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Automated electrocardiogram classification techniques play an important role in assisting physicians in diagnosing arrhythmia.
Among these, the automatic classification of single-lead heartbeats has received wider attention due to the urgent need for
portable ECG monitoring devices. Although many heartbeat classification studies performed well in intrapatient assessment, they
do not perform as well in interpatient assessment. In particular, for supraventricular ectopic heartbeats (S), most models do not
classify them well. To solve these challenges, this article provides an automated arrhythmia classification algorithm. There are three
key components of the algorithm. First, a new heartbeat segmentation method is used, which improves the algorithm’s capacity to
classify S substantially. Second, to overcome the problems created by data imbalance, a combination of traditional sampling and
focal loss is applied. Finally, using the interpatient evaluation paradigm, a deep convolutional neural network ensemble classifier is
built to perform classification validation. The experimental results show that the overall accuracy of the method is 91.89%, the
sensitivity is 85.37%, the positive productivity is 59.51%, and the specificity is 93.15%. In particular, for the supraventricular
ectopic heartbeat(s), the method achieved a sensitivity of 80.23%, a positivity of 49.40%, and a specificity of 96.85%, exceeding
most existing studies. Even without any manually extracted features or heartbeat preprocessing, the technique achieved high
classification performance in the interpatient assessment paradigm.

1. Introduction

An electrocardiogram is a sequence that records the elec-
trical activity of the heart [1]. With the increase in the
number of heart diseases [2] and the rapid development of
computer technology such as deep learning, there is a
growing interest in how to use computer technology to aid in
the automatic diagnosis of heart diseases [3, 4]. The auto-
mated diagnosis of arrhythmias, one of the most common
cardiac diseases, has been a popular area of research in
computer-aided diagnosis [5]. It consists of two main
challenges. The first is the dataset’s high imbalance, with
normal beats taking up the majority of the ECG signal. The
normal beats (N) account for more than 90% of all beats in
the MIT-BIH arrhythmia dataset. Second, the training and

testing sets used in the interpatient evaluation paradigm are
from different populations, which is more in line with our
actual requirements for automatic arrhythmia diagnosis, but
the prediction difficulty is greatly increased due to individual
variability of different populations.

The existing arrhythmia classification algorithms include
two main types, depending on the input data. The one is
arrhythmia classification based on manual feature extrac-
tion, and the other is arrhythmia classification based on
automatic feature extraction [5].

In the method of manual feature extraction, the man-
ually extracted features [3, 6, 7, 8,9, 10, 11, 12, 13, 14] mainly
include RR interval, short-time Fourier transform, mor-
phological features, empirical modal decomposition, higher-
order statistics, and entropy metric. Then machine learning
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classifiers are adopted to classify the extracted features,
including the weighted linear discriminator [15, 16, 17, 18],
support vector machine [4, 19, 20, 21, 22, 23], multilayer
perceptron [24], and convolutional neural network
[25, 26, 27, 28]. Chazal et al. [29] extracted five groups of
features, including R-R, HOS, wavelet, morphology, and
LBP, from ECG signals and used these features to classify
ECG signals by linear classifier. H. Shi et al. [30] extracted six
groups of features, including RR interval, morphology,
statistics, higher-order statistics, wavelet transform, and
wavelet packet entropy, then used a hierarchical XGBoost
classifier for classification. Dias et al. [31] manually extracted
the RR interval, morphology features, and higher-order
features of ECG signals and used an LD classifier to classify
arrhythmia. Yang et al. [32] constructed a hybrid kernel-
based extreme learning machine to compare different
combinations of feature inputs, which yielded the best
classification results when ten randomly selected combi-
nations of feature inputs were used in the input. However,
these methods rely excessively on manual feature selection,
which increases the complexity of the computational process
and the time required to extract features upfront.

With the rapid growth of deep learning, there is a need
to use deep learning for automatic heartbeat classification
by simply inputting the raw ECG data and then enabling
the deep learning algorithm to learn the features for us and
provide the final classification result [33, 34, 35]. Garcia
et al. [36] explored a vector ECG-based deep convolutional
neural network-based arrhythmia classification method to
classify three beats, N, SVEB(S), and VEB(V). Takalo-
Mattila et al. [37, 38] used a high-pass filter, band-stop
filter, and low-pass filter to remove noise from the ECG
signal, then sliced the ECG signal according to the location
of the marked R peaks in the database, and finally used a
convolutional neural network to classify the four beats of
N, S, V, and F. Li et al. [39] used equal time (5 s) slicing of
the raw ECG, the discrete wavelet transform for noise
removal, and a deep residual convolutional neural network
for classification. However, the sensitivity of S was often
low in these studies, making it challenging to apply in real-
life situations. Sellami et al. [40] used a robust deep con-
volutional network to classify arrhythmia. The authors
created a batch-weighted loss function to alleviate the data
imbalance problem and used three different heartbeat input
patterns for experimental comparison. In the classification
model, S had a high sensitivity, whereas N had a low
sensitivity when compared to other algorithms. Niu et al.
[41] used the SBCX method to process the input beats,
effectively removing the effect of baseline drift noise. At the
same time, the authors combined the processed heartbeat
signal and RR interval features together as the input data
for classification. The classification effect was good, but too
much preprocessing was carried out, and the classification
process was not automated enough.

Based on these problems, this article proposes a new
heartbeat segmentation method and constructs a deep
neural network ensemble classifier with focal loss. It per-
forms effective arrhythmia classification without any pre-
processing using only raw heartbeat data.
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We present the ECG dataset used and discuss the details
of the implementation of the heartbeat classification algo-
rithm in this article in the next section. In Section 3, we
compare the algorithm suggested in this article to some
existing algorithms and conduct ablation studies on the
algorithm’s primary components. We conclude this article
in Section 4.

2. Methods

The overall structure diagram of the proposed classification
system is shown in Figure 1. The publicly available MIT-BIH
arrhythmia dataset is used as the input heartbeat in this
article. After heartbeat sampling, the input heartbeat data are
segmented using a special heartbeat segmentation method
and used as the training set. The deep convolutional neural
network ensemble classifier’s training process uses focal loss
as the loss function, and the classifier is voted to obtain the
final classification results. The method proposed in this
paper is validated under the interpatient assessment
paradigm.

2.1. ECG Database. The MIT-BIH arrhythmia database,
which contains 48 30-minute long records from 47 patients,
is used for the raw data. The dataset includes detailed an-
notations from cardiologists containing the type of heartbeat
for each beat and the location of each R-peak peak [42].

For comparison, the ECG dataset is partitioned into DS1
and DS2, as described in [29]. In the interpatient evaluation
paradigm, a modified limb lead II (MLII) is used to go as the
input signal for the model, using DS1 for training and DS2
for experimental testing. As shown in Table 1, the heartbeat
types are classified into five categories according to the
American Association for the Advancement of Medical
Devices (AAMI). Four records with rhythm are excluded, as
suggested by AAMI. The specific division is shown in
Table 2.

2.2. Segmentation of ECG Signals. Following the database
division, each heartbeat record is segmented based on the
R-peak annotation location provided by the dataset. Table 3
shows the segmentation lengths of the different methods and
the sensitivity of the S in the final classification results. It can
be seen that most methods have a heartbeat segmentation
length of 300 or less. Due to the high degree of similarity
between S and N, and the small proportion of S in the overall
heartbeats, it is easy to cause overfitting of S during the
training process, resulting in low sensitivity of S. Under the
interpatient assessment paradigm, Garcia (2017) and Takalo-
Mattila (2018) had a classification sensitivity of just around
60% for S [36, 37]. Jinghao Niu (2020) and Haojie Zhang
(2021) had higher sensitivity of S (77.35% and 88.24%),
respectively, but their training data not only contained the
original signal of the heartbeat but also included the
manually extracted R-R interval features [39, 41]. After
removing the R-R interval features, Haojie Zhang (2021) and
Jinghao Niu (2020) both had extremely low sensitivity
(38.7% and 8.06%).
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FIGURE 1: Overall system structure diagram.

TaBLE 1: AAMI classification of heartbeat types.

Class Symbol Members

Normal beat left bundle branch block beat right bundle branch block beat atrial escape beat nodal
Normal N . .

(junctional) escape beat
Supraventricular ectopic SVEB Atrial premature beat aberrated atrial premature beat nodal (junctional) premature beat
beat ) supraventricular premature beat
Ventricular ectopic beat  VEB (V) Premature ventricular contraction ventricular escape beat
Fusion beat F Fusion of ventricular and normal beat
Unknown beat Q Paced beat fusion of paced and normal beat unclassifiable beat
TaBLE 2: Using interpatient division of training set DS1 and test set DS2.

Dataset Patient numbers in the MIT-BIH arrhythmia database
DS1 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230
DS2 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233, 234

In this article, we want the model to be able to classify
heartbeats automatically using only the raw heartbeat signal,
with no data preprocessing or manual feature input. So, we
provide a new heartbeat segmentation strategy. Figure 2
shows the difference between the traditional single

heartbeat segmentation approach and the heartbeat seg-
mentation approach in this article. Figure 2(a) shows the
traditional single heartbeat segmentation method [41].
Figure 2(b) shows the segmentation approach in this article.
The length of the heartbeat window in this article is 508,
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TaBLE 3: Heartbeat segmentation length and S sensitivity for different methods.
Work Length of heartbeat Sen (%) of S Manually extracted features
Garcia (2017) 270 61.96 No
Takalo-mattila (2018) 130 62.49 No
Jinghao Niu (2020) 256 77.35/38.7 Yes/No
Haojie Zhang (2021) 256 88.24/8.06 Yes/No
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FIGURE 2: Diagram of the heartbeat segmentation strategy. (a) The traditional heartbeat segmentation strategy. (b) The heartbeat seg-
mentation strategy proposed in this article. (c)(i) N by the traditional heartbeat segmentation strategy. c(ii) N by the segmentation strategy
in this article. c(iii) S by the traditional heartbeat segmentation strategy. c(iv) S by the segmentation strategy in this article.

consisting of 250 samples before and 257 samples after the
R-peak. Figure 2(c) shows a comparison of N and S in the two
segmentation methods. Figure 2(c)(i) and Figure 2(c)(ii) show
the N segmented by the conventional 256 sampling points
and the 508 sampling points segmentation of this article,
respectively, while Figure 2(c)(iii) and Figure 2(c)(iv) show
the S segmented by the conventional 256 sampling points and
the 508 sampling points segmentation of this article, re-
spectively. Comparing Figure 2(c)(i) and Figure 2(c)(iii), it
can be seen that the morphology of N and S is highly similar in
the traditional segmentation method, which makes it difficult
for the classifier to distinguish N and S. Comparing
Figure 2(c)(ii) and Figure 2(c)(iv), it can be seen that the
segmentation method in this article increases the window
length of the heartbeat, which is conducive to extracting more
neighbourhood features from the original signal. The mor-
phological distinctions between N and S are bigger when
applying the segmentation method in this research, making it
easier for the classifier to distinguish between the two.
Table 4 shows the proportions of each class of
heartbeats after segmentation. To make the classification

TaBLE 4: Proportion of each class of heartbeats.

Segment N N \4 F Q
DS1 45824 943 3785 414 8
DS2 44215 1836 3219 388 7

more automated, this article does not apply any filtering
to the segmented heartbeat signals and only inputs the
raw heartbeat data for classification. The proportion of
heartbeats following segmentation is severely unbal-
anced, as shown in Table 4. To prevent overfitting in the
training, the effect of data imbalance needs to be further
weakened.

2.3. Owerall Structure of the Algorithm and Heartbeat
Sampling. Figure 3 shows the general structure of the
method. Based on the interpatient paradigm, the MIT-BIH
arrhythmia database is classified into DS1 and DS2. Then, for
N, random sampling is used, and incremental sampling is
used for the remaining data classes [43]. The neural network
is trained using the obtained samples from DS1. Six focal loss
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deep neural network classifiers are trained in total, and the
final arrhythmia classification result is determined by voting
on them.

Random sampling and incremental sampling in DS1
mitigate the effects of data imbalance. Unlike previous re-
search [37, 39, 40, 41, 44], this publication raises the sam-
pling size for class S to 7544, for class V to 4592, and for class
N to be randomly sampled with a size of 11188 and the sizes
of F and Q remain unchanged,.

There are two main reasons why such a unique approach
to data sampling is chosen. Firstly, we want the classifier to
focus more on the classification of S, so S accounts for the
largest proportion of abnormal heartbeats in the training set.
Secondly, the final result is a vote for each focal loss deep
neural network classifier. In the training set of each classifier,
only N is a random sample from DS1; the rest of the samples
are the same. According to the theory of ensemble learning
[45, 46], when the base classifiers have the same classification
performance, the higher the independence of each base
classifier, the better the overall classification performance.
As a result, the highest percentage of N (47.11%) is found in
each training set.

2.4. Focal Loss Function. After random sampling and in-
cremental sampling of DS1, the impact of data imbalance is
mitigated. To further reduce the problem of overfitting, the
focal loss function is adopted.

The focal loss was proposed by He et al. [47] to address
the problem of difficult imbalance in classification among
data in dense object detection. The amount of data con-
taining objects in object detection is much smaller than the
amount of data without objects, and the difficulty of clas-
sifying data without objects is low, which has a very small
improvement effect on the model. Focal loss reduces the
weight of easily classifiable samples, allowing the model to
focus more on the hard-to-classify samples.

CE = -log(P,), (1)

Lf=-a, (1~ Pt)y log (P,). (2)

In (1) and (2), P, represents the probability of the
predicted value. Equation (1) is the traditional cross-en-
tropy loss function, where the closer P, is to 1, the smaller
the loss value (CE) is, thus achieving the training purpose
by making the total loss value decrease in the training of the
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model. Equation (2) is the local loss function, compared to
the traditional cross-entropy loss function addeda,
and (1 - P,)?. The proportion of loss value weights for
different samples can be adjusted by a,, which helps us to
alleviate the problems caused by data imbalance. For
(1-P,), the proportion is smaller when P, is closer to 1.
Therefore, we can make the model pay more attention to
data with smaller P, values, thus increasing the model’s
attention to the hard-to-classify samples. In this study, such
a focus is very important. We can adjust the size of y to
make the model more focused on the distinction between N
and S.
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TABLE 5: Performance metrics of six base classifiers and ensemble
model

Work Acc (%) +P (%) Sen (%) Spe (%)
1 88.71 49.03 77.66 90.68
2 88.18 47.66 83.61 89.37
3 88.60 48.81 88.36 89.78
4 86.92 44,58 85.64 87.91
5 89.80 52.36 84.96 91.23
6 83.54 38.14 84.92 83.91
Average 87.63 46.76 84.19 88.81
Result 91.89 59.51 85.37 93.15

TaBLE 6: Confusion matrix of the ensemble classifier.

Predicted label

N S \%4 F Q

N 41186 1427 535 1067 0

S 317 1473 42 4 0

True label \% 133 68 2929 89 0
F 310 14 15 49 0

Q 3 0 4 0 0

In this article, we choose y=2.35 and use different
weighting ratios for different heartbeat categories. The
specific weight ratio is N:S: V:F: Q=1.6:1.8:0.8:1.0:1.0.

2.5. Structure of the Deep Residual Convolutional Neural
Network. Figure 4 shows the classification model structure
for each base classifier. The target heartbeats and their
category labels comprise the input data.

The network consists of 9 convolutional layers, each with
a convolutional kernel size of 17. The first five convolutional
layers include 20 convolutional kernels, while the final four
convolutional layers contain 40 convolutional kernels. A
batch normalization [48] process is added after each con-
volutional layer to speed up the training process. The use of
“Tanh” after the first convolutional layer and “ReLU” after
the other convolutional layers allows the model to better
adapt to the data. To prevent overfitting during the deep
convolutional neural network training, a 40% dropout is
added after 3-9 convolutional layers [49]. To enable the
network to be trained at a deeper level, the residual structure
proposed by Kaiming He et al. [50] is used. The addition of
jump connections helps to weaken the problem of depth
information loss. After the last jump connection, batch
normalization and “ReLU” processing are again performed.
Finally, our base classifier results are obtained after global
average pooling and a fully connected layer.

3. Results and Discussion

3.1. Performance Metrics. To evaluate the performance of the
model, the confusion matrix of the model is given, and four
statistical performance metrics are adopted to evaluate our
method as a whole according to the guidelines provided by
AAMI [29], namely, accuracy (Acc), sensitivity (Sen),
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TaBLE 7: Classification performance results of our method and 6 advanced methods.
Class (N) Class (S) Class (V)

Work Acc

Sen (%) +P (%)  Spe (%)  Sen (%) +P (%) Spe (%) Sen (%) +P (%)  Spe (%)
DeChazal (2004) 85.88 99.16 86.86 94.00 38.53 75.94 95.35 81.59 77.74 98.78
Garcia (2017) 92.38 93.99 97.95 82.55 61.96 52.96 97.89 87.34 59.44 95.91
Takalo-mattila (2018) 89.91 91.89 97.00 76.83 62.49 55.86 98.11 89.23 50.85 94.02
Sellami (2019) 88.34 88.52 98.8 91.3 82.04 30.44 92.8 92.05 7213 97.54
]inghao Niu (2020) 95.87 98.28 97.39 78.69 77.35 73.29 98.92 85.08 91.75 99.47
Yuanlu Li (2021) 88.99 94.54 93.33 80.8 35.22 65.88 98.83 88.35 79.86 94.92
Our methods 91.89 93.15 98.18 86.00 80.23 49.40 96.85 90.99 83.09 98.72

TaBLE 8: Overall model performance metrics for our method and 6
advanced methods.

Acc (%) +P (%) Sen (%) Spe (%)
DeChazal (2004) 85.88 42.21 92.85 86.86
Garcia (2017) 92.38 59.36 81.73 93.99
Takalo-mattila (2018) 89.91 52.86 76.18 91.89
Sellami (2019) 88.34 48.25 90.90 88.51
]inghao Niu (2020) 95.87 84.55 78.18 98.28
Yuanlu Li (2021) 88.99 56.82 52.10 94.75
Our methods 91.89 59.51 85.37 93.15

positive productivity (+P), and specificity (Spe). The cal-
culation of each metric is defined in the following equations:

Ace (%) =757 g}l)):]]:ZI\\IZ+ N < 100%, )
Sen (%) = PN < 100%, (4)
+P(%) = % x 100%, (5)
Spe (%) = % x 100%. (6)

When calculating the overall model performance metric,
TP is defined as the number of correctly classified abnormal
heartbeats, TN is defined as the number of normally clas-
sified normal heartbeats, FP indicates the number of normal
heartbeats classified as abnormal, and FN indicates the
number of abnormal signals classified as normal.

3.2. Experimental Results and Discussion. The model per-
formance for the six base classifiers and the final ensemble
classifier is shown in Table 5. The overall accuracy (Acc) of
the base classifiers is all above 83%, with the majority ex-
ceeding 88%. Most of the sensitivities (Sen) are around 85%.
The final classification result is obtained after voting for the
six base classifiers.

As shown in Table 5, the final ensemble classification
results are significantly better than the average metrics of all
six classifiers. Accuracy (Acc) increases by 4.26% (87.63% to
91.89%), positive productivity (+P) increases by 12.75%
(46.76% to 59.51%), sensitivity increases by 1.18% (84.19% to
85.37%), and specificity (Spe) increases by 4.34% (88.81% to

93.15%). The accuracy (Acc) of the 6th base classifier is low
in Table 5. There are two reasons for this. First, neural
network training has a chance. Second, in the focal loss
function in this article, S has a high weight, which may cause
the classifier to overfocus on S during the training process.
The confusion matrix of the final classification results is
given in Table 6.

Table 7 shows the sensitivity (Sen), positive productivity
(+P), and specificity (Spe) for classes N, S, and V and
compares them with six classical arrhythmia classification
algorithms. Table 8 shows the overall performance of the
model in terms of accuracy (Acc), positive productivity (+P),
sensitivity (Sen), and specificity (Spe) and compares it with
the classical algorithms.

In Tables 7 and 8, the model input data for Garcia (2017),
Takalo-Mattila (2018), Sellami (2019), and Yuanlu Li (2021)
are all raw heartbeat signals without the inclusion of
manually extracted heartbeat features [36, 37, 39, 40].

Among them, the accuracy of Garcia (2017) is slightly
higher than the method proposed in this article (92.38% to
91.89%), and the sensitivity of N is also slightly higher than
that of the method proposed in this article (93.99% to
93.15%). However, the sensitivity of S in this article is
much higher than that of Garcia (2017) (80.23% to
61.96%). The sensitivity of V in this article is slightly higher
than that of Garcia (2017) (90.99% to 87.34%) and the
productivity (+P) of V is much higher than that of Garcia
(2017) (83.09% to 59.44%). Of interest is that Garcia (2017)
only achieved 3 classifications, rounding oft F and Q in the
training process, whereas this article is the result of 5
classifications, which is much more difficult. The recog-
nition of abnormal heartbeats is especially significant in
classifying arrhythmia, which is related to the model’s
effectiveness in real-world applications. Reflecting on the
overall metrics of the model, in Table 8, the sensitivity
(Sen) of the algorithm in this article is higher than it
(85.37% to 81.73%). Thus, although the method proposed
in this article is slightly lower in terms of overall accuracy
(Acc), the model is more effective in practical applications
[36].

Takalo-Mattila (2018) used a convolutional neural net-
work with three convolutional layers to classify the heartbeat
signal. Although the adoption of a smaller network structure
to perform classification is advantageous in terms of re-
ducing training time, it has a significantly lower classifica-
tion effect than the approach in this study. Despite the model
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TaBLE 9: Ablation studies on our proposed model.
A Class (N) Class (S) Class (V) Class (F)
CC

Work (%) Sen +P Spe Sen +P Spe Sen +P Spe Sen +P Spe

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
Signal-256 + focal 89.52 93.63 9539 6325 1634 1460 9633 8515 77.32 9827 541 317 9870
loss + Ensemble
Signal-508 + ensemble 88.34 9362 97.66 81.80 61.60 40.79 9657 89.00 84.94 9891 490 1.67 97.74
Signal-508 + focal loss 88.18 89.37 97.92 8461 71.62 3387 9463 9071 6981 9728 11.86 3.69 97.56
Signal-508 + focal 91.89 9315 9818 86.00 8023 4940 96.85 90.99 83.09 9872 12.63 405 97.65

loss + ensemble

structure being more complex, our input heartbeats do not
need to be denoised. This also reduces the overall time and
better reflects the model’s automation [37].

The accuracy of the proposed algorithm is higher than that
of Sellami (2019) (91.89% to 89.91%) and the sensitivity of N is
higher than that of Sellami (2019) (93.15% to 88.52%). The
sensitivity of S in this article is slightly lower than that of Sellami
(2019) (80.23% to 82.04%), but the productivity (+P) is higher
than it (49.40% to 30.44%). The sensitivity of V in this article is
slightly lower than that of Sellami (2019) (90.99% to 92.05%),
but the productivity (+P) is higher (83.09% to 72.13%). Sellami
(2019) has a high classification performance for all types of
heartbeats. However, it has a slightly lower sensitivity to N of
only 88.52% compared to other methods. The algorithm in this
article has comparable classification results for S and V but has
a higher sensitivity to N(93.15%) [40].

Yuanlu Li (2021) desired a more automated classification
algorithm and therefore used an equal-length segmentation
method that did not require R-peak location. However, the
sensitivity of S in their classification results is too low, at only
35.22%. This causes its classification model to almost fail in
identifying S. In Table 8, the overall sensitivity of their model
is the lowest at just 52.10%, making it difficult to apply in
real-life situations [39].

De Chazal (2004) and Jinghao Niu (2020) used manually
extracted features in their input data. De Chazal (2004)
extracted many domain-specific features from the two-lead
ECG signal to construct the classifier [29]. Due to the time-
consuming nature of manual feature extraction and the low
sensitivity of S, it has been difficult to meet the current demand
for real-time classification of arrhythmia. Jinghao Niu (2020)
used input data as a combination of raw heartbeat and RR
interval features. To improve the classification performance of
the classifier, Jinghao Niu (2020) used SBCX for the input
heartbeats [41]. The accuracy of this article’s method is lower
than that of Jinghao Niu (2020) (91.89 to 95.87%), and the
sensitivity of N is lower than that of Jinghao Niu (2020) (93.15%
to 98.28%). However, the sensitivity of S is higher (80.23% to
77.35%) and the sensitivity of V is higher than that (90.99% to
85.08%) for the algorithm in this article. We compared our data
input with that of Jinghao Niu (2020). The input data taken in
this article is 508 points of raw heartbeats and is not filtered or
preprocessed in any way. The input data taken in Jinghao Niu
(2020) is a combination of 256 heartbeats and RR interval
features and is preprocessed using SBCX. Therefore, the
method proposed in this article is more automated.

3.3. Ablation Studies. We conduct ablation studies on the
different components of the framework. In Table 9, signal-508
represents the heartbeat segmentation method proposed in
this article. Signal-256 represents the conventional 256-
sample heartbeat segmentation method [41, 44]. Focal loss
represents the loss function used in this article. Ensemble
represents the model ensemble module.

Replacing the heartbeat segmentation method with the
traditional 256-sample heartbeat segmentation method, the
sensitivity of S is greatly reduced (80.23% to 16.34%), and the
ability to classify S is almost lost. This fact strongly suggests
that the heartbeat segmentation approach adopted in this
article helps to improve the model’s ability to classify
heartbeats. The medical diagnosis of arrhythmia is not only
based on a single heartbeat but is determined by combining
multiple consecutive heartbeats. For example, S will have a
shorter RR interval relative to N. When the heartbeat seg-
mentation approach in this article is used, it helps to make it
easier for the classifier to obtain distinct features to dis-
tinguish between N and S, preventing the overfitting of S
during training. By replacing the focal loss with the tradi-
tional cross-entropy loss function, the sensitivity of S will
decrease (80.23% to 61.60%). The focal loss function helps to
make the model focus more on the hard-to-discriminate
categories during training, and S, as the generally less
sensitive type among the classification results of the various
methods, is more likely to receive attention. After removing
the ensemble module, the sensitivity of N decreased by
3.78% (93.15% to 89.37%), and that of S decreased by 8.61%
(80.23% to 71.62%). In this research, six basic classifiers are
trained for voting, resulting in a more robust classification
model with increased performance. The comparisons in
Table 9 demonstrate the effectiveness of our strategy.

4, Conclusion

This article proposes a brand-new system for classifying
arrhythmias. In order to achieve a more automatic classi-
fication effect, we use the original heartbeat signal as the data
input in this article. Three key characteristics define the
classification model put forth in this article. First, we employ
a novel heartbeat segmentation strategy to assist the model
in automatically extracting more features. Second, in order
to aid in model training, we use the focal loss as the loss
function. Finally, an ensemble classifier is used to produce
more reliable classification results. According to the analysis
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of the experimental data, increasing the input heartbeat
window length enhances the model’s classification perfor-
mance, particularly in terms of its sensitivity to S. In the
meantime, the ensemble training strategy used aids in re-
ducing the issue of training overfitting brought on by data
imbalance.

The classification method proposed in this article is still
plagued by low classification performance for F and Q. This
is due to the fact that the F and Q samples in the MIT-BIH
dataset are far too minimal. As a result, we intend to collect
some additional arrhythmia data to help us better train the
classification model in future work.
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