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Abstract: The brain is the most vulnerable organ to glucose fluctuations, as well as inflammation.
Considering that cognitive impairment might occur at the early stage of diabetes, it is very important
to identify key markers of early neuronal dysfunction. Our overall goal was to identify neuroinflam-
matory and molecular indicators of early cognitive impairment in diabetic mice. To confirm cognitive
impairment in diabetic mice, series of behavioral tests were conducted. The markers related to
cognitive decline were classified into the following two groups: Neuroinflammatory markers: IL-1β,
IL-6, tumor necrosis factor-α (TNF-α) and genetic markers (Bdnf, Arc, Egr1) which were estimated in
brain regions. Our studies showed a strong association between hyperglycemia, hyperinsulinemia,
neuroinflammation, and cognitive dysfunction in T2DM mice model. Cognitive impairment recorded
in diabetes mice were associated not only with increased levels of cytokines but also decreased Arc
and Egr1 mRNA expression level in brain regions associated with learning process and memory
formation. The results of our research show that these indicators may be useful to test new forms
of treatment of early cognitive dysfunction associated not only with diabetes but other diseases
manifesting this type of disorders. The significant changes in Arc and Egr1 gene expression in early
stage diabetes create opportunities it possible to use them to track the progression of CNS dysfunction
and also to differential disease diagnosis running with cognitive impairment.
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1. Introduction

Diabetes (DM, diabetes mellitus) is a complex metabolic disorder which is character-
ized by hyperglycemia due to insulin insufficiency and/or insulin dysfunction. Currently,
the number of patients with DM is increasing worldwide at an alarming rate. International
Diabetes Federation and World Health Organization the observes increasing number of
diabetes in the world and estimates that this trend will also continue in the future [1].
WHO estimates that diabetes will be the 7th most common cause of death in the world in
2030 (http://www.who.int/mediacentre/factsheets/fs312/en/ accessed on 8 June 2020).
Diabetes is a chronic disease which may lead to the development of numerous compli-
cations [2–9]. One of the most dangerous consequences of chronic hyperglycemia are
problems in function of central nervous system (CNS) which are referred as “diabetic en-
cephalopathy” and is characterized by cognitive impairment and motor dysfunctions [10].

The brain is the most vulnerable organ to glucose fluctuations. Even slight changes in
the level of glucose can lead to permanent neuronal damage and impairment of cognitive
functions [11–13]. The results of neuropsychological tests in people with diabetes (espe-
cially in type 2) have shown mild or moderate dysfunction of cognitive activity [10]. The
severity of above disorders were often correlated with serum level of glucose, duration of

Int. J. Mol. Sci. 2021, 22, 3878. https://doi.org/10.3390/ijms22083878 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-1829-6981
https://orcid.org/0000-0001-8975-8093
https://orcid.org/0000-0003-0236-2825
https://orcid.org/0000-0002-3375-3821
https://doi.org/10.3390/ijms22083878
https://doi.org/10.3390/ijms22083878
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://www.who.int/mediacentre/factsheets/fs312/en/
https://doi.org/10.3390/ijms22083878
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22083878?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 3878 2 of 22

chronic hyperglycemia, and blood glucose fluctuations over a daily period [10]. The most
prone areas of the brain affected by hypoglycemia are the hippocampus and prefrontal
cortex. These areas of brain play important roles in forming and processing memories. As
shown by Bree et al. [14], severe hypoglycemic episodes can lead to extensive neural dam-
ages in sensitive regions of hippocampus and cerebral cortex. The chronic hyperglycemia
may also stimulate the production of pro-inflammatory cytokines like as IL 1, which fur-
ther enhances glucotoxicity [15]. Nowadays, type 2 diabetes (T2DM) is mentioned as an
important risk factor for dementia development. Patients with type 2 diabetes are about
50% more likely to develop dementia compared to the people without diabetes [16].

Some scientists started referring to Alzheimer’s Disease (AD) as type 3 diabetes to em-
phasize the potential endocrine links between these diseases [16,17]. Numerous literature
reports indicate a close relationship between insulin resistance (IR) or hyperinsulinemia
and cognitive, psychomotor impairment in patients with diabetes [18–23].

Recent research shows hyperinsulinemia being a form of response to hyperglycemia
in type 2 diabetes may have a significant impact on its neuronal signaling. In the central
nervous system, insulin plays key roles in learning and memorizing by the directing the
secretion and reuptake of neurotransmitters. The decreased responsiveness of brain cells to
insulin in regions such as hippocampus and cortex can lead to the disorder of synthesis of
neurotransmitters and neuronal plasticity, which leads to cognitive impairments [22–26].

Additionally, brain insulin resistance increases the risk of hyperphosphorylation of the
tau protein in the hippocampus and accumulations of beta-amyloid in the brain of diabetic
patients, which may lead to neuronal dysfunction and cognitive deficits [20,27–29].

The cognitive decline observed in diabetes patients may also be associated with
inflammatory changes in the brain. Inflammation, together with insulin resistance, is
increased by expression of several pro-inflammatory cytokines such as interleukin IL-1,
IL-6, and tumor necrosis factor (TNF-α) [27]. The activation and secretions of numerous
pro-inflammatory mediators may also contribute to changes in multiple neurotransmitters
synthesis such as serotonin, dopamine and also the increased blood–brain barrier (BBB)
permeability and vulnerability of vessels as well as neuron damage and their premature
death [30]. Experimental research show that release of pro-inflammatory cytokines such as
Interleukin 1β, Interleukin 6, and TNF-α in diabetes may cause neuronal death and acceler-
ate neurodegeneration characteristic for AD [31]. The elevated levels of proinflammatory
cytokines in the brain of mice correlated with results of behavioral tests. Marioni et al. [32]
confirmed the association of inflammation with the cognitive disorders in patients with
diabetes. The levels of inflammation markers, like as IL-6 and TNF-α, were correlated
with weaker cognitive functions of patients. Gorska-Ciebiada et al. [33] also correlated
higher levels of inflammation markers (CRP, IL-6, and TNF-α) in diabetic patients with
mild cognitive impairment.

Some studies show that TNF-α stimulates synthesis of other inflammatory mediators
and generally worsens stroke patient’s condition [34,35]. TNF-α plays an essential role, in
creating a linkage among insulin resistance [36].

Another cause of cognitive problems in diabetes patients may also be oxidative
stress. The oxidative stress may play a key role in the late complications of diabetes
through impaired neuronal insulin signaling, activation of advanced glycation end products
(AGE/RAGE), polyol and protein kinase C (PKC) pathways, leading to increased brain
inflammation and neurodegeneration [37]. The glycation end products (AGEs) can play a
key role in formation and accumulation of neurotoxic β-amyloid in the brain not only in
AD patients but also in diabetics [38,39].

Nowadays, much attention is paid to finding genetic biomarkers of early cognitive
decline. The recent studies suggested that expression of Bdnf, Arc, Egr1 genes may be related
to cognitive functions. Literature data shows that, control of the above-mentioned genes
expression is required to control neuronal plasticity, memory consolidation, and motor
skill learning [40–43]. Various studies shown possible connections between the above-
mentioned genes expression in the hippocampus and/or cerebral cortex and cognitive
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impairment in progress of diabetes, dementia, depression, schizophrenia, and Alzheimer’s
disease (AD) [40–43]. Previous research indicates that one of the key factors predisposing
to brain dysfunction in diabetes is chronic hyperglycemia. The results of experimental
research indicate a relationship between chronic hyperglycemia in cell lines and/or brain
neurons of diabetic animals and down-regulation of Egr1 and Bdnf expression [44–47].
Furthermore, experimental studies proved that overexpression of some of these genes in
the hippocampus allows for preservation of cognitive function and decreases brain lesion
size in animals [40,48].

Given the number of factors that determine cognitive impairment in diabetes, it is
very important to identify key markers of early neuronal dysfunction. Our overall goal
was to identify neuroinflammatory and molecular indicators of early cognitive impairment
in a diabetic mice model. In our study, we reveal behavioral, and molecular changes in
areas of the brain related to learning and long-term memory formation that were noted
early in diabetes in mice. The results of our research may be useful to test new forms of
treatments of cognitive dysfunction associated not only with diabetes but other diseases
manifesting this type of disorders. Moreover, significant changes in Arc and Egr1 memory
gene expression in early stage diabetes create opportunities it possible to use them to track
the progression of CNS dysfunction and also to differential disease diagnosis running with
cognitive impairment.

2. Results
2.1. The Impact of Diabetes on the Spontaneous Locomotor and Exploratory Activity and the
Memory and Learning Process of Mice

To investigate the effects of diabetes on locomotor activity in mice, the open-field
test was carried out. To measure animal activity we counted the number of exceeded
squares by an individual and time spent in the central zone (the central four squares) and
periphery of the field during 5 min of free exploration. As shown in Figure 1A diabetic mice
were characterized by lower locomotor activity compared to the animals in control group
(p < 0.01, t = 2.067, F = 3.241). Animals with diabetes spent significantly less time in central
zone compared to animals in control group (Figure 1B, p < 0.05, t = 3.285, F = 3.895). In
contrast, the locomotor activity of diabetic animals in the marginal zone of open-field was
comparable to activity of animals in control group (Figure 1C, p > 0.05, t = 1.173, F = 1.247).
Statistical analysis of the passive avoidance (PA) test results showed no significant (p > 0.05)
difference in the latency to enter the dark compartment, during the conditioning trial,
among experimental groups (data not shown).

Furthermore, we recorded significant differences in the latency to enter the dark
compartment between healthy and diabetic animals. Animals with induced diabetes
showed a significantly shorter latency to enter the dark part of the apparatus 24 h after the
application of an electrical stimulus compared with non-diabetic mice (Figure 2A; p < 0.01;
t = 3.013 F = 5.386). Moreover, cognitive impairment in diabetic mice was also confirmed in
“NOR—novel object recognition” test results. The performed statistical analysis showed
that mice with induced diabetes showed a significant reduction in their interest in the
presented objects, especially the new ones, compared to the animals in control group
(Figure 2B, p < 0.001; t = 6.643, F = 1.315). Diabetic mice spent more time studying a
familiar object (67% of time observation), while the % of mice that preferred the new facility
was only 32%. In comparison, mice in the control group spent almost 60% of their time
examining the new object. It is worth pointing out that during the familiarization phase,
animals from all experimental groups spent a similar amount of time testing identical
objects. The performed statistical analysis did not show any significant differences in the
time of exploring the objects presented to the animals in both groups (p > 0.05).
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Considering that spontaneous locomotion and the level of anxiety may affect the
results of tasks related to learning and memory, therefore the results of these behavioral
tests cannot indicate “pure” cognitive impairment in mice with diabetes.

2.2. Serum Level of Glucose (A), Insulin (B), HOMA-IR Index (C) in Mice

Fasting serum concentrations of glucose and insulin in diabetic mice were significantly
higher than animals in control group (Figure 3A,B). The average glucose level in the above-
mentioned group was 13.3 mmol/L, which represented in 50% increase of this parameter
compared to the control group (Figure 3A; p < 0.01, t = 3.175, F = 3.343). Similar changes
were observed in insulin levels. Furthermore, nearly 50% increase of this hormone in the
serum of diabetic animals compared to healthy animals (Figure 3B; p < 0.01, t = 2.088,
F = 3.533) was recorded. Results obtained from this experiment indicated that the current
model of type 2 diabetes mellitus exhibited higher HOMA-insulin resistance index (HOMA-
IR) compared to control group mice (Figure 3C; p < 0.01).
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2.3. Cytokine Level in Prefrontal Cortex of Mice

Interleukin 1β, interleukin 6 and tumor necrosis factor α brain cortex levels in diabetic
mice were significantly higher than in the control group (Figure 4A–C). Interleukin 1β
levels were about 32% higher in diabetic mice than in healthy ones (Figure 4A; p < 0.05,
t = 2.064, F = 3.543). Similar change was observed in interleukin 6 levels. We recorded
nearly 35% increase in the level of this cytokine in the prefrontal cortex of diabetic mice
compared to healthy animals (Figure 4B; p < 0.01, t = 3.230, F = 2.297). In the case of tumor
necrosis factor α, an increase of around 20% in the prefrontal cortex of diabetic animals
compared to the healthy adult mice was observed (Figure 4C; p < 0.05, t = 2.832, F = 7.543).
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2.4. Insulin Level in Prefrontal Cortex of Type 2 Diabetes Mice

Figure 5 shows insulin levels in prefrontal cortex in 2 subject groups; normal adult
mice and diabetes mice. Brain insulin levels in the diabetic mice were close to values of
non-diabetic group (Figure 5; p = 0.2731, t = 1.177, F = 1.600).
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2.5. mRNA Expression Analysis in Hippocampus and Prefrontal Cortex of Mice

The analysis of gene expression showed that the presented model of diabetes had a
statistically significant impact on the decrease of Arc and Egr1 mRNA expression levels in
both prefrontal cerebral cortex and hippocampus (Figure 6A,B; p < 0.001; p < 0.01; p < 0.05).
Our data indicated that Arc expression was significantly reduced in both the hippocampus
and cerebral cortex, whereas Egr1 was affected especially in the cortex and to a slightly
lesser degree in the hippocampus. However, the diabetes did not significantly affect the
Bdnf expression in the examined brain regions (Figure 6A,B; p > 0.05).
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3. Discussion

It is well known that the metabolic and vascular disorders characteristic of diabetes
very often lead to the development of numerous complications in the peripheral as in the
central nervous system.

The analysis of the available literature shows that both prolonged hyperglycemia
and insulin resistance as well as hyperinsulinemia affect the progression of this disease as
well as related complications such as deficits of cognition and psychomotor function. The
epidemiological studies show that those with diabetes have poorer cognitive performance,
particularly in verbal memory and complex information processing [10].

The results of our studies showed a positive correlation between indicators of dia-
betes and cognitive dysfunction in diabetic mice. High fasting glucose and insulin levels
and high HOMA-IR index didn’t only confirm effective induction of experimental type
2 diabetes but also made it possible to observe CNS dysfunction widely described in the
literature [6,7,11,13,49]. Moreover, diabetic mice were characterized by lower locomotor
and cognitive activity compared to the animals in control group.

As shown in research by Bree et al. [14], chronic hyperglycemic and hypoglycemic
episodes can lead to extensive neurons damage in sensitive regions of hippocampus
and cerebral cortex which plays an important role in forming and processing memories.
Moreover, chronic hyperglycemia promotes increased permeability of the blood–brain
barrier (BBB) and penetration of toxic substances to the CNS which of course promotes
neuroinflammation and cognitive decline in DM patients [50–52].

Numerous literature reports indicate also a close relationship between hyperglikemia,
insulin resistance (IR) and cognitive, psychomotor impairment in patients with
diabetes [14,53–55]. Our results also confirm this relationship. Dysfunction of learning and
memory process in animals were positively correlated with serum glucose and insulin level.
We observed nearly 50% increase in level of this hormone in the serum of diabetic animals
compared to animals in control group. More and more studies assigns PKC and MAP
kinases participation in diabetic vascular complications in nervous system and related to it
psychomotor impairments [56,57]. Hyperglycemia through modulating of PKC activity
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it may lead to damage neuronal cells by impairing vasodilation and increasing capillary
thickening and endothelial hyperplasia, which diminish neuronal blood flow and oxygen
availability for cells [58]. Additionally, hyperglycemia may reduces Na+K+ ATPase activity,
which is essential for maintaining normal nerve membrane resting potential [59].

Moreover, hyperinsulinemia being a reaction to hyperglycemia in type 2 diabetes
and may have a significant impact on its neuronal signaling. Experimental and clinical
studies [20,23,52,55] indicate a significant role of insulin in synaptic plasticity of hippocam-
pal cells and the cerebral cortex. Insulin in the brain, may function as a neuromodulator
directing the secretion and reuptake of neurotransmitters, affecting learning and memory
process [60]. Research Zhao et al. [61] showed that rats after training in a water maze had
increased insulin mRNA levels in the hippocampus, as well as increased accumulation of
insulin receptor proteins.

As already known, in animal models of diabetes of spatial learning deficits are paral-
leled by neurophysiological and structural changes in the brain. At the molecular level these
impairments might involve changes in glutamate-receptor subtypes, in second-messenger
systems in protein kinases and changes receptors sensitivity through on endogenous
substances like as insulin [61,62].

Our research showed that despite confirmed peripheral hyperinsulinemia, and pres-
ence of cognitive impairment, we did not notice any significant changes in brain insulin
level in diabetic animals vs. non-diabetic mice, which of course, does not exclude the
possible changes in the transport of this peptide across the BBB.

Moreover, the lack of significant differences in insulin levels in the brains of non-
diabetic group with diabetes could possibly dictated by insulin-degrading enzyme (IDE)
activity in diabetes mouse. More and more research is focusing on the role IDE (insulin-
degrading enzyme) in modulate insulin level, arising amyloid β (Aβ) and develop-
ment of cognitive impairment characteristic for the type 2 diabetes mellitus (T2DM) and
Alzheimer’s disease. Some studies have showed that IDE increased could mediate of pro-
gressive brain insulin deficiency and insulin resistance in AD [63–65]. With turn deficiency
in IDE might lead to an accumulation of insulin in the brain (hyperinsulinemia), leading to
insulin resistance and glucose intolerance [66]. This area thus requires further research.

Every year we receive new data that confirms the existence of a close relationship
between levels of markers and mediators of inflammation of diabetes and its neurological
complications [47,67,68]. There is a plethora of evidence describing the close relationship
between production of pro-inflammatory cytokines such as interleukin IL-1, IL-6 and tumor
necrosis factor (TNF)-α, and neuronal death and accelerate neurodegeneration process
characteristic for AD [26,69–71].

The results of our work confirm this relationship. The cognitive disturbances were
positively correlated with levels of pro-inflammatory cytokines such as Interleukin 1-β,
interleukin 6 and tumor necrosis factor α in prefrontal cortex in the brain of diabetic mice.
The onset of diabetes caused a higher brain level of inflammatory indicators as compared to
the healthy control subjects. Specifically, IL-1β and IL-6 were significantly correlated with
changes of cognition. Interleukin 1-β and interleukin 6 levels were higher about 32–35%
and in the case of TNF, around 20% higher than in control group.

Research shows that in diabetes, the abnormally differentiated vascular endothelia cells
and perivascular macrophages may show an exaggerated inflammatory response character-
ized by an in-creased secretion of pro-inflammatory cytokines, such as TNF-α, IL-1β and
iNOS [72]. Some studies confirm that diabetes may accompanied also activation of glial cells
is exaggerated, which leads to releases large amounts of inflammatory agents [70,73].

On the other hand chronic inflammation may leads to degeneration a specific neuronal
populations and their premature dying as it happens in Alzheimer’s disease. A both
increased production and impaired elimination the cell debris i.e., damaged organelles,
and macromolecules may increase inflammation process in the CNS [74].

It has also been shown that the activation of a central inflammatory response and the
accompanying level of the liberated cytokines to correlate with changes in multiple neuro-
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transmitters metabolism such as serotonin, dopamine and glutamate. Moreover, cytokines,
by activating the kynurenine pathway, may effectively limit synthesis of serotonin, but
also participate in the generates neuroactive metabolites that can significantly influence the
regulation of dopamine and glutamate [75,76].

This negative impact of inflammatory cytokines on neurotransmitter systems may
leads to significant changes in motor activity and motivation as well as development of
anxiety disorders. Our research results confirm this relationship. The diabetic mouse were
characterized by lower locomotor activity and higher anxiety level compared to the animals
in control group.

The analysis of the available studies indicates the essential role glycogen synthase
kinase-3β in development cognitive impairment in diabetes [77,78].

Datusalia et al. [78] showed that the modulation of GSK-3β signaling is able signif-
icantly reduced neuroinflammation of diabetic rats by reduction in IL-6, TNF-α, COX-2,
which also it was reflected in the neurotransmitters level the hippocampus and cortex.

A plethora of data demonstrates that neuroinflammation or altered hypothalamic–
pituitary–adrenal axis functionality can affect genes expression which regulate synaptic
function and are a critical factor responsible for memory consolidation [41,52,79]. Although,
studies show that BDNF level may decrease in T2DM in response to hyperglycemia, we
did not observe such a correlation in our research. Bdnf mRNA expression level in both
prefrontal cerebral cortex and hippocampus remained at a similar level as in healthy
animals [47,67].

The lack of a noticeable difference in the expression of Bdnf gene between the study
groups may arise from early-stage of diabetes. Kauer-Sant’Anna M et al. [68] noticed that
BDNF level appeared to be related to the illness duration and may remain unchanged
during the early phase of the CNS disorders.

Krabbe et al. [47] also Passaro et al. [80] observed inverse relation of serum BDNF
level to fasting glucose and duration of T2DM and cognitive function.

Given no differences in Bdnf mRNA expression level in the studied groups we ruled
out the existence of disorders in BDNF signaling in the course of diabetes, although we
know that they may have a negative effect on genes expression involved in synaptic
plasticity, including Homer1a, Arc [47].

Numerous studies prove a strong correlation between neuronal activity and Erg1 and
Arc expression exists [40–42,81]. Numerous studies prove that Erg1 and Arc genes are
widely used as molecular indicators of synaptic plasticity in brain regions associated with
learning and long-term memory formation [81–86].

Taking into consideration that brain gene expression is dynamically changed especially
within the immediate-early genes (IEGs) group (such as Egr-1 and Arc), our research focused
mainly on assessing their expression and evaluating their potential usefulness as genetic
indicators of early cognitive impairment in diabetes.

Our data indicated that Arc and Erg1 genes expression is associated with nervous
system function, and particularly neurotransmission, learning, and memory, and that
significantly reduced expression in both brain regions was recorded. Arc is required for
numerous learning and memory tasks, including memory consolidation, spatial learning
and memory [87]. Arc expression was significantly reduced in both the hippocampus and
cerebral cortex, whereas Egr1 was affected especially in the cortex and to a lesser degree
in the hippocampus. Given the importance of Arc and Egr1 in memorizing, it is plausible
that their reduced expression is the reason for the memory deficits observed in results of
behavioral tests.

Animals with induced diabetes showed a significantly shorter latency to enter the
dark part of the apparatus after 24 h after the application of an electrical stimulus compared
with non-diabetic mice. Similarly, as Egr1−/− mouse in a test of object recognition showed
a significant reduction in preference for presented novel object 24 h after training [84].

It should also be noted that reduced Arc and Egr1 expression and related memory
problems may also be a consequence of neuroinflammation. Expression of these two genes
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showed to be lowered in association with β-amyloid plaques in AD patients, animal models
of AD and aged mice [85,88,89]. In our study it was proved that diabetic mice showed a
significant reduction in their interest in the novel objects when compared to the animals
in control group. Penrod et al. [87] proved that the reduction of Arc produced significant
deficits in both object and social novelty preference tasks what is also in line with our
observations and it pointed out that the induction of Arc is necessary for normal novelty
behavior suggesting inter alia this gene as a regulator of detection of novelty [87]. In
addition, recent study proved that mice deficient in EGR-1 (Egr1−/−) fed with high-fat diet
failed to secrete sufficient insulin to clear glucose, which was associated with lower insulin
content and the development of pancreatic islet failure [90]. It is known that early growth
response gene 1 (Egr1) is implicated in the regulation of cell differentiation, proliferation,
and apoptosis. The deficiency of EGR-1 might influence β-cell compensation in response
to metabolic overload what [90]. These findings highlight the importance of this gene in
the future studies focused on diabetes mellitus.

4. Materials and Methods
4.1. Chemicals

In the experiment were used: Streptozotocin (≥98% HPLC, Sigma-Aldrich, Munich,
Germany) which was freshly prepared in citrate buffer (0.01 M, pH = 4.5); saline (aqua pro
injection, Baxter, Lublin, Poland). Citric acid and sodium citrate were supplied by Biomed
Company (Lublin, Poland).

4.2. Animals

The experiment was conducted on adult male mice CD-1 of 7 to 8 weeks old (output
weight of 20–24 g). The mice were obtained from a licensed breeder (Center of Experi-
mental Medicine, Medical University of Lublin, Poland) and were grown and housed in a
pathogen-free facilities in accordance with the Regulation of the Minister of Agriculture
and Rural Development of 14 December, 2016 (Journal of Laws item 2149). Mice were
housed in groups of 4 per cage. These animals did not show any apparent in their behav-
ioral abnormalities which could be evidence of congenital anomalies. Before and during
the experiment, the animals were subjected to active and inquisitive observation by an
experienced veterinarian (moving around the cage, grooming, eating, drinking, defecation
and urination, and interacting with cage mates).

Additionally, every mouse was hands-on examination by the vet which allowed for
assessment of hydration status, body condition, and the presence of abnormalities in the
bones, genitals and abdomen. Body weight of mice were recorded weekly. All procedures
were approved by the Local Ethics Committee on Animal Experimentation in Lublin
(No. 43/2018).

4.3. Experimental Procedures
4.3.1. Induction of Type 2 Diabetes Mellitus (DM) Mouse Model

The experiment was divided into two stages. In the first stage, male mice (CD-1) were
randomly divided into 2 experimental groups: A control group (non-diabetic mice- CTL),
diabetics mice (DM). Then in one of experimental groups was started the procedure of
diabetes induction. During the first 4 weeks of the experiment, the animals were allowed
to drink aqueous 20% fructose solution and then, for the next 5 days (1 × daily) mice were
administrated intraperitoneal injection of freshly prepared solution of STZ (40 mg/kg ip
body weight) in 0.01 M cold citrate buffer pH 4.5.

At the same time the control mice were administrated citrate buffer alone. Throughout
the duration of the experiment all animals had free access to feed and fluids throughout
the experiment. In the next stage, nine days after the first STZ injection, blood samples
were collected from the tail vein of animals. To estimate the blood glucose level was used
advanced Glucometer ACCU-CHEK (Roche, Mannheim, Germany). Animals with a fasted
glucose level >11 mmol/L were qualified for the next stage and behavioral tests were
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carried out to evaluate the effect of diabetes on the cognitive functions of animals. Control
animals had blood glucose level on average 6.5 mmol/L. The scheme of the experimental
model is presented in Figure 7.
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Figure 7. The experimental mouse model of type 2 diabetes mellitus (DM).

Diabetes induction started on the first day of the experiment. During the first 28 days
of the experiment, the animals were allowed to drink aqueous 20% fructose solution or
water and eat standard feed. Then, from the 29th day mice received an intraperitoneal (ip)
injection of streptozotocin (STZ) or vehicle. After nine days after the first STZ injection,
(on the 38th day of experiment), in animals was determined blood glucose level. Between
39–42 days, behavioral tests were performed. On the 43th day, the animals were sacrificed
and biological material (blood samples and brains) was collected. Biochemical parameters
were determined between 44 and 45 days.

4.3.2. Procedures of Behavioral Tests

All behavioral tests were carried out under controlled environmental conditions,
such as temperature, humidity, and light intensity (dim illumination). In order to avoid
possible circadian modifications of the test results, all experiments were carried out between
9.00 a.m. and 11.00 a.m. In order to eliminate olfactory cues were systematically cleaned
all apparatuses.

Behavioral tests that we used to assessment of the spontaneous locomotor and ex-
ploratory activity of rodents were: “Open field” test, while the “passive avoidance” and
“recognition of new objects” tests were used to assessment the memory and learning
process of mice.

In the “open field” test [91] the animal was placed in the central part of the field
measuring 40 × 40 × 35 cm, made of natural wood. The floor of the field was divided
into 16 equal squares. The assessment of locomotor activity was based on the number of
squares exceeded by a given individual and time spent in the central zone (the central four
squares) and periphery of the field during 5 min of free exploration.

The assessment of learning and long-term memory carried out with the use of passive
avoidance (PA) test (24 h after the previous test) in which rodents learn to restrain their
innate tendency, namely preferring a dark compartment rather than an illuminated.
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This test was carried out in a special apparatus which consisted of a black dimly lit
chamber (25 × 20 × 15 cm) and a white illuminated chamber (10 × 13 × 15 cm) [92]. Both
parts of the apparatus were separated by a wall with a gate between them. The floor of the
dark part of the apparatus was connected to a constant voltage power source.

The test was carried out in two stages. On the first day, animals were placed indi-
vidually in the illuminated compartment and allowed to freely scour for 5 min. Then,
after 15 min following habituation was started the first phase of the test. The mouse was
placed again in the lighted part of the chamber and when the animal crossed to the black
compartment, it was received a mild foot shock which was to be a negative learning spur.
After completing this stage of the test, the animal learned that the moving to the dark
compartment may have negative consequences. On the next day (24 h later), the same
animals were put into the illuminated box and observed up to 180 s. If mice went into
the dark part of the camera (aversive stimulus) during 180 s, this indicated a memory
impairment. The longer the delay were in the animals’ transition to the dark part of the
camera, the better their memory.

The procedure of “NOR-novel object recognition” test was carried out based on
modifications of the Ennaceur and Delacour method [93]. This test is based on the tendency
of rodents to discover novel objects.

The test was carried out in a wooden, white box with dimensions of 40 cm × 40 cm ×
35 cm (height). Wooden cubes in the shape of a rectangular or quadrangular pyramid (4 cm
× 4 cm × 6 cm) were used as objects. On the first day, all mice underwent an adaptation
session during which they could freely explore the open field for 10 min. During the
aforementioned process, the animals did not come into contact with any of the objects.
Twenty-four hours after the taming test, the animals were again placed in the crate for
10 min, of which after the first 5 min were placed two identical objects (A + A) in the
crate at an equal distance from each other, 9 cm from the walls of the crate (familiarization
phase). All objects (blocks) were made of the same material (wood) and they had the same
color (white) and size (weight, height, and width). Each mouse could freely examine both
objects. After 24 h, the test phase began. Each mouse was placed in an empty chest for
5 min for adaptation, and then objects were introduced into the chest: One known and the
other new (A + B). During the 5 min of observation, the time of exploring each object by
mice was recorded.

The interaction with the object was defined as sniffing or touching with the nose (the
mouse’s head was 2 cm away from the object and was directed towards it). Resisting,
climbing on blocks were not considered as a form of exploration. After each test, the box
and objects (blocks) were cleaned with a 10% ethanol solution to eliminate odor signals.

The [%] of the level of mouse preference for the new object was calculated as the
time of interaction of the mouse with the new object/the sum of interaction time with the
familiar and new object × 100.

Twenty-four hours after the behavioral tests (43rd day), mice were killed by decapi-
tation while keeping animals for the last 4–6 h of fasting. After decapitation, 1 mL trunk
blood was collected at the decapitation site. The verification of the type 2 diabetes mellitus
(T2DM) model was based on determination of serum levels of glucose and insulin and
estimation of insulin resistance using the HOMA-IR index. At the same time, the brains
were removed followed by the isolation of the hippocampus and prefrontal cortex for
determining TNF-α, IL-1β, IL-6 levels, and genes expression from each animals.

4.4. Quantitative Determination of Serum Levels of Glucose and Insulin and Estimation of Insulin
Resistance Using the HOMA-IR Index

To obtain the serum, the blood were collected in tubes without any anticoagulant
and allowed to clot. Blood samples were centrifuged at 1000× g for 10 min. Then, serum
samples were collected into two clean Eppendorf’s tubes and stored at −20 ◦C until used for
the ELISA assays. In the received serum was determined the levels of glucose and insulin.
For the determination of insulin levels was used mouse enzyme-linked immunosorbent
assay (ELISA) kit (Mercodia AB, Uppsala, Sweden). Mercodia Mouse Insulin ELISA is a
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solid phase two-site enzyme immunoassay based on the sandwich technique, in which
two monoclonal antibodies are directed against separate antigenic determinants on the
insulin molecule.

Insulin in the sample reacts with specific anti-insulin antibodies bound to wells of
the microplate supplied by the manufacturer of kit. After incubation unbound antigen
was washed away and were added peroxidase-conjugated anti-insulin antibodies in the
solution. After 2 h incubation at room temperature on a shaker the wells were washed few
times, after that substrate solution was added to each well. The added substrate reacted
with the enzyme–antibody–insulin complex to produce measurable signal. The intensity
of signal obtained at 450 nm was directly proportional to the insulin concentration of
the present specimen. The serum insulin concentration was determined by comparison
with the standard curve. Results were expressed as ng/mL and the limit detection was
≤0.2 ng/mL. The procedure was carried out following manufacturer instruction.

The serum glucose level was determined immediately using a glucose diagnostic
kit (Liquick-Cor Glucose, Cormay, Warszawa, Poland). This kit is for the quantitative,
enzymatic determination of glucose in serum. This method is based on enzymatic reaction,
in which glucose is oxidized to gluconic acid and hydrogen peroxide by glucose oxidase.
Then hydrogen peroxide reacts with 4-aminoantipyrine in the presence of peroxidase to
form a red colored product. The intensity of the red color was measured at 500 nm after
5 min. incubation (samples or standard with the 1-Glucose reagent) at 37 ◦C.

Calculation of glucose concentration =
absorbance of sample

absorbance of standard
× standard concentration of glucose (5.5 mmol/L).

Results were expressed as mmol/L. The procedure was carried out following manu-
facturer instructions.

Insulin resistance was estimated using the formula: HOMA-IR = fasting glucose
(mmol/L) × fasting insulin (mU/L)/22.5 [94].

4.5. Quantitative Determination of Cytokine Levels in Prefrontal Cortex of Mice

Firstly, the homogenates of prefrontal cortex were prepared: Tissues one more time
were rinsed by ice-cold PBS thoroughly and weighed, then tissues were cut into smaller
pieces and homogenized on ice in PBS (w:v = 1:2). The supernatant was obtained by
centrifuging the mixtures at 10,000 r.p.m. for 5 min at 4 ◦C.

Cytokines concentrations in supernatants were assessed by using commercially mouse
enzyme-linked immunosorbent assay (ELISA Kit for mice Interleukin IL-1β, IL-6 and TNF-
α, Cloud-Clone Corp., Houston, TX, USA). Before assay, all reagents were brought to
room temperature. All samples were tested individually and according to manufacturer’s
instruction. The optical density of individual wells was measured by a spectrophotometric
microplate reader (BioTek, Elx808, Warszawa, Poland) at a wavelength of 450 nm. The
concentration of cytokens in samples were determined by comparing the optical density
of the samples to the standard curve. Cytokine concentrations in prefrontal cortex were
expressed in picograms per mg protein. Protein concentration was determined according
to the method of Bradford [90].

4.6. Quantitative Determination of Insulin Level in Prefrontal Cortex of Mice

Insulin concentration in supernatants (obtained after centrifuging the prefrontal cortex
homogenates as described above) was assessed by using mouse enzyme-linked immunosor-
bent assay (ELISA) kit (Mercodia AB, Sweden). The microplate was coated with monoclonal
antibodies directed to the insulin. Samples, standards and controls were pipetted into wells.
During incubation (37 ◦C at the time indicated in the procedure) insulin in the samples
or standards bound with immobilized anti-insulin antibodies. Then conjugate antibodies
were added to the wells (peroxidase-conjugated antibodies) which bind insulin and form
something like a sandwich. In the next step, after extensive washing of wells, substrate
was added and the plate was incubated at room temperature by 15 min. Substrate was
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converted to a colored compound by the action of horseradish peroxidase (HRP). There
reaction stopped after the addition of a stop solution to give a colorimetric endpoint that is
read at a wavelength of 450 nm using a microplate reader (Bio Tek, Poland). The absorbance
of the solution was proportional to the amount of insulin in the sample and were read
from the standard curve. Insulin concentration in prefrontal cortex were expressed in
picograms per mg protein. Protein concentration was determined according to the method
of Bradford [94].

4.7. Quantitative RT-PCR
4.7.1. Tissue Material Collection and Total RNA Isolation

The tested mice were sacrificed by decapitation and the whole brain was carefully
taken out and rinsed in ice-cold saline to remove blood. The prefrontal cerebral cortex
and hippocampus were rapidly dissected and used for the study. According to the manu-
facturer’s instructions, the nucleic acid was extracted from 50 mg of tissue using TRIzol
Reagent (Invitrogen, Carlsbad, CA, USA).

4.7.2. Selection of a Reference Gene

The reference genes were selected among hypoxanthine guanine phosphoribosyl
transferase (Hprt), phosphoglycerate kinase 1 (Pgk1) and TATA box binding protein (Tbp)
based on our preliminary studies, where Pgk1 and Tbp were the most stable reference genes
in the cortex and hippocampus. They were not affected by the experimental conditions.

4.7.3. Reverse Transcription and Quantitative Polymerase Chain Reaction

All samples of good quality (OD 260/280 ratios approximately 2.0) were reverse
transcribed using random primers and NG dART RT-PCR reagents (EURx, Gdańsk, Poland)
as described by the manufacturer. To analyze the correlation of diabetes with the cognitive
function, the following primers were used: Arc, Bdnf, Egr1 [see Table 1]. The analysis
of the genes’ expression levels was performed by real-time PCR method using the 7500
Fast Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) and Fast Probe
qPCR Master Mix (2x), plus ROX Solution (EURx, Poland). Briefly, the reaction mixture
contained 10 µL of Fast Probe qPCR Master Mix (2x), 9 µL of RNase-free water, ROX
Solution (50 nM), and 0.5 µM of gene-specific TaqMan probe (Applied Biosystems, Foster
City, CA, USA). The reactions were performed as followed: 95 ◦C for 3 min, 40 cycles:
95 ◦C for 10 s and 60 ◦C for 30 s. The data quality screen based on amplification, Tm
and Ct values was performed to remove any outlier data before ∆∆Ct calculations and to
determine fold change in mRNA levels. The data were presented as a mean RQ ± SEM
value (RQ = 2−∆∆Ct).

Table 1. The table shows the data on used primers: Gene symbols, assay IDs, gene names, GenBank reference sequence
accession numbers and amplicon lengths (bp).

Gene Symbol Assay ID Gene Name RefSeq Amplicon Length (bp)

Arc AB ID:
Mm00479619_g1

activity regulated
cytoskeletal-associated protein NM_018790.3 71

Bdnf AB ID:
Mm01334047_m1

brain derived neurotrophic
factor NM_007540.4 105

Egr1 AB ID:
Mm00656724_m1 early growth response 1 NM_007913.5 182

Pgk1 AB ID:
Mm01225301_m1 phosphoglycerate kinase 1 NM_008828.3 60

Tbp AB ID:
Mm00446974_m1 TATA box binding protein NM_013684.3 105

AB ID, Applied Biosystems TaqMan Gene Expression Assay ID.
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4.8. Statistical Analysis

Differences between two groups were analyzed by unpaired student’s t-test. Statistical
significance was considered at p < 0.05, p < 0.001 and p < 0.0001 and all values are
presented as the means ± standard error of the mean (SEM). All the statistical analyses
were performed using GraphPad Prism software, version 8.0.

5. Conclusions

Our studies confirms the existence of a close relationship between hyperglycemia,
hyperinsulinemia, and neuroinflammation, and cognitive dysfunction in T2M mouse
model. Recorded cognitive impairment in mice with the early stage of diabetes was
associated not only with increased levels of cytokines but also decreased Arc and Egr1
mRNA expression level responsible for synaptic plasticity in brain regions associated with
learning process and long-term memory formation. The degree of impairment of cognitive
functions was proportionate to the decrease in the expression of the marked genes and
increase in neuroinflammatory indicators levels. These indicators may be useful to test
new forms of treatments of cognitive dysfunction associated not only with diabetes but
other diseases manifesting this type of disorders. Moreover, significant changes in Arc and
Egr1 memory gene expression in early stage diabetes create opportunities it possible to use
them to track the progression of CNS dysfunction and also to differential disease diagnosis
running with cognitive impairment.
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