Rucci et al. BMC Systems Biology 2018, 12(Suppl 5):96
https://doi.org/10.1186/512918-018-0614-6

BMC Systems Biology

RESEARCH Open Access

SWIFOLD: Smith-Waterman @ oo
implementation on FPGA with OpenCL for
long DNA sequences

Enzo Rucci'”, Carlos Garcia?, Guillermo Botella?, Armando De Giusti', Marcelo Naiouf?
and Manuel Prieto-Matias?

From 5th International Work-Conference on Bioinformatics and Biomedical Engineering
Granada, Spain. 26-28 April 2017

Abstract

Background: The Smith-Waterman (SW) algorithm is the best choice for searching similar regions between two
DNA or protein sequences. However, it may become impracticable in some contexts due to its high computational
demands. Consequently, the computer science community has focused on the use of modern parallel architectures
such as Graphics Processing Units (GPUs), Xeon Phi accelerators and Field Programmable Gate Arrays (FGPAs) to
speed up large-scale workloads.

Results: This paper presents and evaluates SWIFOLD: a Smith-Waterman parallel /mplementation on FPGA with
OpenCL for Long DNA sequences. First, we evaluate its performance and resource usage for different kernel
configurations. Next, we carry out a performance comparison between our tool and other state-of-the-art
implementations considering three different datasets. SWIFOLD offers the best average performance for small and
medium test sets, achieving a performance that is independent of input size and sequence similarity. In addition,
SWIFOLD provides competitive performance rates in comparison with GPU-based implementations on the latest GPU
generation for the large dataset.

Conclusions: The results suggest that SWIFOLD can be a serious contender for accelerating the SW alignment of DNA
sequences of unrestricted size in an affordable way reaching on average 125 GCUPS and almost a peak of 270 GCUPS.

Keywords: DNA, Smith-Waterman, OpenCL, High-performance computing, FPGA

Background

Biology, just like other scientific disciplines, is experi-
encing an exponential growth in data from experiments.
Sequencing centers, analytical facilities and individual
laboratories produce huge amounts of data, such as
nucleotide and protein sequences, and this phenomenon
is known as data explosion [1]. One of the main challenges
for the scientific community is to extract relevant infor-
mation from these data in a reasonable time, which has
motivated the collaboration of disciplines such as Biology
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and Computer Science. One of the most useful opera-
tions in Bioinformatics is the identification of similarities
between two biological sequences. To compute pairwise
similarity, the Smith-Waterman (SW) algorithm is usu-
ally employed because of its high sensitivity. In fact, SW
compares two sequences in an exact way and produces
the optimal local alignment score. The complexity of SW
depends on the input sequence lengths since the align-
ment process is of quadratic order. However, the main
handicap of SW resides in the long execution times and
computational resources required. This aspect has led to
the use of BLAST [2] and FASTA [3], which, although they
do not guarantee the optimal solution, are considerably
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faster. Despite the fact that heuristics are suitable in cer-
tain contexts, they do not always provide valid solutions
due to a loss of sensitivity [4].

In order to reduce computational times, great efforts
have been made to improve SW performance. Although a
number of studies have focused on exploiting the differ-
ent levels of parallelism that are now available on modern
microprocessors, accelerating SW is still a big challenge.
The parallelization of SW has been developed in two dif-
ferent alignment contexts: (i) a protein sequence against
a genomic database; and (ii) two long DNA sequences.
The first scenario involves the construction of a matrix
of moderate size which allows the alignment of several
independent sequences simultaneously [5]. However, in
the context of DNA sequence, this scheme is impractica-
ble due to limited memory resources. For example, in the
DNA case, a single pairwise alignment of Megabase DNA
sequences could involve a matrix size of petabyte scale.
The parallelization approaches in DNA alignment are
based on the wavefront method [6], in which the matrix is
calculated by diagonals and all cells in each diagonal are
computed in parallel.

In the last decade, we have seen countless parallel
SW approaches in both contexts. Most of them corre-
spond to protein alignment, and are parallelized on High-
Performance Computing (HPC) architectures [7] and
emerging architectures [8—10]. For very long sequences,
such as with DNA, the number of works is significantly
lower. CPU-based alternatives include the SSW library
[11] and the recently released MASA framework [12] and
Parasail library [13]. In the field of emerging architectures
(especially hardware accelerators), two approaches that
stand out are SW# [14] and CUDAlign [15], which com-
pute the alignment of huge DNA sequences using multi
CUDA-compatible GPUs. Also, there is an SW version
for Intel Xeon Phi accelerators that is known as mith-
Waterman on Xeon Phi Clusters for Long DNA Sequences
(SWAPHI-LS) [16]. Furthermore, ad-hoc FGPAs pro-
posals have shown significant speedups for DNA
comparison [17-19].

However, in recent years we have observed significant
transitions made by microprocessor manufacturers that
will have a big impact on the HPC field. With the recent
purchase of Altera by Intel in 2015, Intel has announced
the incorporation of FPGA hardware in the next gen-
eration of Xeon processors. While there are studies in
the transactional field that demonstrate great advantages
in terms of performance and power consumption of
large data centers equipped with these devices [20] (it
is expected that more than 30% of data centers will be
equipped with FPGAs), there is no study that confirms
these advantages in other areas such as Bioinformatics.
We would like to highlight that, unlike other accelerators
such as GPUs or Xeon Phi, which have to be purchased
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separately, the new processors will integrate FPGA tech-
nology so that its exploitation will be essential to accel-
erate any research application. Traditionally, FPGAs were
programmed at a low level using tools based on a hard-
ware description language (HDL), which makes algorithm
portability a very difficult and error-prone task. Recently,
the main FPGA manufactures have introduced a high
level programming paradigm known as Open Comput-
ing Language (OpenCL), which facilitates the portability
process.

In the present study, we evaluate the performance of
SWIFOLD, an SW implementation for DNA sequences
of unrestricted size, on Intel's FPGA by means of the
OpenCL paradigm. Most existing studies into FPGA-
based sequence alignment have been developed in HDL,
and this limits their portability and design. We would
like to point out that both Altera and Xilinx have pro-
moted similar implementations in the past [21, 22], but
no real sequence data were used and sequence lengths
were fixed and very short, which can be radically differ-
ent from real bioinformatic contexts. The focus of this
paper is not only on the performance of Smith-Waterman
Implementation on FPGA with OpenCL for Long DNA
Sequences (SWIFOLD) but also on a guide to selecting the
best existing option for a non-expert user. This work is an
extension of the previous one published in [23], and the
main contributions made here are:

e The creation of a public git repository with the binary
executable developed for this paper, denoted as
SWIFOLD!.

e The development of SWIFOLD and its optimization
on Intel’s Arria 10 FPGA. The choice of Arria 10 is
motivated by Intel’s announcement of the
incorporation of Arria 10 FPGAs into both the new
Xeon processors and the Intel-Go platform for
automotive production at the 2017 Consumer
Elec- tronics Association event (CES2017). We
would like to emphasize that the optimized code on
the Arria 10 reported accelerations of between 3 x
and 4x in comparison with previous work [23].

e Additional experiments with larger DNA sequences
than those used in [23]. This aspect emphasizes the
independence of the SWIFOLD performance with
regards to the sequence sizes.

e A useful guide to selecting the best platform for DNA
sequence alignment. The selection depends on the
matrix size and the sequence similarity, as well as the
cost of the corresponding platform.

Methods

Smith-Waterman algorithm

The SW algorithm is widely used to obtain the optimal
local alignment between two sequences [24]. This method
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is based on a dynamic programming approach and is
highly sensitive since it explores all possible alignments
between the sequences.

Given two sequences S; and S of length |S1| = m and
|S2| = n, the recurrence relations for the SW algorithm
with affine gap penalties [25] are defined as follows:

H;j = max{0, H;_1,j—1 +SM(S1[il, S2[ /1), Eij, Fij} (1)

E;j = max{H;j—1 — (Go + G.), Eij—1 — Ge} (2)

Fij = max{H;-1,j — (Go + Ge), Fi—1j — Ge} (3)

To identify a common subsequence, the similarity score
H;j is computed. This contains the score for aligning the
prefixes S1[1..i] and S2[1.j]. E;; and F;; correspond to
the scores of prefix S1[1..]] and Sy[ 1..j] aligned to a gap,
respectively. The scoring matrix is denoted as SM and
refers to match/mismatch scores between nucleotides. G,
and G, represent the gap open and gap extension penal-
ties, respectively. First of all, H, E and F must be initialized
with O when i = 0 or j = 0. Then, the recurrences should
be calculated with 1 < i < mand 1 < j < n. The high-
est value in the H matrix corresponds to the optimal local
alignment score between S; [ 1..i] and S| 1..j]. The optimal
local alignment is finally obtained by following a traceback
procedure whose starting point is the maximum value
in H.

From a computational point of view, it is important to
highlight the computational dependences of any H ele-
ment. Any cell can be calculated only after the values of
the upper, left and upper-left neighbors are known (see
Fig. 1). These dependences impose restrictions on the
ways in which H can be processed.
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OpenCL extension on Intel’s FPGA

OpenCL is an extended framework for coding paral-
lel programs across heterogeneous platforms. It offers
a standard interface for parallel computing using task-
and data-based parallelism. Currently, it is supported by
most hardware devices such as CPUs, GPUs, Digital Sig-
nal Processors and FPGAs. Its definition and updated
versions have been promoted by the Khronos Group
consortium, in which most hardware vendors act as
promoters.

OpenCL is based on the host-device model. While
OpenCL routines called kernels are executed on the
device, the host controls the device memory and the
kernel code launch. Kernels can be seen as a piece
of code which expresses the parallelism of a program.
In this programming model, a program workload is
divided into work-groups and work-items. While the
task parallelism model exploits the parallelism between
tasks following a pipeline scheme, the data parallelism
model exploits the concurrent execution on different
data (if non-dependence data exists). In the task par-
allel model, a kernel consists of a single work-group
with a unique work-item. In the opposite sense, the
data parallel model considers several work-groups com-
posed of multiple work-items. These work-groups are
executed independently on a processing element, usu-
ally in the Single Instruction Multiple Data (SIMD)
manner.

The OpenCL memory model implements a particular
memory hierarchy. Each region is distinguished by access
type, scope and performance. Global memory is a high
latency read-write memory accessible by all work-items
and also by the host. Local memory is shared by all work-
items in the same work-group. It can be seen as a scratch-
pad memory with low latency access. Private memory is
only accessible by a single work-item. Constant memory,
as its name suggests, is a read-only memory accessible by
all work-items. In this sense, FPGAs are dedicated accel-
erators that obey the aforementioned complex hierarchy
model (see Table 1 particularized for the FPGA used in
this research).

One of the main advantages of OpenCL for a pro-
grammer is the abstraction of the target platform details
in the parallel coding task. In fact, it favors portability

Table 1 OpenCL memory model for the Intel Arria 10 FPGA and
the resources available in the Arria 10 FPGA

v
>

Fig. 1 Data dependences in the alignment matrix H. Red arrows
indicate the data dependences among cells while green arrows
denote cells that can be computed simultaneously

OpenCL FPGA Intel Arria 10 FPGA
Memory Global External 2GB DDR3

Constant Cache 32KB DDR3

Local Embedded 67Mbits

Private Registers 67244Kbits
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and reduction of parallel coding effort. Note that FPGAs
allow programming networks composed of logic ele-
ments, memory blocks and specific DSP blocks. HDLs are
generally used to verify and create digital designs; how-
ever, they are complex and error prone, and have the
additional difficulty of maintaining an explicit notion of
time.

Each Intel FPGA can have multiple in-order command
queues associated with it that can execute independent
commands concurrently. Kernels need to be compiled
previously using the Intel/Altera OpenCL Compiler
(AOC). At the moment of selecting a parallel program-
ming model, Intel FPGA OpenCL SDK [26] recommends
the task parallel model as the best performance choice. We
should point out that the AOC extracts efficient loop par-
allelism, which allows the loop to execute in a true pipeline
fashion.

SW implementation

The programming aspects and optimizations applied
to our implementations on FPGA accelerated platforms
are described in this section. For the sake of clarity,
the pseudo-code for the host implementation is shown
on Algorithm 1. Memory allocation and initialization
are performed in OpenCL through c/CreateBuffer, while
memory transfer to the host is performed by means of
clEnqueueReadBuffer. Finally, the clEnqueueTask function
makes it possible to invoke kernel execution.

Algorithm 1 Pseudo-code for the host implementation
1: clCreateBuffer’s(...)
sequences to device

: NB=n/BW > NBisthe number of vertical blocks

. for b < NB do

clEnqueueTask(...) > Compute b-th block

swap(prevLastColH, curLastColH)

swap(prevLastColE, curLastColE)

: end for

. clEnqueueReadBuffer(maxScore) > Transfer optimal
score to host

> Create buffers + transfer

© N G W N

The task parallel programming model mentioned in
“OpenCL extension on Intel's FPGA” section is followed
to implement the kernel, and its pseudo-code is presented
in Algorithm 2. To reduce memory space requirements,
the H matrix is divided into vertical blocks of size BW x m
(BW means Block Width). Then each block is processed
in row-by-row manner: from top to bottom, in a left to
right direction, as is shown in Fig. 2. As well as improv-
ing data locality, this technique also favors the exploitation
of the private low-latency memory. In this sense, we have
used two buffers to store one row for matrices H and F.
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Algorithm 2 Pseudo-code for the kernel implementation

1: _ kernel void SW_kernel ( S1, So, m, b, match,
mismatch, G, G, prevLastColH, curLastColH,
prevLastColE, curLastColE, maxScore ) {

2: Load the BW residues of Sy corresponding to b-th
block from global memory to private memory

3: fori <mdo > each row

Load the i-th residue of S; from global memory to
private memory

5: Read previous block data from global memory

(prevLastColH and prevLastColE)

#pragma unroll
forj < BW do
Calculate H; in private memory
end for
10: Write data for next block to global memory
(curLastColH and curLastColE)

11: end for

12: Update maxScore in global memory (if appropiate)

13: }

Y 2 N

In addition, both sequences are partially copied to private
memory.

From the performance point of view, fully unrolling
the inner loop represents an essential aspect of this ker-
nel since this technique allows the AOC to exploit loop
instruction pipelining. As a consequence, the perfor-
mance improves because more operations per clock cycle
are carried out. As the compiler needs to know the num-
ber of iterations in the compile phase, the Sy sequence
must be extended with dummy symbols to make its length
a multiple of the fixed BW value. However, this exten-
sion has a negligible influence on execution time since
DNA sequences are usually much larger than the BW
constant. Furthermore, it is important to remark that
the AOC reports the appearance of non-real read-write
dependences in private memory associated to matrices H

1 n |
F BW A \ — i

m

C Lt o Lot ;
Block 0 Block 1 Block 2 Block NB-1

Fig. 2 Graphic representation of our OpenCL kernel implementation
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and F after a certain BW value, which aborts binary kernel
generation. In order to solve this issue, the innermost loop
is split into two or more loops to carry out the execution
of wider blocks.

Global memory buffers are employed to solve the data
dependences between adjacent vertical blocks mentioned
in “Smith-Waterman algorithm” section, as each block
needs the last column H and E values of the previ-
ous block. We used separate buffers to avoid read-write
dependences in global memory: one for reading the values
from the previous block and one for writing the values for
the next block. After each kernel invocation, buffers are
swapped in the host (these buffers are colored pink and
blue in Fig. 2). It is important to mention that, although in
the OSWALD implementation [10] Intel/Altera OpenCL
channels are used to communicate these data, the use of
this technique is not feasible in the context of DNA with
millions of nucleotide bases involved, since its size would
exceed by far the channel resources available. We should
point out that although the use of these buffers could dou-
ble memory consumption, it is by far compensated on
speedup terms.

In addition, to improve data transfer efficiency, host-
side buffers are allocated to be 64-byte aligned because
the direct memory access mechanism is activated. Both
sequences are copied when creating the device buffers and
the optimal score is retrieved after all kernels are finished.

Results and discussion

In this section, we describe the tests carried out and
evaluate the performance of SWIFOLD. Additionally, we
compare SWIFOLD with other existing alternatives and
provide a guide to selecting the best platform for DNA
sequence alignment according to the results obtained.

Experimental platforms and tests carried out

The experiments were performed on three systems
equipped with different accelerator types, namely FPGA,

Table 2 Experimental platforms used in the tests
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GPU and Xeon Phi. The main features of these sys-
tems are described in Table 2. All the tests were carried
out with real DNA sequences from the National Cen-
ter for Biotechnology Information (NCBI)? in order to
ensure the relevance of this study. The test sequences
are divided into three sets: small sequences (less than
1M nucleotide bases, which generates kilo and mega-
cell matrices), medium sequences (from 1M to 25M
nucleotide bases, which generates giga-cell matrices),
and large sequences (more than 25M nucleotide bases,
which generates up to tera-cell matrices). The acces-
sion numbers and sizes of the sequences are presented
in Table 3. For the sake of validation, optimal align-
ment scores were also included. The score parameters
used were: +1 for match; -3 for mismatch; -5 for gap
open; and -2 for gap extension. Finally, each test was
run ten times and performance was calculated as an
average of the corresponding execution times to avoid
variability.

Performance and resource usage evaluation

Cell updates per second (CUPS) is a commonly used per-
formance measure in the SW scenario, because it makes
it possible to remove dependency on the sequences uti-
lized for the different tests. CUPS represents the time for
a complete computation of one cell in matrix H, including
all memory operations and the corresponding computa-
tion of the values in the E and F arrays. The billions
of CUPS (GCUPS) is calculated with the formula [';’Tg’g,
where m and # are the sizes of the sequences and ¢ is the
computation time. In this article, the runtime ¢ includes
device buffer creation, the transfer time of host data to
the FPGA, the calculation time of SW alignment, and the
transfer-back time of the optimal score.

We have considered different kernel implementations
according to integer data type and BW value (see Table 4)
to evaluate FPGA performance rates. The following items
indicate the main differences:

Platform
FPGA GPU Xeon Phi
Host 2xIntel Xeon E5-2670 2.60Ghz  2xIntel Xeon E5-2695 v3 2.30Ghz 2xIntel Xeon E5-2695 v3 2.30Ghz
(16 cores, 32GB RAM) (28 cores, 64 GB RAM) (28 cores, 128 GB RAM)
Accelerator Intel Arria 10 GX NVIDIA GTX 980 Intel Xeon Phi 3120P
(Maxwell architecture, 2048 CUDA cores, 4GB RAM)
(2GB RAM) NVIDIA GTX1080 (Knights corner generation, 57 cores, 6GB RAM)
(Pascal architecture, 2560 CUDA cores, 8GB RAM)
Operating system  CentQOS release 6.5 Debian release 8.0 CentOS release 6.5
Compiler Intel ICC 17.0.1.132 Intel ICC 17.0.1.132 Intel ICC 17.0.1.132

Intel FPGA OpenCL SDK16.0 ~ CUDA SDK 7.5
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Table 3 Information of the sequences used in the tests

Set Sequence 1 Sequence 2 Matrix size Score
Accesion Size Accesion Size (cells)

Small AF133821.1 10K AY352275.1 10K 100K 5027
NC_001715.1 57K AF494279.1 57K 3M 51
NC_000898 162K NC_007605 172K 28M 18
NC_003064.2 543K NC_000914.1 536K 291M 48

Medium CP000051.1 ™ AE002160.2 ™ 1G 82091
BA000035.2 3M BX927147.1 3M 9G 3888
AE016879.1 5M AE017225.1 5M 25G 5220775
NC_005027.1 M NC_003997.3 5M 35G 157
NC_017186.1 1T0M NC_014318.1 10M 100G 10235056
NT_033779.4 23M NT_037436.3 25M 575G 9059

Large NC_000021.9 48M NC_006488.4 34M 1.6T 24922392
NC_000022.11 51M NC_006489.4 38M 19T 20133752
NC_000019.10 59M NC_006486.4 62M 37T 23570332
NC_000020.11 65M NC_006487.4 67M 447 35488641

e The name prefix denotes the integer data type used;
i.e. int, short and char represent 32, 16 and 8 bit
integer data types, respectively.

e The name suffix denotes the BW value used; e.g.
bw256 means that the BW value was set to 256.

FPGA resource utilization and the performance
achieved for our OpenCL kernel implementations using
the small and medium test sets are shown in Table 4. BW
impacts on both resource consumption and performance
rates. As might be expected, larger BW values produce
better performance results but at the expense of higher
resource consumption. In fact, adaptive logic modules
(ALMs) are the most affected resources: registers (Regs)
and RAM blocks (RAMs) increase slightly, while DSP
blocks (DSPs) remain intact. It is important to mention
that, unlike in our previous work [23], we have been able
to solve the non-real read-write dependences reported by
the AOC for large BW values. This improvement allowed
us to stress the kernel resources in order to maximize
performance.

If we consider the integer data type, we can see that
the use of a smaller data type generates better perfor-
mance and less resource consumption. We can clearly
appreciate this behavior when comparing the int_bw512
and short_bwS512 kernels: for the same BW configuration,
short_bw512 presents an increment of up to 1.52x in
performance with a reduction of up to 0—0.35x in
resource usage with regards to the int bw512 version.
A similar behavior is observed with the short bw512
and char_bw512 kernels: char_bw512 reports an incre-
ment of up to 1.21x in performance with a reduction

of up to 0—0.35x in resource usage with regards to its
short_bw512 counterpart. Nevertheless, the use of nar-
rower integer data types does not come free and involves
an significant reduction in representation range. In this
sense, there are three alignment scores out of ten that
cannot be computed when using 16 bit integer data.
This fact is also observed for the experiments with the
8 bit data type, where only three experiments could be
carried out 3.

When considering sequence length, we can observe
that larger workloads improve performance in all kernels
regardless of sequence similarity. The best performances
obtained are 132.43, 203.5 and 268.83 GCUPS for the int,
short and char kernels, respectively.

Performance comparison of SWIFOLD with other SW
implementations
This subsection addresses a comparison of SWIFOLD
with other SW implementations: the Xeon Phi-based
SWAPHI-LS program (v1.0.12) [16], and the GPU-based
SW# [14] and CUDAlign (v3.9.1.1024) [27] programs®. It
is important to mention that we have also tested several
CPU-based alternatives: the MASA/OpenMP implemen-
tation [12], and the SSW [11] and Parasail [13] libraries.
However, we discarded all of these due to their poor
performance rates. In particular, the best performances
achieved using 2xIntel Xeon E5-2670 processors were
0.5, 2.42 and 1.3 GCUPS for MASA/OpenMP, SSW and
Parasail, respectively.

Table 5 presents the performance of the SWIFOLD,
SWAPHI-LS, SW# and CUDAlign implementations using
the small and medium sequence test sets. It is worth
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Table 5 Performance comparison among SW implementations using the small and medium sets

Implementation SWIFOLD SWAPHI-LS SWi CUDAlign SWi CUDAlign
Accelerator Intel Arria 10 GX Intel Xeon Phi 3120P NVIDIA GTX980 NVIDIA GTX1080

Matrix size (cells) Performance (GCUPS)

100K 49.81 (56.92) 042 0.3 0.03 0.23 0.03

3M 105.14 (223.1) 7.69 7.62 1.08 7.55 1.08

28M 122,91 (255.49) 21.24 3333 8.18 4147 8.63
291M 126.95 (268.83) 30.67 64.53 4589 111.60 58.24

1G 129.44 32.84 7524 79.21 144.97 117.97
9G 131.45 (202.56) 339 69.54 84.05 143.50 152.63
25G 131.96 34.16 120.92 160.79 255.89 29543
35G 131.98 (203.51) 34.38 68.84 84.43 14212 155.19
100G 132.15 33.19 118.81 163.77 253.13 297.05
575G 132.33 (204.06) 30.36 67.55 84.84 143.51 158.13

SWIFOLD performance rates belong to the best 32-bits kernel version but faster performances from smaller data types are also reported (between parenthesis) whenever

correspond

noting that the SWIFOLD performance rates belong to
the best 32-bit kernel version but faster performances
for smaller data types are also reported (in brackets)
where applicable. SWAPHI-LS yields an average perfor-
mance of 25.89 GCUPS and a peak of 34.38 GCUPS,
being outperformed by SWIFOLD in all scenarios. In
particular, the most impressive performance difference
occurs for the small sequence set where SWIFOLD runs
on average 35.5x faster. For the rest of the tests, the
performance gain decreases but still improves by 4x on
average.

Both GPU tools are very sensitive to sequence simi-
larity since higher GCUPS are obtained on alignments
with higher scores. On the GTX980, SW# presents an
average performance of 62.68 GCUPS and a maximum
performance of 120.92 GCUPS, improving upon CUD-
Align by a factor of 5.34x on average for the small dataset.
CUDA lign achieves 71.23 GCUPS on average and a peak
of 163.77 GCUPS on the medium test set, reaching an
average speedup of 1.24x with respect to SW# imple-
mentation. On the GTX1080, SW# obtains an average
performance of 124.40 GCUPS, with a maximum perfor-
mance of 255.89 GCUPS. On the same GPU, CUDAlign
obtains 124.44 GCUPS on average, and 297.05 GCUPS
as its peak. In a similar way, CUDAlign runs slower than
SW# for the first half of the sequence alignments, for
which the latter runs 4.3 faster on average. For the sec-
ond half of the test set, CUDAlign beats SW# by a factor
of 1.12x. According to the results obtained for the GPU
implementations, we can conclude that regardless of the
GPU generation, for small sequences SW# performs bet-
ter, whereas for medium sequences CUDAlign is slightly
faster. For its part, SWIFOLD yields an average perfor-
mance of 119.41 GCUPS, with a maximum performance

of 132.33 GCUPS. In this way, SWIFOLD is able to beat
SW# in all tests on the GTX980 and in the small test set on
the GTX1080 (running 19.77 x and 58.77 x faster on aver-
age, respectively). Compared with CUDAlign, SWIFOLD
is superior on the GTX980 by a factor of 201 x on average,
except for the seventh and ninth alignments, for which
CUDAIlign performs better because of high sequence sim-
ilarity. SWIFOLD outperforms CUDAlign when using the
small dataset on both GPUs, and CUDAlign is supe-
rior for the medium dataset, but just on the most
powerful GPU.

For larger dataset inputs, we have also compared the
performance of the different tools. Table 6 presents the
performance rates for the SWIFOLD, SWAPHI-LS, SW#
and CUDAlign implementations. As might be expected,
SWAPHI-LS again presents poor performance rates,
obtaining 30.77 GCUPS on average and a peak of 33.66
GCUPS. SWIFOLD is able to beat both the SW# and
CUDAlign implementations on the GTX980 GPU (1.5x
and 1.1x faster on average, respectively), but this result
changes for the most powerful GPU, on which the best
performance is achieved by CUDAlign: 234.8 GCUPS on
average (note the high score values reflected in Table 3).

Best platform selection for DNA sequence alignment

From the results in the previous section, we can con-
clude that for the alignment of long sequences, such
as in the case of DNA, the use of a general pur-
pose processor is not the most suitable solution, con-
sidering the poor results achieved: MASA/OpenMP,
SSW and Parasail libraries hardly obtain a maximum
performance of 2.42 GCUPS. This fact forces us to
use accelerators in order to obtain acceptable response
times.
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Table 6 Performance comparison among SW implementations using the /arge set

Implementation SWIFOLD SWAPHI-LS SWi CUDAlign SWi CUDAlign
Accelerator Intel Arria 10 GX Intel Xeon Phi 3120P NVIDIA GTX980 NVIDIA GTX1080

Matrix size (cells) Performance (GCUPS)

1.6T 13241 31.03 91.54 122.14 193.56 22415
19T 13241 27.86 84.93 110.77 180.34 23191
37T 13242 33.66 89.02 11947 191.59 232.54
44T 13243 3041 95.61 13222 138.22 250.78

However, the choice of the optimal accelerator is not
obvious since it involves an additional purchase. Accord-
ing to the results obtained, the use of a Xeon Phi accel-
erator does not seem to be an appropriate solution if we
consider the performance on other accelerator types such
as NVIDIA GPUs or Intel FPGAs.

The most successful implementations in this study are
CUDAlign on the latest NVIDIA GPU and SWIFOLD on
an Intel FPGA. The advantage of choosing a GPU lies
in two aspects: the performance increment of successive
GPU generations and their affordable prices. However,
it is important to mention that newer GPU generations
do not always provide better performance in the context
of sequence alignments using the SW method, such as
with CUDASW ++ software [5]. Likewise, it has also been
observed that CUDAlign does not always provide the best
performance rates for small and medium sequence sizes.
However, CUDA!lign can be considered an efficient solu-
tion on the latest GPUs for large dataset inputs or very
similar sequence pairs.

Taking into account the above analysis as well as Intel’s
plans for FPGA integration into its next generation of pro-
cessors, we consider that SWIFOLD can be a good choice
for long DNA sequence alignment. SWIFOLD doest not
only offer the best average performance for small and
medium datasets, but also presents a performance that is
independent of data input length and sequence similarity.
Additionally, it is also competitive compared with CUD-
Align on the latest generation of NVIDIA GPUs, running
1.6x slower on average.

Finally, Table 7 summarizes the different SW implemen-
tations and the expected performance according to the
alignment size and the accelerator type, where (+) and (-)
mean better and worse options, respectively.

Conclusions

In this paper, we have presented and evaluated SWIFOLD.
By using this tool, we have addressed the benefits of a par-
allel SW implementation using OpenCL on Intel FPGAs
for DNA sequences of unrestricted size. By considering
the performance of SWIFOLD, we can conclude that:

e Larger pipelines lead to better performance but at the
cost of higher resource consumption. By splitting the

innermost loop, we were able to avoid the non-real
dependences reported by AOC and, as a
consequence, stress the kernel resources in order to
maximize performance.

e Data type exploitation has a significant effect on
performance rates. Narrower data types reported
better GCUPS with less resource usage, but at the
expense of decreasing representation width.

e Larger workloads benefit all kernels regardless of
sequence similarity. In particular, the fastest 32 bit
kernel reached up to 132.43 GCUPS.

e Apart from the performance benefits, the use of the
OpenCL paradigm for SWIFOLD programming
facilitates the portability process, unlike the existing
HDL-based alternatives.

If we compare SWIFOLD with other SW implementa-
tions on different devices and accelerators, we can con-
clude that:

e (CPU-based implementations are not a suitable
solution due to their unacceptable response times.

e \ith regards to Xeon Phi coprocessors, SWAPHI-LS
reports the poorest performance rates.

¢ In the field of GPUs, SW# performs better for small
sequences whereas CUDAllign is slightly faster for
medium and large sequences, regardless of the GPU
generation.

e For its part, SWIFOLD offers the best average
GCUPS for small and medium test sets, its
performance being independent of input size and
sequence similarity. In addition, SWIFOLD reported
competitive performance rates compared with
CUDAlign on the latest GPU generation for the large
dataset.

Furthermore, according to the results obtained and in
view of the wide range of options, we have proposed a
guide to selecting the best platform for DNA sequence
alignment. As the choice is not obvious, the analysis pro-
vided can be helpful to a non-expert user at the moment of
purchasing a computational platform. As a consequence
of these promising results, the following aspects will be
considered for future work:
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Table 7 Categorized options of SW implementations on different accelerator devices

Implementation SSW SWIFOLD SWAPHI-LS SWi CUDAlign
Device Intel multicore Intel FPGA Intel Xeon Phi NVIDIA GPU

Matrix size (cells) Performance (GCUPS)

Small - +++ + ++ +
Medium - +++ + +++ +++
Large - ++ + ++ +++

(+) and (-) mean better and worse options, respectively

e Since not all alignments require 32 bit integer data,
and in order to look for the best performance-width
trade-off, combinations of kernels with different
integer data width will be considered.

e Since the chance of exploiting multiple devices is
available in OpenCL, this work will be extended to a
multi-FPGA environment in order to find the best
workload distribution.

® As nowadays not only performance but power
efficiency matters, we are interested in
complementing the present study with a
performance vs power analysis.

Finally, we would like to mention that the use of FPGAs
for SW alignment has been traditionally limited by their
programming cost and lack of portability. SWIFOLD
solves these issues because it is a portable, parallel SW
implementation for DNA sequences of unrestricted size
on Intel FPGA-based platforms. As FPGAs are becoming
increasingly popular and they are expected to be available
on the next generation of servers, we expect SWIFOLD to
become a serious contender for accelerating DNA align-
ment.

Endnotes

' SWIFOLD is available at https://github.com/enzorucci/
SWIFOLD.

2 Sequences are available at http://www.ncbi.nlm.nih.gov

3The symbol "~ denotes an alignment that cannot be
computed because the optimal score exceeds the corre-
sponding maximum value.

*Both GPU tools were configured to perform only their
score version.
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