on natural habitat heterogeneity within 
this habitat.

Our findings have several implications for land management. 
The contiguous grassland within Eravikulam and Grasshills National 
Parks is the only remaining patch with high pipit abundance without 
large areas lost to invasive species: Its continued protection is there-
fore of critical importance. The grassland in and around Mukurthi 
National Park, containing the only other high-density population, is 
rapidly shrinking due to invasion (Arasumani et al., 2019), largely by 
black wattle, and requires urgent management attention. Conversely, 
many grasslands in which we suspect high potential for extinction 
are outside protected areas and have already been severely frag-
mented. These require a different management strategy targeting 
connectivity and restoration: such strategies have already been ex-
plored at local scales (Mudappa, D., & Shankar Raman, T. R., personal 
communication, 2018; Stewart, R., personal communication, 2018).

We found that patch-level habitat quality had a strong effect on 
abundance: Such a pattern has also been found in other highland 
avifauna (Allan, Harrison, Navarro, Van Wilgen, & Thompson,   1997; 
Watson,  2003). Thus, conservation efforts must focus on main-
taining habitat quality over and above simply preserving grassland. 
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Frequent fire is thought to positively affect grassland avian species 
richness (Pons, Lambert, Rigolot, & Prodon, 2003). We did not find 
a strong relationship between recent burns and Nilgiri pipit density: 
Further and more systematic study is required to draw any conclu-
sions about the role of fire in management in this landscape. At a local 
scale, the presence of woody invasives reduces Nilgiri pipit abun-
dance, while at the landscape scale, the spread of the same woody 
invasives shapes grassland patch size and isolation (Arasumani 
et al., 2019), which drive Nilgiri pipit occupancy. We emphasize that 
our study was limited to the remnant grasslands, and our findings 
therefore greatly underestimate the detrimental effects of invasive 
vegetation.ompletely wooded habitats that were previously grass-
lands were not sampled, since these do not currently have any Nilgiri 
pipits. Controlling the spread of invasive tree species into high ele-
vation montane grasslands is a matter of urgency for conservation.

5  | CONCLUSIONS

We demonstrate that elevation shapes both occupancy and abun-
dance of this montane specialist. Furthermore, our study demon-
strates that woody invasives are constraining occupancy via rapid 
grassland loss at the landscape level, while also degrading habitat 
quality at the local level. Our research also indicates local extinc-
tions in large parts of the species’ range. This study underscores the 
urgent need for conservation actions targeted at the poorly known 
montane grasslands and the specialist species dependent upon it.
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