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ABSTRACT: Data-driven soft sensing modeling is becoming a
powerful tool in the ironmaking process due to the rapid
development of machine learning and data mining. Although
various soft sensing techniques have been successfully used in both
the sintering process and blast furnace, they have not been
comprehensively reviewed. In this work, we provide an overview of
recent advances on soft sensing in the ironmaking process, with a
special focus on data-driven techniques. First, we present a general
soft sensing development framework of the ironmaking process
based on the mechanism analysis and process characteristics.
Second, we provide a detailed taxonomy of current soft sensing
methods categorized by their predictive tasks (i.e., quality
indicators prediction, state parameters prediction, etc.). Finally, we outline several insightful and promising directions, such as
self-supervised learning and digital twins in the ironmaking process, for future research.

1. INTRODUCTION
Iron- and steelmaking has a significant impact on the
development of the national economy, and blast furnace
ironmaking accounts for about 70% of energy consumption in
the entire steel-making process. With the emergence of the
concept of “peak carbon dioxide emissions and carbon
neutrality”, intelligent ironmaking has become a new develop-
ment trend in the modern manufacture field.1 In order to
achieve the goal of intelligent ironmaking, a growing number of
researchers have started to establish a comprehensive industrial
automatic system, including key performance indicators
(KPIs) prediction, optimization, control, and decision-making.
Accurate and efficient KPIs prediction, as an important
prerequisite for industrial automation systems, has received
widespread attention from both academic and industry
fields.2−6

In the actual industrial processes, a large number of KPIs
cannot be directly detected using instruments and measure-
ments because of the harsh production environment.7−10 In
the traditional blast furnace ironmaking process, monitoring
and estimation of KPIs mainly depend on the experience of the
site-workers and offline testing. This manual method usually
costs much time, and its accuracy is not high, causing difficulty
in accurately controlling the product quality in real time. If the
site-workers fail to make the correct decisions and judgments,
it will impose an adverse impact on the product quality and
even affect the normal operation. To settle this issue, soft
sensing methods that establish the mapping relationships
between KPIs and easy-to-measure variables have been widely

used in the industrial processes.11 In general, existing soft
sensing modeling methods can be divided into three
categories: mechanism-based methods, knowledge-based
methods, and data-driven methods.

Mechanism-based modeling methods rely on the internal
physicochemical reaction principle of the blast furnace
ironmaking process, such as thermodynamics, fluid mechanics,
law of conservation of energy, etc. If accurately established,
these models can provide highly reliable and explanatory
results with clear physical meanings. For example, Harvey et
al.12 put forward a global simulation strategy to optimize
process parameters of the blast furnace based on classical
thermodynamic calculations coupled with a direct search
algorithm. This work13 developed a static mechanism model by
calculating the distributions of key process variables such as
density and pressure of the gas phase, degree of iron ore
reduction, and coke solution loss. Additionally, a multifluid
mathematical simulator of the blast furnace was proposed to
reproduce the field of velocity, temperature, and reaction in the
furnace.14 Despite the advantages of mechanism-based models,
they still have some limitations.15,16 For example, these
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methods need a lot of expert knowledge, and it is hard to
adjust relevant parameters in the blast furnace process
dynamically. Besides, it is unrealistic to obtain complete and
accurate physical and chemical reaction mechanisms due to the
complex environment of the blast furnace.

Knowledge-based modeling methods mainly use expert
experience and knowledge to infer and judge the qualitative
relationships between different variables. The knowledge-based
models usually include causal analysis, graphical reasoning,
fuzzy reasoning, expert system, etc.17−19 For example, three
prototypical expert systems were proposed to cope with the
complexity of the blast furnace based on physical models,
uncertain knowledge, and rules of thumb.20 An expert system
based on LSTM network was developed to achieve the long-/
short-term predictions of the iron temperature during
tapping.21 The experimental results on a real data set
demonstrated that this system can provide a useful tool for
the operators. Afterward, a new fuzzy control expert system22

maximized the combustion and heat transfer efficiency of hot
blast stoves. According to the studies mentioned above, it can
be seen that the expert system has promoted the development
of the automation level in the blast furnace ironmaking
process. But qualitative system description and limited process
analysis still hinder further improvements in the ironmaking
production level. Besides, the expert system is heavily confined
to the construction of the knowledge base, which equally
brings some challenges for intelligent ironmaking.

Compared with the two methods above that rely heavily on
the mechanism and knowledge of the ironmaking process,
data-driven soft sensing models are mainly based on the
understanding of data characteristics and distributions. In the
modern ironmaking process, the data-driven modeling
methods have increasingly received attention with the rapid
development of data collection and storage technology,

especially the Industrial Internet platform as a global
information system.23 The common data-driven soft sensing
methods consist of traditional statistic learning models and
deep learning models.24,25 In the earlier stage, statistic learning
algorithms such as principal component analysis,26 partial least
squares regression,27 Support Vector Machines,28 and Random
Forest29 have been widely used in the soft sensing modeling
tasks of the ironmaking process. However, with the develop-
ment of distributed control systems and information
technology, a large amount of industrial data has been
collected and stored at an increasingly fast speed. In this
case, these shallow learning models above are hard to extract
useful features from tremendous amounts of data. Fortunately,
Hinton et al.30,31 first proposed an unsupervised pretraining
method to tackle the problem of gradient vanishment in 2006,
which pushed the deep neural network to a new climax. Deep
learning, with remarkable feature learning ability, has obtained
many breakthroughs in computer vision,32,33 natural language
process,34,35 and speech recognition.36,37 Inspired by these
successful applications, deep learning has also been widely used
in the industrial processes, such as hierarchical Extreme
Learning Machine,38 Variable-wise Weighted Stacked Autoen-
coder (VW-SAE),39 Gated Stacked Target-related Autoen-
coder (GSTAE),40 etc. In addition, Autoencoder and
Recurrent Neural Network have also been applied to predict
the molten iron quality indicators in the blast furnace
ironmaking process.41,42 Accurate prediction of KPIs is a
prerequisite for improving the quantity and quality of the
product in the ironmaking process.

In recent years, there has been a proliferation of studies that
adopted data-driven soft sensing modeling methods in the
entire ironmaking process through literature analysis.43−45 But
there is no systematic review of data-driven soft sensing
modeling in the entire ironmaking process. Although this

Figure 1. Process flowchart of the ironmaking process.
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work1 has reviewed the current study status of prediction
modeling, it is only limited in the sintering process and fails to
provide advanced deep learning techniques for soft sensing. To
fill the gap, in this paper, we give an in-depth illustration to the
current soft sensing research status from the sintering process
to the blast furnace. Our aim of this work is to provide valuable
information for researchers and engineers to understand and
design data-driven soft sensing models for industrial
applications. The specific contributions are as follows:

(1) General Framework: A detailed description and
characteristics analysis of ironmaking process are
systematically introduced, and a general soft sensing
development framework for KPIs prediction is outlined.
This general framework can provide a practical guideline
on data-driven soft sensing for researchers and
engineers.

(2) New Taxonomy: Data-driven soft sensing modeling
methods about KPIs prediction in the ironmaking
process are summarized and categorized, including the
sinter ore quality indicators, sintering state parameters,
molten iron quality indicators, etc.

(3) Insight into Promising Directions: We discuss some
potential research directions about soft sensing modeling
in the ironmaking process, including self-supervised
learning, digital twins, etc.

(4) Real-World Data set: We release a data set collected
from a real ironmaking process so that researchers can
use it as the benchmark to test their methods.

The outline of this survey is organized as follows. In Section
2, we briefly introduce the flowchart of the entire ironmaking
process and analyze some important process characteristics.
Then the current soft sensing modeling methods are
systematically illustrated in Section 3. Future directions are
provided and are discussed in Section 4. Finally, conclusions
are drawn in Section 5.

2. BACKGROUND AND ANALYSIS OF IRONMAKING
PROCESS

2.1. Description of Ironmaking Process. As shown in
Figure 1, the entire ironmaking process consists of two key
parts: the sintering process and the blast furnace ironmaking
process. For convenience, we will illustrate the two parts
independently.

Sintering process is a preliminary modus of the blast furnace
ironmaking, and the quality of the sinter ore has a great impact
on the energy consumption and carbon emission in the
ironmaking process. In the modern ironmaking industry, the
Dwight-Lloyd sintering machine is the most widely used in
factories, as shown in Figure 1. First, the raw materials such as
iron ore, limestone, coke, etc., are transformed into mixture
according to the preset proportion. Then the mixed materials
are blended by adding proper water for granulation, and
transported to the mixture bunker through the belt conveyor.
Next, the mixed materials start to fire in the ignition furnace,
and the surface layer gradually burns from top to bottom with
the moving of the trolley. Meanwhile, 24 bellows supply fresh
air to support combustion and release exhaust gas. When the
trolley arrives at the end position of sinter machine, the mixed
materials are completely burned and the sinter ore is produced.
Finally, sinter ore is crushed, screened, and transported to the
blast furnace.

A typical blast furnace system mainly consists of the blast
furnace body, the ore and coke feeding system, the hot blast
system, the pulverized coal injection system, the top gas
treatment system, and the iron treatment system. During the
ironmaking process, sinter ore, solvent (limestone), and fuel
(coke) are loaded from the top of the blast furnace. At the
bottom of the blast furnace, hot air is blown into the reactor
through the hot blast stoves. Under conditions of high
temperature, carbon monoxide (CO) and hydrogen (H2) are
generated when the oxygen in the hot air chemically reacts
with the carbon in the fuel. Next, when the hot gas flows
upward with the pressure, the final products of the hot metal
are formed through a series of physicochemical reactions. The
details of the six systems mentioned above are as follows.
(1) Blast furnace body: It is a core equipment of the

ironmaking process, containing the throat, shaft, belly,
bosh, and hearth.

(2) Charging system: The charging system includes the skew
bridge, stock house, scale car, coke bin, rotating chute,
etc. The raw materials such as iron ore, coke, and
limestone are gradually charged into the top of furnace
layer by layer according to the preset proportion.

(3) Hot blast system: The hot air system includes the tuyere,
hot blast stove, blower, etc. Its goal is to preheat the cold
air generated by the blower at approximately 1200 °C
and send it to the blast furnace.

(4) Pulverized coal injection system: It is mainly to inject
compressed hot air together with pulverized coal into
the hearth of the blast furnace.

(5) Top gas treatment system: The top gas treatment system
of a blast furnace mainly includes the eliminator,
downcomer, venturi scrubber, dust catcher, etc. Its
main task is to purify and recycle the waste gas produced
in the blast furnace smelting process.

(6) Iron treatment system: The impurities in the raw
materials and solvents are combined to produce molten
furnace slag. The pig iron is collected from the taphole
and transported to the subsequent steelmaking process.

2.2. Analysis of Ironmaking Characteristics. For
simplicity, we take the blast furnace, for example, to analyze
the process characteristics (Figure 2). Blast furnace is
considered as the most complex metallurgical reaction vessel
in the ironmaking industry field, which contains various
physical and chemical reactions, heat and mass transfer,
multiphase and multi field coupling, strong coupling
parameters, etc. These complex mechanisms bring great
challenges for data-driven soft sensing modeling in the
ironmaking process. To establish an accurate prediction
model of KPIs, it is necessary to understand the detailed
flow and characteristics of the entire ironmaking process,
which will lay a solid foundation for soft sensing modeling.

2.2.1. Complex Mechanism. The blast furnace ironmaking
is a complex physicochemical reaction process, including water
decomposition, redox reaction, etc. For industrial soft sensing,
incorporating the mechanism knowledge into the data-driven
models is beneficial to improving the interpretability, which
can provide reliable guidance for the site workers. The typical
chemical reaction equations are as follows.

+ = + =C O CO , 2C O 2CO2 2 2 (1)

+ = +3Fe O CO 2Fe O CO2 3 3 4 2 (2)
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= + = +CaCO CaO CO , MgCO MgO CO3 2 3 2 (3)

= + + = +FeCO FeO CO , FeO CO Fe CO3 2 2 (4)

2.2.2. Strong Nonlinearity. On one hand, the process
parameters of the blast furnace body are nonlinear with molten
iron quality (MIQ) indices, such as silicon content (Si), sulfur
content (S), and phosphorus content (P). On the other hand,
the relationships among process parameters are also nonlinear,
such as pressure difference, gas permeability, hot air temper-
ature, etc. For example, when the furnace temperature changes
from hot to cool, the initial differential pressure decreases
slightly and the gas permeability index increases greatly. When
the furnace temperature is too low, the pressure difference
increases and the gas permeability index decreases.

2.2.3. High Dimension. The blast furnace ironmaking is a
large system with multiple working procedures and long
processes involving hundreds of parameters. These parameters
can be categorized as state parameters, control parameters, and
quality indicators, as shown in Table 1. The state parameters
mainly reflect the operation modes inside the blast furnace,
and the site-workers can adjust relevant equipment if there are
abnormal conditions. The control parameters are used to
maintain normal operation, and the MIQ indices represent the
quality of hot metal.

2.2.4. Large Time-Delay. It takes 6−8 h for a complete
ironmaking process from blast furnace charging to hot metal
formation. In general, the MIQ indices are tested by
instruments every 20−30 min, but the process parameters
are detected every minute. This large-scale time delay makes it
difficult to choose appropriate variables for the input of soft
sensing models. The reason is that the difference of sampling
time makes only a part of the process variables have labels. In
addition, it may destroy the inherent distribution pattern
between the process variables and the target variable. A simple
solution is to adjust the sampling time of process parameters
forward or backward before establishing prediction models.

2.2.5. Multisampling Rate. In the blast furnace ironmaking
process, different types of parameters have distinctive sampling

times due to the inadequacy of measurement techniques. In
general, process variables are collected with two or more rates,
which are different from those of the target variable. For
example, the raw materials are usually tested once a day, and
the MIQ indices are about half an hour. But these process
parameters are detected by advanced sensors every minute. For
time series prediction, different sampling rates are directly
connected to the performance of soft sensor. To address this
problem, process variables are usually down-sampled to align
the frequency of the target variable.

2.2.6. Dynamic. Blast furnace ironmaking is a continuous
dynamic process, whose operation parameters change in real
time during the production process. In this case, strong
autocorrelations exist among these process parameters at
different times, which is a very important characteristic for
data-driven modeling in the ironmaking process. Taking the
silicon content (SI) in hot metal as an example, we calculate
the autocorrelation of SI as shown in Figure 3(a). We can
observe that the current samples are strongly affected by the
pervious samples, meaning that there exist dynamics in the
ironmaking process.

2.2.7. Strong Coupling. There are no independent
parameters in the ironmaking process, and they often mutually
interact with each other. For example, reducing air volume can
not only bring a decrease to the amount of coal gas in the bosh
but also change the blast kinetic energy. Meanwhile, with the
increase in coal gas, the speed of the blast furnace burden is
accelerated. Similarly, we also study the correlations among
process variables in the ironmaking process, as shown in Figure
3(b). It can be seen that the mutual coupling relationships
between these variables are noticeable; thus, it is essential to
consider the multivariable coupling characteristics in soft
sensing modeling because new finds46 have demonstrated that
modeling the coupling relations among process variables
contributes a lot to the accuracy of soft sensing.

2.2.8. Multiple Working Conditions. In the actual iron-
making production, the lists of ingredients may be constantly
adjusted, according to the fluctuation of their price. Each list of
ingredients represents a unique working condition. Thus, there
are many different working conditions, causing the differences
in data distributions. Faced with this situation, a single model
cannot obtain good performance because the mapping
relationship between process variables and the target variable

Figure 2. Characteristics analysis of the ironmaking process.

Table 1. Categorization of Key Parameters in the
Ironmaking Process

State parameters Control parameters Quality indicators

South exploration
(m)

Coke batch (ton) Silicon content (Si)

Coke burden Ore batch (ton) Phosphorus content
(P)

Sinter ore ratio (%) Coke nut (ton) Sulfur content (S)
Pellet ratio (%) Solvent (ton) Molten iron

temperature (°C)
Lump ore ratio (%) Lump ore (ton) Manganese (Mn)
Blast ratio (%) Pellet (ton) Vanadium (V)
Blast pressure (MPa) Flux of the cold air (m3/h) Titanium (Ti)
Top pressure (MPa) Hot air temperature (°C) Gas utilization rate

(GUR)
Pressure difference
(MPa)

Blast temperature (°C) Burn-through point
(BTP)

Top pressure flux
ratio (%)

Flow rate of rich oxygen air
(m3/h)

FeO content (FeO)

Gas permeability Blast humidity (g/m3) Tumble Strength (TS)
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has changes. From Figure 4(a), we can find that the
relationship between enriching oxygen pressure and SI varies
over time due to different working conditions. When enriching
oxygen pressure is small under certain working conditions, the
distribution of SI is located in a small range. However, if
working conditions shift, the content SI has become high.
Similarly, Figure 4(b) also shows the distribution discrepancy
caused by multiple working conditions. However, the tradi-
tional data-driven models assume that the training set and the
testing set come from the same distribution, which is often
unrealistic in the actual industrial processes. Thus, multiple
working conditions can impose an adverse impact on soft
sensing, and we need to take the distribution shift problem into
account for data-driven modeling.

3. REVIEW OF SOFT SENSING METHODS IN
IRONMAKING PROCESS

3.1. General Frameworks of Data-Driven Soft Sensing
Modeling for Ironmaking Process. Aiming to these
characteristics in the ironmaking process, we developed a

general design pipeline of data-driven soft sensing modeling
shown in Figure 5, including mechanism analysis, auxiliary
variable selection, data preprocessing, model establishment,
and online application deployment.
Step 1: We need to conduct mechanism analysis for the

ironmaking process and define a soft sensing modeling
problem according to the requirements of the actual factories.
Step 2: After determining the target variable, we select some

key auxiliary variables using some statistical analysis methods,
such as ranking-based approaches,47 wrapper approaches,48

and embedded approaches,49 coupling with some prior
knowledge.50

Step 3: Next, the corresponding sensors are installed in the
ironmaking field to collect and restore the historical data,
including production data, machine data, operation data,
process data, product data, quality data, and energy
consumption data.
Step 4: However, these raw data usually have some

problems such as locked variables, missing values, and random
noise, so preliminary data preprocessing is an essential step.

Figure 3. (a) The autocorrelation of SI in the ironmaking process; (b) correlation between process variables.

Figure 4. (a) The change trend of the relationship between enriching oxygen pressure and SI; (b) the change trend of the relationship between
total pressure drop and SI.46
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Because there is a classic saying, “ garbage in, garbage out” in
the data mining field,51 meaning that data quality can be a
limiting factor for soft sensing modeling, a series of popular
data preprocessing methods are adopted to enhance data
quality before being fed into machine learning models (e.g.,
data cleaning, data reduction, data transformation, and data
visualization).

Step 5: Then model selection plays a crucial role in soft
sensing development, which decides the upper limit of
prediction performance. At this stage, a consistent fact is that
the structures of soft sensing models are established on the
understanding of data characteristics of the ironmaking process
(Section 2.2), which is a fundamental work for algorithm
designers in the industrial field.

Figure 5. Data-driven soft sensing modeling procedures in the ironmaking process.
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Step 6: Finally, the established soft sensing model is trained
and tested in the offline data and then deployed into the actual
industrial system for the KPIs intelligent prediction.

Overall, the data-driven soft sensing modeling methods can
be divided into two categories: traditional machine learning
models and deep learning models. We will illustrate the current
research status in the ironmaking process from two aspects,
respectively.

3.2. Soft Sensing Modeling Methods Based on
Traditional Machine Learning Models. 3.2.1. Soft Sensing
Modeling Methods for Sintering Process. Based on the data-
driven soft sensing development procedures mentioned above,
a large number of prediction models about KPIs have been
established for the sintering process in the past few years, as
shown in Table 2. These KPIs are mainly classified into three
categories: quality indicators, state parameters, and energy
consumption indicators. The details are introduced in the
following sections.

3.2.1.1. Soft Sensing Methods of Quality Indicators. Sinter
ore is the primary raw material of the blast furnace, and its
quality has a great impact on the yield, quality, and energy
consumption of the ironmaking process. However, testing its
quality indicators is usually very time-consuming and
expensive. Therefore, how to achieve an accurate prediction
of quality indicators is a challenging problem. These quality
indicators are divided into two types: chemical composition
and physical metallurgical properties. The former mainly
includes ferrous oxide (FeO), calcium oxide (CaO), total iron
(TFe), and silicon dioxide (SiO2), and the latter contains two
representative indicators: tumbler strength (TS) and basicity.52

For example, if the FeO content of sinter ore is too high, then
the coke and fuel consumption in the entire ironmaking
process will increase, causing a heavy economic burden to
enterprises. On the contrary, too low FeO may impose an
adverse influence on the yield and quality of molten iron. How
to accurately predict FeO content is an urgent problem.

To cope with this problem, many researchers explore data-
driven methods to timely and accurately monitor the FeO
content.53−57 To begin with, Xie et al.58 developed an
intelligent framework combining adaptive particle swarm
optimization (APSO) algorithm and least-squares support
vector machine (LSSVM) algorithm to predict FeO content.
On the basis of this study, a knowledge and data fusion model
was designed to realize online prediction of FeO content
according to the temperature distribution mechanism.59

Moreover, the experimental results in a sintering plant
demonstrated that the proposed model was effective and
feasible. In order to combine multiple data, a multisource
information fusion scheme was creatively proposed to achieve
the FeO content prediction based on infrared thermal image
data of sinter cross section and process data. The prediction
results show that the extracted multisource features reach a
good performance and meet the needs of practical engineer-
ing.60,61

Apart from chemical compositions, TS, as a critical
metallurgical and intrinsic property, is also essential to the
wear resistance and anticollision performance of the sintered
ore.62 In general, high strength sinter ore helps to reduce the
industry dust output dosage and improve efficiency of the blast
furnace, while too low strength can affect the permeability of
material surface.63 Under this background, Ye et al. developed
a TS estimation method based on LSSVM and local thermal
nonequilibrium (LTNE) model, and the proposed scheme was
verified in the sinter pot tests.64 In addition, the testing time of
TS takes several hours, making the labeled samples scarce. To
solve the imbalanced samples problem, a semisupervised just-
in-time learning framework using a Gaussian mixture model
(GMM) was devised to predict TS in the sintering process.65

These data-driven soft sensing models have exhibited some
improvements for quality indicators in the sintering process.
However, it is usually time-consuming and expensive to obtain
labeled samples in the sintering process. These works have not
solved the label scarcity problem. For example, the FeO
content is estimated by some experienced experts in the
sintering factory, while process variables are collected by
sensors every minute. The sample imbalance between process
variables and FeO content needs to be overcome using
semisupervised regression. In addition, we can use meta
learning66 to solve the few-shot problem for soft sensing in the
future. A key step of meta learning is to construct auxiliary
tasks to transfer knowledge to the target task.

3.2.1.2. Soft Sensing Methods of State Parameters. At the
same time, these quality indicators are also closely connected
with some key state parameters, including the burn through
point (BTP), mixture moisture, ignition temperature, and bed
permeability state. Among these parameters, BTP is the most
important thermal state parameter for site-workers, which
stands for the location where the materials are thoroughly
burned. According to the engineering practice experience, the
desired position of BTP is approximately located in the

Table 2. Representative Methods for Soft Sensing Applications in the Sintering Process

Task References Introduction of methods

Quality indicators Xie et al.58 Integrated model combining multisource information fusion and LSTM network for FeO content prediction.
Bai et al.60 Combination model of adaptive particle swarm optimization (APSO) algorithm and least-squares support vector

machine (LSSVM) algorithm.
Jiang et al.61 Polymorphic measurement method of FeO content of sinter based on heterogeneous features of infrared thermal

images.
Ye et al.64 TS model combined with a local thermal nonequilibrium (LTNE) model for tumble strength prediction.
Chen et
al.65

Semisupervised just-in-time learning framework using a Gaussian mixture model (GMM).

State parameters Liu et al.68 BTP prediction system based on gradient boosting decision tree (GBDT) algorithm and decision rules.
Cao et al.69 Steady-state subspace model (SSSM) for predicting the exhaust-gas tempera- ture (EGT) of BTP.
Du et al.81 The fuzzy time series prediction method with the Fuzzy C-Means clustering.

Energy consumption
indicators

Hu et al.78 The real-time dynamic prediction model of CCR based on broad learning.
Hu et al.63 Weighted kernel-based fuzzy C-means (WKFCM)-based broad learning model (BLM) to predict CCR.
Chen et
al.80

Semisupervised linear−nonlinear least-square learning network (LLLN) for CCR.
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penultimate bellow. If the actual BTP falls before the optimal
position, the sintering burden is burned out in advance, giving
rise to excessive coal consumption. Oppositely, the delay of
BTP may lead to insufficient combustion and affect the
sintering quality. In view of this situation, the accurate BTP
intelligent prediction has received many researchers’ inter-
ests.67 Some representative works are as follows. Liu et al.68

used the gradient boosting decision tree (GBDT) algorithm
and decision rules to predict BTP considering process
knowledge and data characteristics dynamically. Cao et al.69

built a dynamic steady-state subspace model (SSSM) to
predict the exhaust-gas temperature of BTP. Hu et al.70

proposed the weighted kernel just-in-time learning (WKJITL)
and fuzzy broad-learning system (FBLS) to obtain a timely
response to the current BTP. Besides, the moisture of the
sintering mixture is also an important parameter for sintering
quality control. To provide the constructive guidance for the
site-workers, Jiang et al.71 developed a moisture detection
system by combining expert knowledge and heterogeneous
image features, and its performance has also been verified in
the actual sintering factory.

Although these studies have made some progress in the past
few years, these models only focus on the current step
prediction and cannot achieve the multistep prediction because
the site-workers needed sufficient time to implement
maintenance in advance. To achieve the multistep prediction
tasks, popular time series models can be used for BTP
prediction such as transformer, informer, etc.72 For the BTP
prediction, we also need to consider two problems. First,
random noise is very common in the sintering field, and we
should pay attention to the antinoise model to improve the
BTP prediction accuracy. Second, a distribution shift often
occurs in the sintering process, which causes the training set
and the test set to have different distributions. Traditional data-
driven models are based on independent and identically
distributed assumption. Transfer learning may be a new path to
tackle the distribution shift problem. Domain adaptation, as an
important branch of transfer learning, has become extremely
popular in industrial fault diagnosis. How to apply domain
adaptation to the BTP prediction is a worthwhile problem. The
core of domain adaptation is to reduce the distribution
discrepancy between the training set and the test set using

metric or adversarial learning. Thus, domain adaptation-based
BTP multistep prediction is promising to break the bottleneck
of distribution shift in the sintering process.

3.2.1.3. Soft Sensing Methods of Energy Consumption
Indicators. In addition, reducing energy consumption is of
great significance to meet the requirements of “peak carbon
dioxide emissions and carbon neutrality” in the iron and steel
industry. To improve the energy efficiency, comprehensive
coke ratio (CCR) is defined to measure the carbon
efficiency.73 Through the literature analysis, the researches
about CCR mainly focus on two aspects: multiple operating
conditions problem74 and semisupervised learning.75 For one
thing, the multiple working conditions problem is very
common, as described in section 2.2, which can bring
distribution differences in the training set and testing set. To
deal with this problem, researchers76,77 used an improved fuzzy
C-means (FCM) clustering method and affinity propagation
clustering algorithm to identify the optimal working condition
and then established the least-squares support vector machine
(LS-SVM) submodels to predict CCR. To eliminate noise of
the actual production data, a hybrid model combining the
maximum entropy clustering algorithm and broad learning was
proposed for the real-time dynamic prediction of CCR.78

Afterward, an original prediction framework called weighted
kernel-based fuzzy C-means (WKFCM)-based broad learning
model (BLM) was proposed to achieve fast and effective
carbon efficiency modeling.79 For another, the lack of labeled
samples is still a challenging problem that needs to be taken
into consideration for the construction of the prediction
system. In this case, Chen et al.80 proposed a semisupervised
linear−nonlinear least-squares learning network (LLLN) for
the CCR prediction.

However, there are several directions that are worth
pursuing. First, these models have not considered the detection
and correction of abnormal data during the sintering process.
In fact, there are a large amount of noisy data in the actual
production, which can degrade the performance of soft
sensing. Second, in the WKFCM model, the impact of various
fuzzification coefficients needs to be further studied and the
kernel parameters should be optimized to improve its accuracy.
Third, we need to achieve real-time prediction and develop
intelligent decision-making strategy for the sintering factory

Table 3. Representative Methods of Soft Sensing Applications in the Blast Furnace

Task References Introduction of methods

Upper part of blast
furnace

Li et al.82 Online sequential extreme learning machine (OS-ELM) for GUR.
Shi et al.83 Hybrid model combining fuzzy C-means and statistical methods for GUR.
Zhang et al.85 The TS fuzzy neural network (TS-FNN) for GUR.
Su et al.84 Hybrid model (W-PCA-ML-ELM) for predicting the permeability index

Middle part of blast
furnace

Jiao et al.86 Three-dimensional (3D) parallel process model for blast furnace.
Li et al.87 Prediction model of the CZ combining an offline computational fluid dynamics (CFD) calculation with SVM
Baniasadi et
al.88

The extended discrete element method (XDEM) for softening process.

Zhou et al.89 Soft sensing model of CZ using the offline CFD and online measurement method.
Lower part of blast
furnace

Tang et al.90 Silicon content prediction based on SVR and chaos particle swarm optimization.
Zhou et al.91 Hammerstein model for the prediction of MIQ using the least-squares support vector machine-based nonlinear

subspace identification method.
Lv et al.92 Data-driven robust modeling is proposed for an online estimation of MIQ using improved random vector functional-

link networks (RVFLNs)
Guo et al.93 Multioutput LS-SVR (M-LS-SVR) using multitask transfer learning technology for MIQ.
Yang et al.94 Multi time scale inception-time network to predict the silicon content.
Li et al.95 Genetic algorithm based method to construct interpretable features for industrial modeling.
Hua et al.96 Nonlinear Takagi−Sugeno (T−S) fuzzy model for the hot metal silicon content.
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based on the established prediction models. In this way, these
prediction models can bring economic benefits to the
enterprises. Nowadays, online soft sensing is at an initial
exploration stage, and it is essential to design reliable online
prediction strategies for real industrial applications.

3.2.2. Soft Sensing Modeling Methods for Blast Furnace.
As a core part of the ironmaking process, the blast furnace not
only generates a substantial amount of carbon dioxide
emissions but also needs the most energy consumption. If
some KPIs in the blast furnace can be measured in advance, it
will provide sufficient time for the workers to adjust relevant
process parameters to maintain normal operation. However,
KPIs are usually hard to estimate using sensors due to the
harsh environment, such as high temperatures, high pressure,
etc. To monitor the operation conditions in real time, it is
essential to develop accurate soft sensing models to predict
some KPIs in the production. It is empirically argued that an
accurate estimation of molten iron quality (MIQ) indices is
fundamental to the optimization and control of operation
parameters in the blast furnace. For example, these studies
mainly consist of three aspects: upper, middle, and lower part,
as shown in Table 3. The details are provided as follows.

The research about the upper part of the blast furnace
mainly focuses on the top gas. For example, the gas utilization
rate (GUR) is a typical KPI that is used to reduce energy
consumption and improve operation status. Therefore, Li et
al.82 proposed a novel online sequential extreme learning
machine (OS-ELM) to predict GUR. However, OS-ELM
cannot divide different working conditions. To this end, Shi et
al.83 used fuzzy C-means clustering and a statistical model to
study the relationships between gas flow center distribution
and GUR based on image data. Apart from GUR, Su et al.84

proposed a hybrid model based on the multilayer extreme
learning machine, the principal component analysis, and
wavelet transform to predict the permeability index. These
soft sensing models are mainly based on the ELM, which is a
shallow model and cannot capture much useful information
from a large amount of data. Moreover, the collected data sets
may be incomplete due to various reasons, e.g., sensors
breakdown, human errors, uncontrollable factors, etc. Latent

factor analysis is effective in extracting inherent latent features
from incomplete data for building the soft sensing model.

In the middle part of the blast furnace, the position of the
cohesive zone (CZ) is closely related to operation stability. To
begin with, Jiao et al.86 built a three-dimensional (3D) parallel
process model using computational fluid dynamics (CFD). On
the basis of this study, Li et al.87 combined an offline CFD
calculation method and SVM to monitor the CZ position in
real time. Specifically, this work established an axisymmetric
two-dimensional steady-state CFD model to simulate the fluid
flow, heat transfer, and the heat transfer in the blast furnace
shaft, and then used SVM to predict the location of CZ.
Baniasadi et al.88 proposed an extended discrete element
method (XDEM) to model complex gas−solid flow during the
softening process. Recently, a soft sensing method of CZ has
been proposed using the offline CFD calculation method and
online detection of cooling water.89 These models are based on
a single working condition, ignoring the essence of complex
working conditions in the ironmaking process. Therefore, it is
important to extract domain-invariant temporal features across
different working conditions, which could meet the require-
ments of industrial applications.

As for the lower part, there are several related studies,
especially molten iron quality (MIQ) indices.90 For example,
Tang et al.90 established an SVR model to predict silicon
content and used chaos particle swarm optimization to select
the optimal parameters. Afterward, Zhou et al.91 developed a
least squares SVR-based nonlinear subspace identification
method for the prediction of MIQ indices. At the same time,
an improved random vector functional-link network (RVFLN)
was proposed for the silicon content prediction.92 In order to
solve the multiple output problem, Zhou et al.93 proposed a
multitask transfer learning technology to construct multioutput
LS-SVR (M-LS-SVR). To cope with the multiple sampling rate
problem, Yang et al.94 designed a multi time scale inception-
time network to predict the silicon content in the ironmaking
process. These works have solved some common problems for
MIQ prediction, but the stability and reliability of these models
are not desirable. In the ironmaking process, uncertainty
quantification factors often occur, and the generalization of soft
sensing needs to be further explored.

Figure 6. BTP multistep prediction based on denoising spatial-temporal encoder-decoder framework.101

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.4c01254
ACS Omega 2024, 9, 25539−25554

25547

https://pubs.acs.org/doi/10.1021/acsomega.4c01254?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c01254?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c01254?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c01254?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c01254?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


In summary, these soft sensing methods have not explicitly
modeled the coupling characteristics among the process
variables. These MIQ models are based on fully connected
methods, such as LSTM-based methods. In practice, these
process variables are connected in non-Euclidean topologies.46

A recent study97 also unveiled that learning latent representa-
tions among process variables is helpful to improve the
performance of soft sensing. Graph neural networks are good
at dealing with non-Euclidean data; thus, it is promising to
develop advanced graph soft sensing models for soft sensing.
For graph networks, how to construct a suitable process graph
is a key for soft sensing. Nowadays, dynamic graph networks
have been used in time series prediction.98 Motivated by these
findings, we can establish global and local dynamic graph
networks to describe the time-varying characteristics of the
ironmaking process. Besides, to deal with poor data with
missing values and outliers, we can introduce prior knowledge
to generate association graphs, which is beneficial for engineers
to understand the mechanism of the industrial system.

3.3. Soft Sensing Modeling Methods Based on Deep
Learning Models. With the development of sensor
technologies and the accumulation of massive data, traditional
shallow models struggle to capture deep features from various
data such as image, text, etc. Recently, more and more
researchers have started to turn their attention to deep
learning-based soft sensing modeling applications in the
ironmaking process.99,100 However, now deep learning-based
soft sensing model is relatively rare in the ironmaking process;
we will introduce three representative soft sensing methods in
detail in the following subsections.

3.3.1. Denoising Spatial-Temporal Encoder-Decoder
Framework for BTP Multistep Prediction. In order to alleviate

the disturbance of industrial noise, a denoising spatial-temporal
encoder-decoder (DSTED) framework was proposed to
achieve the BTP multistep prediction in advance, which can
provide sufficient time for site-workers to adjust the trolley
speed to maintain the normal operation of sintering process.101

DSTED is made up of three modules: the data generation
module, encoder module, and decoder module, as depicted in
Figure 6. First, we determine the process variables that are
related to BTP and collect raw data from sintering process.
After data preprocessing, the generated time series are fed into
the encoder network with denoising GRU. Then the spatial−
temporal attention mechanism is embedded into the decoder
network to extract the dynamic correlations between the
hidden features and the BTP. Eventually, a fully connected
layer is adopted to predict BTP using the output of the
decoder network.

Recently, Yan et al.102 have also proposed the CBMP model
to capture the temporal features and spatial features
simultaneously. In the CBMP model, a spatial−temporal
recalibration block was developed to quantify the contributions
of spatial−temporal features for fine-grained modeling.
However, these models also have some limitations. For
example, these models have not considered the error
accumulation problem in the multistep prediction task.
Because the predicted value of the last step is directly fed to
the next step, it causes error disturbance and degrades its
prediction accuracy. In this case, they only obtain three-step
prediction and have not achieved long-term prediction. In fact,
it is better to achieve more steps and provide sufficient time for
site workers to adjust relevant process parameters for normal
production. For time series prediction, the latest transformer-
based models such as Flowformer,103 FEDformer,104 Meta-

Figure 7. MIF-Autoformer for soft sensing modeling of FeO content in the sintering process.106
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former,105 etc. have obtained the outstanding performance on
the long-term series prediction tasks. Flowformer replaces the
original multihead self-attention with flow-attention, which can
reduce the nontrivial information aggregation. The exper-
imental results reveal that it has linear computation complexity
and achieves desirable accuracy on extensive prediction tasks.
In order to capture the global trend, FEDformer adopts
frequency analysis to extract important features from time
series by seasonal-trend decomposition. Recent works show
that the simple MLPs can substitute for an attention
mechanism, and the model still has reasonable performance.
Inspired by this idea, Metaformer utilizes a general framework
using a spatial pooling operator. For the BTP long-term
prediction, these models may be a good choice in the future.

3.3.2. Multisource Information Fusion Autoformer for
FeO Soft Sensing Modeling. To make full use of process
variables and image data in the sintering process, a multisource
information fusion Autoformer (MIFAutoformer) model106

was developed to predict FeO content in real-time, as shown in
Figure 7. First, we select some relevant process variables
according to expert knowledge including raw material
parameters, operation parameters, state parameters, etc. Then
we adopt a convolutional network SE-ResNet to extract the
deep features of the infrared images of the sinter cross-section.
Next, we combine the two kinds of features based on the
backtracking time of the label data. Finally, the fused features
are fed into the Autoformer to capture complex temporal
patterns in the time series and achieve soft sensing of the FeO
content. The MIFAutoformer model has been applied to a
sintering process, and the experimental results confirm that the
MIFAutoformer outperforms the existing baselines.

The MIFAutoformer model mainly fuses process data and
image data at the feature level, ignoring the data-level and
decision-level fusion. It is essential to fuse the raw process data
and deep image information at the data preprocessing stage in
the sintering process. Moreover, the time complexity and
parameter size of MIFAutoformer are relatively high compared
to Transformer, which makes model training time-consuming.
It is necessary and feasible to establish a lightweight prediction
model for FeO soft sensing in the future. Pretraining methods
have been widely used for other domains such as time series
prediction. We can use pretraining and fine-tuning to enhance
the efficiency of the developed models. Moreover, this model
has not also incorporated expert knowledge into deep learning
models, leading to unreliable guidance for the engineers in the
factory. Purely data-driven models are black models lacking
interpretability. For the sintering factory, it is hard to deploy

the black models into the industrial system. Therefore, we
need to combine mechanism knowledge and achieve accurate
FeO soft sensing.

3.3.3. Context-Aware Enhanced GRU for MIQ Prediction.
Additionally, with the rapid improvement in computing power,
deep learning-based soft sensing methods have been used to
achieve MIQ prediction. For example, Li et al.107 proposed a
context-aware enhanced GRU Network with feature-temporal
attention to predict silicon content in hot metal, as shown in
Figure 8. First, to solve the mismatch between the process
variables and silicon content, a temporal self-attention
mechanism was embedded into the GRU to automatically
learn the weights of different times. Moreover, the causal
convolution-based self-attention was also incorporated into
GRU to boost the local context-awareness of the model. The
context-aware enhanced GRU has been packaged and
deployed on the Industrial Internet platform through Docker
in a steel plant in the south of China.

Nevertheless, this work107 used the silicon content of the last
step as the input of soft sensing model, which can be seen as a
deficiency for the engineering application. Because the silicon
content tends to be unknown in actual production, it is
unrealistic to utilize the label data. Meanwhile, this model did
not consider the distribution shift phenomenon caused by the
fluctuation of raw materials and dynamic working conditions.
In the ironmaking process, a well-trained model in the
laboratory cannot work well in the field testing because of
much random disturbance. How to improve the generalization
ability of the soft sensing model is also a promising direction.

4. FUTURE DIRECTIONS AND OPPORTUNITIES
4.1. The Time-Delay Problem between Variables in

Ironmaking Process. Since ironmaking is a long process, it
takes several hours from raw material acquisition to product
generation, which results in a time delay between process
variables and quality variables. For example, sampling time for
process variables may be one min, whereas it may take several
hours to test the quality variables in the laboratory once a time.
In addition, when the working conditions change, the time
delays of these variables are different, causing a mismatch
between the input variables and the output variables.
Nowadays, some scholars have carried out related research
on this problem. For example, Yao et al.108 proposed a
semisupervised dynamic feature extracting (SSDFE) network
to optimize the time-delay parameters in the training process.
But these works still cannot effectively solve the time-delay

Figure 8. Context-aware enhanced GRU network model for the prediction of hot metal silicon content.107
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problem in the ironmaking process. This challenging problem
will be a popular research topic in the future.

4.2. Knowledge Extraction and Fusion in Ironmaking
Process. At present, soft sensing modeling methods of the
ironmaking process mainly focus on the data-driven level,
ignoring expert knowledge such as complicated physicochem-
ical reaction mechanism, which leads to the poor interpret-
ability for the black box models. In the actual factory,
researchers cannot explain why the established models work,
which brings a strong unreliability to engineering applications.
In order to increase interpretability, incorporating expert
knowledge into data-driven models will be a promising idea.
For example, Li et al.109 mined the internal rules of the
industrial processes by constructing high-quality interpretable
features. Chen et al.110 adopted a graph neural network to
establish the relationships among process variables, which
realizes the automation of knowledge in industrial processes.
But these works have not considered the mechanism of the
physicochemical process. To solve this problem, we are faced
with two challenges: (1) how to extract knowledge from the
ironmaking process according to the principles of physical
metallurgy and (2) how to properly embed mechanism
knowledge into neural networks.

4.3. Multitask Learning for Quality Variables in
Ironmaking Process. Most soft sensing models in the
ironmaking process focus on predicting the single quality
variable and have yet to predict multiple quality variables
simultaneously. In the ironmaking process, complex coupling
relationships exist among different quality variables, but now
most studies have not solved this problem. Therefore, this is
also a promising direction to explore the complex coupling
relationships of quality variables. To our knowledge, multitask
learning111−113 can model the interactive relationships between
different objects. Following this idea, it is empirically feasible to
construct distinct tasks according to multiple quality variables
and learn their correlations by a loss function in the neural
network. For multitask learning, the two key problems need to

be solved: (1) how to design the main and auxiliary tasks and
(2) how to define and optimize the loss function.

4.4. Self-Supervised Learning for Lack of Labeled
Samples in Ironmaking Process. As described in section 2,
it will take several hours to test the quality variables in the
actual factory; thereby, the labeled samples are very scarce.
However, there are a large number of unlabeled samples
because the process variables are collected every 1 min through
PLCs in the ironmaking field. It is essential to explore an
effective method to leverage rare labeled samples and abundant
unlabeled samples. Recently, the well-known self-supervised
learning has obtained satisfactory performance on the small
labeled data set by learning useful representations from
enormous unlabeled samples in the computer vision domain,
such as MoCo, SimCLR, BYOL, etc.114−116 Self-supervised
learning aims to mine valuable features for the downstream
tasks from unlabeled data sets by designing auxiliary tasks,
boosting its feature extraction ability. For the ironmaking
process, it is natural and rational to construct an unlabeled data
set using the abundant process variables and generate a small
labeled data set to achieve the soft sensing modeling task.
Therefore, self-supervised learning will become a very
interesting direction in the ironmaking process in the future.

4.5. Industrial Internet Platform for Ironmaking
Process Based on Digital Twins. In order to apply these
theoretical studies to engineering practice, we provide an
Industrial Internet platform for ironmaking process based on
digital twins,117,118 as shown in Figure 9. The whole
ironmaking system platform mainly consists of four parts:
physical level, Infrastructure-as-a-Server (IAAS) level, Plat-
form-as-a-Service (PAAS) level, and Software-as-a-Service
(SAAS) level. First, the physical level contains the entity of
the ironmaking production line and the corresponding
automation system. Then the data are collected and stored
in the IAAS layer through protocol analysis, edge computing,
and data integration. The main techniques are implemented in
the PAAS layer, including data platforms, digital twin models,

Figure 9. Flowchart of digital twins in the ironmaking process.
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APP platforms, and microservice modules. Finally, our
developed intelligent models are deployed into the SAAS
layer as industrial APPs, including optimization for ironmaking
proportioning, optimization design of process parameters,
product quality prediction, control of process parameters, fault
diagnosis, and intelligent maintenance. Based on the Industrial
Internet platform, the site-workers can monitor the operation
conditions of actual production in real-time and then take the
corresponding measures to maintain normal operation of the
ironmaking process.

5. CONCLUSION
The data-driven modeling methods have increasingly drawn
attention in the ironmaking process with the rapid
accumulation of a huge amount of industrial data. In this
Review, we provide a systematic survey of data-driven soft
sensing modeling methods from various aspects in the
ironmaking process. After that, a general soft sensing modeling
framework is summarized to present general guidance for
researchers and engineers. In particular, we review and analyze
traditional machine learning and deep learning models for soft
sensing in the ironmaking process, which is beneficial to
researchers to understand the current study status quickly. In
order to track the frontier progress of data-driven models,
some worthwhile topics such as self-supervised learning are
outlined to inspire new ideas and techniques for future
research on the ironmaking process.
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