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ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNA mol-
ecules capable of negatively regulating gene expres-
sion to control many cellular mechanisms. The
miRTarBase database (http://mirtarbase.mbc.nctu.
edu.tw/) provides the most current and comprehen-
sive information of experimentally validated miRNA-
target interactions. The database was launched in
2010 with data sources for >100 published studies
in the identification of miRNA targets, molecular
networks of miRNA targets and systems biology,
and the current release (2013, version 4) includes sig-
nificant expansions and enhancements over the initial
release (2010, version 1). This article reports the
current status of and recent improvements to the
database, including (i) a 14-fold increase to miRNA-
target interaction entries, (ii) a miRNA-target network,
(iii) expression profile of miRNA and its target gene,
(iv) miRNA target-associated diseases and (v) add-
itional utilities including an upgrade reminder and an
error reporting/user feedback system.

INTRODUCTION

MicroRNAs (miRNAs) are non-coding RNAs �19–25 nt
in length, which are widely found in organisms such as
plants, nematodes, fruit flies and mammals (1). lin-4 was
the first identified miRNA from Caenorhabditis elegans
and was found to control the timing and progression of
the nematode life cycle (2). In humans, miRNAs play im-
portant roles in cellular physiology, development and
disease by negatively regulating gene expression (3).
miRNAs bind to complementary sequences in the 30 un-
translated regions of their target mRNAs and induce
mRNA degradation or translation repression (4).

miRNAs play important roles in causing many diseases
including various types of cancer, cardiovascular diseases
and neurological disorders (5–8). Thus, as shown in
Supplementary Figure S1, miRNA and the field of non-
coding RNA have attracted increasing research interest.
In recent years, many databases related to miRNAs have
been developed, providing information about miRNAs
and their target genes. miRBase (9) is the central reposi-
tory for miRNAs nomenclature, sequence data, annota-
tion and target prediction, containing �24 521 miRNAs
entries. Many databases such as microRNA.org (10),
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miRGen (11), miRGator (12), miRDB (13) and
miRNAMap (14) identify miRNA target interactions
(MTIs) using a number of target prediction tools like
TargetScan (15,16), miRanda (17), PicTar (18),
RNAhybrid (19) and PITA (20). Furthermore, some data-
bases provide evidence for experimentally validated
miRNAs and their target genes. TarBase (21) contains a
manually curated collection of experimentally tested
miRNA targets, in humans, mice, fruit flies, worms and
zebrafish. miRecords (22), an integrated resource for
animal miRNA-target interaction, hosts a large, high-
quality manually curated database of experimentally
validated miRNA-target interactions with systematic
experimental documentation for each interaction. The
HMDD (23) database is the first resource to provide ex-
perimentally supported human miRNA and disease asso-
ciations. miR2Disease (24) provides a brief description of
the miRNA–disease relationship along with information
about miRNA expression patterns as well as experimen-
tally verified miRNA target genes and literature refer-
ences. DIANA-LncBase (25) provides comprehensive
annotations of miRNA targets on long non-coding
RNAs with transcriptome-wide experimentally verified
and computationally predicted miRNA recognition
elements. miRSel (26), a miRNA–gene association
database, combines text-mining results with existing data-
bases and computational predictions. miRWalk (27)
presents predicted and validated information on
miRNA-target interactions and enables researches to
validate new targets of miRNA not only on 30 untrans-
lated regions but also on other regions of all known genes.
By including experimental evidence, these research
resources are highly effective in identifying MTIs.

Before proceeding with experimental validation, a
number of computational programs are used to predict a
putative miRNA binding site within a given mRNA
target. Once the predicted miRNA binding sites have
been determined, these MTIs are then validated by mo-
lecular experiments, including reporter assays and western
blots, which are the conventional methods for confirming
miRNA and target gene interactions. The rationale for
using the reporter assay is that the binding of a given
miRNA to its specific mRNA target site will repress
reporter protein production thereby reducing expression,
so that the inhibited level can be easily compared with
control. Experiments like northern blot analysis or quan-
titative real-time PCR (qPCR) use total RNA isolated
from a specific cell type and examine the coexpression of
miRNA and mRNA. One typical approach to validate the
functional importance of a miRNA/mRNA target pair is
the transient overexpression of a given miRNA mimic in a
cell type known to repress the putative target protein
followed by western blot analysis (28). Recently,
genome-wide screening experiments have been developed
including microarrays with overexpression or the
knockdown of miRNAs, stable isotope labeling with
amino acids in culture (SILAC) or pulsed SILAC
[pSILAC (29)].

The identification of the roles of miRNAs and their
targets in different biological systems raise the need to
easily access and frequently update central information

repositories. miRTarBase serves as an important reposi-
tory for experimentally validated MTIs, which are fre-
quently updated by manually surveying research articles.
In addition, miRTarBase contains the largest number of
validated MTIs with strong evidentiary support, and the
collection is more frequently updated than other databases
such as TarBase, miRecords and miR2Disease. Table 1
summarizes features added in the latest update.

IMPROVEMENTS

Table 1 lists the advancements and new features supported
in the 2014 miRTarBase update. Major improvements
include (i) a 14-fold increase in miRNA-target interaction
entries as compared with the initial release, (ii) a miRNA-
target network, (iii) expression profile of miRNA and its
target gene, (iv) miRNA target-associated diseases and (v)
additional uses including an upgrade reminder service and
an error reporting/user feedback system.

Updated database content

In the 2014 update, 51 460 curated MTIs between 1232
miRNAs and 17 520 target genes were collected from
2636 articles. Table 2 lists the number of collected MTIs
in each species. In all, 38 113 human MTIs were collected
between 587 miRNAs and 12 194 target genes with experi-
mental support from 2143 articles; in addition, 1778 and
3026 interactions were, respectively, confirmed by western
blot and reporter assays. Each research article was care-
fully reviewed by at least two of our developers to extract
the MTIs, which were experimentally confirmed by
reporter assay, western blot, qPCR, microarray,
pSILAC or NGS (CLIP-seq or Degradome-seq). The
2014 update included a large increase in the number of
MTIs supported by strong experimental evidence (as
validated by reporter assay, western blot or qPCR;
Figure 1).

Experimental validation method—addition of the ‘NGS’
support type
Experimental approaches for identifying MTIs (e.g. the
reporter assay) are time-consuming and incapable of
handling large-scale screenings. Recent studies have
demonstrated that MTIs can be uncovered via high-
throughput screening using next-generation sequencing
(NGS) technology. Ultraviolet cross-linking and
immunoprecipitation (CLIP) was first developed to
identify specific Nova RNA–protein complexes in mouse
brain tissue (30). Chi et al. (31) pioneered the use of cross-
linking and immunoprecipitation approach, combined
with NGS technologies (CLIP-seq or HITS-CLIP) to
identify MTIs to obtain Argonaure-miRNA-protein
complexes in mouse brain tissue. Furthermore, Hafner
et al. (32) modified the CLIP-seq method [as the
photoactivatable-ribonucleoside-enhanced cross-linking
and immunoprecipitation (PAR-CLIP)] to enhance the
Argonaure-miRNA-protein complex resolution of the
original CLIP-seq method. German et al. (33) also de-
veloped an NGS approach to detect MTIs by identifying
mRNA cleavage products through parallel analysis of
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RNA ends (PARE), also known as degradome-seq.
Because the RNA-induced silencing complex (RISC)-
mediated cleavage is not the major mechanism of
miRNA regulation in mammals, this approach is mainly
used in plants such as Arabidopsis (33,34) and rice (35). In
addition, only limited records are available for mammals
(36–38). Several databases have been developed to compile
publicly available CLIP-seq, PAR-CLIP and degradome-
seq data sets for analysis, such as CLIPZ (39), starBase
(40), doRiNA (41) and TarBase 6.0. In contrast, CLASH

(cross linking, ligation and sequencing of hybrids) was
recently developed to directly map the miRNA–mRNA
binding sites without using the target prediction (42,43).

The database was populated with entries derived from
manually curated articles. The curators noted the miRNA,
the related target gene and information regarding the ex-
periment such as the cell line or tissue used. Besides MTIs
included in the initial miRTarBase release and validated
using reporter assays, western blots, qPCR, microarrays
and pSILAC, the updated version supports NGS data

Table 1. The comparison of data and function between miRTarBase version 1.0 and miRTarBase version 4.0

Features miRTarBase version 1.0 miRTarBase version 4.0

Known miRNA entry miRBase (version 14) miRBase (version 20)
Species 17 species 18 species
Curated miRNA-target interactions 3576 MTIs 51 460 MTIs
MTIs were validated by experimental
technology

Reporter assay, western blot, northern blot,
qRT-PCR, microarray, pSILAC

Reporter assay, western blot, northern blot,
qRT-PCR, microarray, pSILAC, NGS
(CLIP-seq, Degradome-seq and CLASH-seq)

Number of MTIs validated by ‘reporter
assay’ or ‘‘western blot’’

2207 MTIs 4572 MTIs

miRNA expression profile None NCBI GEO (21 data sets)
Target gene expression profile None NCBI GEO (21 data sets)
Relationship between miRNA and
target genes

None Analysis of the expression profiles between
miRNA and its target genes

miRNA regulatory network None First-order neighbors of miRNA and target
gene.

Disease information None 558 diseases
Upgrade reminder service None Yes
Error report system None Yes
Graphical visualization miRNA, secondary structure, known and novel

miRNA target sites, functional and non-
functional MTIs, experimental conditions

miRNA, secondary structure, known and novel
miRNA target sites, functional and non-
functional MTIs, experimental conditions,
miRNA-target network, miRNA-target ex-
pression profile, miRNA disease, upgrade
reminder service, error report system, user
feedback service

Table 2. The statistics of miRTarBase entries

Species No. of
miRNA-target
interactions

No. of
miRNAs

No. of
target
genes

No. of
articles
collecteda

No. of miRNA-target interactions
experimentally validated by

Strong
evidence

Less strong
evidence

Western
blot

Reporter
assay

pSILAC Microarray NGS

Human 38 113 587 12 194 2143 1778 3026 495 11 704 20 492
Mouse 9378 217 4443 409 439 676 2 636 8054
Rat 363 126 165 108 129 122 0 178 0
Chicken 30 12 21 15 7 21 0 2 0
Cattle 7 5 5 3 0 3 0 0 0
Sheep 2 1 2 3 0 0 0 0 0
Frogs 6 3 6 7 0 2 0 0 0
Japanese
medaka

1 1 1 1 0 1 0 0 0

Zebrafish 114 30 82 40 36 90 0 2 0
Fruit fly 129 39 77 37 9 127 0 12 0
Silkworm 2 2 1 1 0 2 0 0 0
Nematode 3216 154 452 27 1 39 0 0 3171
Thale cress 92 40 66 17 7 2 0 13 20
Viruses 7 15 5 16 1 7 0 0 0
Total 51 460 1232 17 520 2636 2407 4118 497 12 547 31 737

aArticles may report various miRNA-target interactions in different species.
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(NGS: CLIP-seq, Degradome-seq and CLASH-seq). Here
we incorporate the 21 human CLIP-seq data set, 5 mouse
CLIP-seq data set, 6 nematode data set and one human
CLASH-seq data set into miRTarBase. CLASH-seq data
set provides the large number of miRNA binding sites
including canonical and non-canonical miRNA-target
interactions, which make the information of miRNA-
target interactions more complete.

miRNA target-associated diseases
miRNA-related dysfunctions are associated with a broad
spectrum of diseases, including various types of cancer, car-
diovascular diseases and neurological disorders, and
miRNAs have emerged as a novel class of potential bio-
markers or targets for disease diagnosis and therapy. To
provide more information about miRNA-associated
diseases and the relationship between miRNA-target inter-
actions and disease, the data contents of HMDD version
2.0 and miR2Disease are integrated in miRTarBase. In
addition to the integration of external disease databases,
experimentally verified miRNA-associated diseases are
manually curated through literature surveys.

miRNA-target network

Interactions between a given MTI and other miRNAs/
mRNAs in the miRTarBase can be visualized through an
interactive network web interface by integrating
CytoscapeWeb (44). This network visualization can help
researchers understand complicated miRNA-target regula-
tion. For example, given an MTI (hsa-miR-26a-5p and
EZH2), Figure 2 shows a miRNA-target regulatory
network consisting of the first-order neighbors of this
MTI. This network visualization clearly demonstrates that
miR-26a and miR-217 regulate EZH2 and PTEN, which is
a complicated regulation. Furthermore, we examined the
functions of these target genes involved in miRNA-target
interactions collected in the database by performing Gene
Ontology (GO) and KEGG pathway enrichment annota-
tion using the DAVID gene annotation tool (45).

Expression profile of miRNA and its target gene

Many previous studies have integrated miRNA and
mRNA expression profiles to predict MTIs with lower

false positives and more biologically meaningful targets
(12,46–50). The correlation between miRNA and mRNA
provides an important indication of miRNA direct
targets. In addition, the miRNA and mRNA expression
data provides dynamic information for MTIs, which can
help biologists investigating phenotype-specific miRNA
regulatory pathways. Thus, we collected human miRNA
and mRNA matched expression data to provide pheno-
type-specific miRNA-mRNA correlation analysis.
Once a user finds an interesting MTI in miRTarBase,

the next step is to determine what phenotype condition
can make activate the MTI. Some MTIs are active in
various conditions but others are only active in a specific
phenotype. To address this issue, we provided phenotype-
specific MTI coexpression profiles for many data sets with
various phenotypes. We selected 21 human data sets from
the NCBI GEO database with at least 9 matched mRNA
and miRNA samples (51), producing 1596 samples. These
data sets were originally generated to study both mRNA
and miRNA profiles under various and complex pheno-
types, e.g. mRNA and miRNA expression profiles of the
renal cortex for hypertensive and normotensive patients
(GSE28260); and mRNA and miRNA expression
profiles of breast cancer cells treated with the Novel
Histone Deacetylase Inhibitor CG-1521 (GSE25844).
Supplementary Table S1 shows the data set title,
platform and the number of miRNA/mRNA samples.
As GSE19783 has 216 samples including the estrogen
receptor negative (ER�) and estrogen receptor positive
(ER+) samples, we divided GSE19783 into two separate
data sets: GSE19783 ER� and GSE19783 ER+.
We integrated human gene expression data from

multiple platforms including 11 mRNA and 8 miRNA
platforms. In the mRNA expression data, all data sets
were log-transformed and median-centered per sample,
and standard deviations were normalized to one per
sample. In addition, if one gene has several probes, we
calculate the mean expression value for the gene. For
each miRNA and mRNA pair, we calculated the
Pearson correlation between miRNA and mRNA expres-
sion profiles for each data set. To estimate the significance
of the MTI using expression profiles, we transferred the
Pearson correlation to a P-value for each MTI as follows.
Given an MTI with a Pearson correlation r and a sample
size n, we calculated the t-value (52) as follows:

t ¼
rffiffiffiffiffiffiffiffi
1�r2

n�2

q

The P-value was calculated using the t-value and
t-distribution with a degree of freedom of n� 2.
Given a human MTI, miRTarBase will show the expres-

sion table with a data set-specific correlation and P-value
for all expression data sets (Figure 3A), which indicates
how likely the MTI is to be active in a certain phenotype.
Furthermore, when the user selects a data set,
miRTarBase will draw the expression profiles of miRNA
and mRNA of the MTI (Figure 3B). To facilitate the com-
parison of miRNA and mRNA profiles, we normalized
both miRNA and mRNA profiles to a mean of 0 and a
standard deviation of 1.

Figure 1. Number of miRNA-target interactions with ‘strong experi-
mental evidence’ in TarBase version 6, miRTarBase version 1 and
miRTarBase version 4.
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To demonstrate the phenotype-specific correlation
analysis, Figure 3 shows miRNA/mRNA expression
profiles for miR-26a and EZH2. Three data sets have sig-
nificantly negative correlations between miR-26a and
EZH2 (P< 0.001), and the top two data sets are breast
cancers (Figure 3A). Interestingly, Zhang et al. reported
that miR-26a is a tumor suppressor and targets EZH2 in
breast cancer (53), which is consistent with our results.

ENHANCED INTERFACE

To facilitate access to data and further analyses to support
research on miRNA-target interactions, various query
interfaces and graphical visualization pages were re-
designed and enhanced. The miRTarBase provides two
modes for querying specific MTI’s information—the
species browser and search utility. Users can browse
through numerous miRNA targets and explore the
outcomes of hundreds of experimental studies in a way
which is both simple and intuitive. The user can perform
basic MTI searches by miRNA, target gene symbol, val-
idation method or PubMed ID. The search box suggests
plausible keywords and supports autocomplete mode as
users type in the search field. Each MTI output page
consists of basic information including miRNA and
target gene information, miRNA disease, experimental
evidence support with literature references, miRNA-
target expression profiles and miRNA-target regulatory
network. To visualize the interactions between MTI and
other miRNAs/mRNAs, we support the interactive
network web interface to present a regulatory network
consisting of the MTI’s first-order neighbors. In

addition, the upgrade integrates an upgrade reminder,
and error reporting/user feedback mechanism. User
feedback is extremely valuable to further improve the
database as a comprehensive and user-friendly tool for
exploring miRNA-target interactions.

CONCLUSIONS AND PERSPECTIVES

The current update represents a 10-fold increase of MTIs
as compared to the initial miRTarBase release, and
includes a significant extension of specific research-
oriented features. miRTarBase 4 is designed to serve as
a multifaceted tool for providing extensive experimental
support in all miRNA-related research. Moving forward,
the database will be updated at 2 month intervals to
capture the growing number of publications covering
novel targets. To summarize complicated miRNA-target
regulations, we provide a visualization of the miRNA-
target regulatory network consisting of the MTI’s first-
order neighbors. To support dynamic MTI information,
we collected human miRNA/mRNA matched expression
data sets to provide phenotype-specific correlations
between miRNA and mRNA expression profiles.

The latest release incorporates human miRNA target
expression profiles from 21 GEO data sets, which were
all done using microarray platforms. Future work will
extend our functional and expression analyses to other
species as miRNA-target expression profiles of these
species become available, so that miRTarBase will even-
tually provide sufficient information to support any
miRNA-related work.

Figure 2. miRNA-target regulatory network. Given an MTI hsa-miR-26a-5p and EZH2, miRTarBase shows a miRNA-target regulatory network
consisting of all the target genes of hsa-miR-26a-5p and all the miRNAs that target EZH2.
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AVAILABILITY

The miRTarBase content will be continuously maintained
and updated every 2 months. The database is now publicly
accessible at http://miRTarBase.mbc.nctu.edu.tw/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online,
including [54–69].
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