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Abstract: Obesity and overweight are disorders with high impact on the morbidity and mortality of
chronic diseases, such as type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD). We aim
to assess the effects of 2-year nutritional and lifestyle intervention on oxidative and inflammatory
status in individuals of 55 years of age and over at high CVD risk. Participants (n = 100 individuals
of 55 years of age and over living in the Balearic Islands, Spain) were randomized into control and
intervention group. Anthropometric and haematological parameters, blood pressure and physical
activity were measured before and after the intervention. Oxidative and inflammatory biomarkers
in plasma, urine, peripheral blood mononuclear cells (PBMCs) and neutrophils were determined.
A higher reduction in abdominal obesity, blood pressure and triglycerides levels was observed
after a 2-year intervention. An improvement of oxidative stress and proinflammatory status was
demonstrated with a significant reduction in myeloperoxidase, xanthine oxidase, malondialdehyde
and monocyte chemoattractant protein-1 (MCP1) levels, and an increase in polyphenols in plasma
was observed. A decrease in reactive oxygen species production in PBMCs and neutrophils levels
after zymosan and lipopolysaccharide activation was found in the intervention group with respect to
the control group. The intervention with hypocaloric Mediterranean Diet and customized physical
activity improves oxidative stress and proinflammatory status and could contribute to decreasing the
CVD risk.

Keywords: obesity; cardiovascular disease; oxidative stress; inflammation; biomarkers

1. Introduction

Obesity and overweight pandemics cause a major impact on morbidity and mortality
related to chronic diseases, including type 2 diabetes mellitus (T2DM) and cardiovascular
diseases (CVD) [1]. An increasing prevalence of obesity sets out a several impact on the
quality of life and a staggering burden on health system in the decades to come [2]. Previous
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studies have demonstrated that a weight loss of 5–10% is associated with a reduction in the
risk of T2DM [3] and an improvement in CVD risk factors [4,5].

Persistent overweight and obesity alters metabolic processes, including the hypo-
glycaemic action of insulin, lipid metabolism and blood pressure, leading to a condition
known as metabolic syndrome (MetS). Obesity and overweight are related to MetS, which
continues to increase in parallel with the prevalence of obesity [6]. Moreover, the high
prevalence of MetS has been related to poor nutrition, lack of exercise, smoking and alcohol
consumption [7,8]. MetS is also a risk factor, which contributes to the development of
T2DM, a mass of visceral adiposity, CVD and mortality [9]. In addition to these risk factors,
obesity and overweight are also related to a proinflammatory and oxidative stress status as
a bi-directional process rather than only one-way cause and effect [10,11].

The accumulation of lipid metabolites within adipose and non-adipose tissues can con-
tribute to chronic inflammation by promoting macrophage infiltration and activation [12].
Activated macrophages transform into a more proinflammatory phenotype and secret
inflammatory mediators such as tumour-necrosis factor-alpha (TNF-α) and interleukin
(IL)-1β [13]. The production of these pro-inflammatory cytokines interferes with insulin
signalling, inducing insulin resistance and contributing to MetS [14]. Moreover, unhealthy
diet and obesity increase different lipid species, which might also contribute to inflam-
mation [15]. Free saturated fatty acids can promote inflammation by binding to toll-like
receptors (TLR)-2 and -4, resulting in the activation of pro-inflammatory pathways via
c-Jun N-terminal kinase 1 (JNK1) and nuclear factor kappa β (NF-κβ) [16]. The activation
of these pathways, in turn, induces the secretion of chemokines such as monocyte chemoat-
tractant protein-1 (MCP1), increasing the infiltration of proinflammatory macrophages to
hepatocytes or adipocytes [15]. In addition, obesity can also induce systemic oxidative
stress through various biochemical mechanisms, including mitochondrial respiratory chain,
peroxisomal fatty acid metabolism, superoxide generation from nicotinamide adenine
dinucleotide phosphate (NADPH) oxidases and chronic inflammation [17]. Furthermore,
the activity of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD)
and glutathione peroxidase (GPx) has been found to be significantly reduced in parallel
with the expansion of adipose tissue [18].

Metabolic changes can also affect immune cell activity. Immune responses need a
high amount of energy generated from nutrients [19], which will be used to fuel two
main metabolic pathways to generate energy-storing adenosine triphosphate (ATP): gly-
colysis converting glucose to pyruvate in the cytoplasm and phosphates from glycolytic
intermediates transferred to adenosine diphosphate (ADP) to generate ATP; the second
pathway runs throughout the tricarboxylic acid (TCA) cycle, generating ATP within the
mitochondria. Metabolic pathways play critical and stage-specific roles in the function of
immune cells [20]. Moreover, activated protein kinase (AMPK) and the mammalian target
of rapamycin (mTOR) play important roles in metabolism and immune responses [19,21].
AMPK keeps inflammation and metabolic disease at bay in obese individuals [22].

Obesity is also linked to changes in the composition of the human intestinal micro-
biota, which activates inflammatory pathways in the bowel. It could change the intestinal
microbiota composition, which affects obesity and pro-inflammatory status [23].

Since obesity is a risk factor for many diseases, the importance of reversing its neg-
ative consequences through a lifestyle intervention should be noted. In general, lifestyle
interventions include nutritional adjustments, increased energy expenditure and behaviour
modification [24]. In the treatment of obesity, efforts are often directed toward decreasing
energy intake and, to a lesser extent, increasing energy expenditure. Decreasing energy
intake is an effective way to reduce fat, but it also could induce a significant amount of
fat-free tissue loss. Thus, regular exercise is a variable to consider for the treatment of
obesity and to avoid the loss of lean mass. Previous studies reported a significant reduction
in fat depots after a dietary intervention and physical activity promotion [25,26]. Moreover,
it is worth highlighting the importance of advising that changes take place over time,
maintaining motivation [27].
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The aim of the current study was to assess the effects of 2-year nutritional and lifestyle
intervention on oxidative and inflammatory status in individuals of 55 years of age and
over at high CVD risk.

2. Methods
2.1. Design and Participants

One hundred adults from Balearic Islands comprising 55–75-year-old men and
60–75-year-old women were recruited. The participants were selected if they met at least 3
of the following criteria for the MetS: (1) abdominal obesity for European individuals [28]
in terms of waist circumference (WC; ≥120 cm in men and ≥80 cm in women); (2) hy-
pertriglyceridemia (≥150 mg/dL) or drug treatment for high plasma triglycerides (TG)
concentrations; (3) low high-density lipoprotein cholesterol (HDL-cholesterol; <40 mg/dL
in men and <50 mg/dL in women); (4) high blood pressure (systolic blood pressure
≥130 mmHg or diastolic blood pressure ≥85 mmHg or antihypertensive drug treatment);
high fasting plasma glucose (≥100 mg/dL) or drug treatment for T2DM. Moreover, partici-
pants were without a documented history of CVD and were overweight or obese (body
mass index (BMI) ≥ 27 and <40 kg/m2). These inclusion criteria are according to the
update harmonized definition of the International Diabetes Federation and the American
Heart Association and National Heart, Lung and Blood Institute [29].The main exclusion
criteria include inability to provide written consent or to follow the recommended diet
and/or the scheduled intervention visits; documented history of previous CVDs; active
malignant cancer or history of malignancy; history of bowel disease; liver dysfunction;
and food allergy to any Mediterranean diet component. Detailed exclusion criteria are
displayed in Supplementary Table S1.

This study was a prospective cohort analysis of data obtained between baseline and
2-year parallel-group of a randomized trial, and its aim was to assess the combined effect
of dietary intervention and physical activity. Two interventions were randomly assigned:
an intensive intervention with low-calorie Mediterranean diet, physical activity promotion
and behavioural therapy centred on weight loss and a less intensive intervention with
energy-unrestricted Mediterranean diet following the usual health care for cardiovascular
prevention. The trial was registered in 2014 at the International Standard Randomized
Controlled Trial (ISRCT; http://www.isrctn.com/ISRCTN89898870; accessed on 22 May
2022) with number 89898870. Patients assessed for eligibility were 381; of those, 94 did not
meet eligibility criteria and 17 declined to participate. Finally, 270 patients were randomized
in a 1:1 ratio to one of the two intervention groups for 2 years. After a 2-year follow-up,
14 participants were lost to follow-up or discontinued intervention (5.2% dropouts). The
final sample was 256 participants, and oxidative and inflammatory data were analysed in a
subsample of 97 participants (Figure 1).

All participants were informed of the purpose and the implications of the study, and
all provided written informed consent. The study protocols followed the Declaration
of Helsinki ethical standards, and all procedures were approved according to the Ethics
Committee of Research of Balearic Islands (reference CEIC-IB/2251/14PI).

Sample size calculation was performed by accepting an alpha risk of 0.05 and a beta
risk of 0.2 in a bilateral contrast; 46 subjects were required in the first group and 46 were
required in the second to detect a difference equal to or greater than 0.5 units in each
parameter. The common standard deviation is assumed to be 0.85. A rate of loss to follow-
up of 0% has been estimated since the subsample was selected among the patients who
had completed the two years.

http://www.isrctn.com/ISRCTN89898870
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Figure 1. Flowchart of the study.

2.2. Anthropometrics, Drug Intake, Mediterranean Diet and Physical Activity Characterization

Height (cm) was measured with a wall-mounted stadiometer by a mobile anthro-
pometer (Seca 214, SECA Deutschland, Hamburg, Germany) to the closest millimetre in
the Frankfort Horizontal Plane position. Weight (kg) was determined using a Segmental
Body Composition Analyzer according to the manufacturer’s protocol (Tanita BC-418,
Tanita, Tokyo, Japan). The subjects were weighed with light clothes and without shoes,
for that reason, 0.6 kg was subtracted for their clothing. BMI was calculated according
to weight (kg)/height (m2). Abdominal obesity was measured with an anthropometric
tape, in duplicate, halfway between the lab rib and the iliac crest. The waist-to-height ratio
(WHtR) was calculated from waist (cm)/height (cm). Blood pressure was measured using a
validated semi-automatic oscillometer (Omron HEM, 705CP, Hoofddrop, The Netherlands)
while the participant was sitting for 3–5 min period of quiet rest; the measurements of
2–3 BPs were averaged.

Drug intake for each visit was obtained from direct questions to participants and
further confirmed by revising clinical histories.

Physical activity was evaluated using the validated Minnesota-REGICOR short physi-
cal activity questionnaire [30–32] and the validated Spanish version of the nurses’ health
study questionnaire to assess sedentary behaviours [33] as metabolic equivalents (METs),
considering the rate of energy waste [34]. The participants reported average weekly activi-
ties carried out in min/week.

Adherence to Mediterranean diet was assessed via the 17-item MedDiet question-
naire [35], which is a modified version of the previously validated questionnaire used in
the PREDIMED trial [36].

2.3. Blood Collection and Analysis

Venous blood samples were obtained from the antecubital vein after 12 h overnight
fasting conditions in ethylene diamine tetraacetic acid (EDTA) as anticoagulants for the
haematological analysis and for obtaining plasma and without anticoagulant for obtaining
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serum. Urine samples were collected after 12 h overnight fasting conditions in the first
urine of the day and in sterilised pot. The blood cell counts and haematological parameters
were measured in whole blood using an automatic flow cytometer analyser Technicon
H2 (VCS system, Bayer, Leverkusen, Germany). Glucose, triglycerides and high-density
lipoprotein (HDL) were determined in plasma by standard procedures using enzymatic
methods.

2.4. Blood Samples Processing

Plasma and serum were isolated by centrifuging whole fresh blood with and without
anticoagulants at 1700× g for 15 min at 4 ◦C. Peripheral Blood Mononuclear Cells (PBMCs)
and neutrophils fraction were purified from fresh whole blood and isolated following
the protocol the Separation of White Blood Cells, described before [37], using the reagent
Ficoll-Paque PLUS (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) [38,39]. Blood
samples were introduced in tubes containing Ficoll in a 1.5:1 proportion and were then
centrifuged at 900× g, for 30 min at 4 ◦C. Afterwards, the upper phase containing the
plasma and the Ficoll was discarded, while the middle layer of PBMCs and the precipitate
containing erythrocytes and neutrophils were recovered. The PBMC’s layer was washed
with phosphate-buffered saline (PBS) pH 7.4, and centrifuged at 900× g, for 10 min at
4 ◦C [40]. The precipitate, which including the erythrocytes and neutrophils, was incubated
in ice water with 0.15 mol/L of ammonium chloride to haemolyse the erythrocytes. Then,
the tubes were centrifuged at 750× g, for 10 min at 4 ◦C, and the supernatant was then
discarded. The neutrophil phase at the bottom was washed first with ammonium chloride
and then with PBS [41].

2.5. Serum Biochemical Analysis

Glucose, triglycerides and high-density lipoprotein (HDL) were determined in plasma
by standard procedures using commercial clinical kits in a Technicon DAX auto-analyser
system (Bayer, Leverkusen, Germany).

2.6. Enzymatic Determinations

All enzymatic determinations of catalase (CAT), superoxide dismutase (SOD) and
myeloperoxidase (MPO) were measured in plasma using the Shimazdu UV-2011 spec-
trophotometer (Shimadzu Corporation, Kyoto, Japan) at 37 ◦C. CAT activity in plasma
was determined by monitoring the decomposition of H2O2 at 240 nm using Aebi’s spec-
trophotometric method [42]. SOD activity in plasma was determined by an adaptation of
McCord and Fridovish’s method following the oxidation of cytochrome C at 550 nm [43].
MPO activity in plasma was determined by guaiacol oxidation by monitoring the resultant
tetraguaiacol compound at 470 nm [44].

2.7. Malondialdehyde Assay

Malondialdehyde (MDA) was measured by using a colorimetric assay kit (Sigma-
Aldrich Merck®, St. Louis, MO, USA) in plasma and urine samples as a marker of lipid
peroxidation. The reaction of MDA with a chromogenic reagent was produced, generating
a stable chromophore. Standards and samples were inserted in tubes with n-methyl-2-
phenylindole in acetonitrile: Methanol (3:1) mixture. After that, HCl with 12N concentration
was joined, and then the samples were incubated for 1 hour at 45 ◦C. Lastly, the absorbance
was measured at 586 nm and, with a standard curve of known concentrations (0–20 nM),
the MDA concentration was calculated.

2.8. Polyphenols Assay

The total polyphenols content was determined in plasma and urine samples by us-
ing the Folin–Ciocalteu method [45] in the supernatants of deproteinized samples with
cold acetone (1:1.2) using L-tyrosine as the standard. Once the reaction started, every-
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thing was allowed to stand for 1.5 h and the absorbance was determined in a microplate
spectrophotometer at 760 nm (Epoch, Biotek Instruments, Bad Friedrichshall, Germany).

2.9. 8-oxodG and 8-oxoGuo Analysis

The levels of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) have been investigated
as the prototype of DNA oxidation. On the other hand, 8-oxo-7,8-diydroguanosine
(8-oxoGuo) has been found in RNA. 8-oxodG and 8-oxoGuo levels were analysed in urine
samples by ultra-performance liquid chromatography coupled with tandem mass spectrom-
etry (UPLC-MS/MS), following the memology as previously reported [46–48]. The ratios
of 8oxoGuo/Creatinine and 8-oxodG/creatinine concentration are calculated following the
Poulsen equation [49].

2.10. Stimulated PBMCs and Neutrophils ROS Production

Radical Oxygen Species (ROS) production in neutrophils and PBMCs was determined
after activation with Zymosan A (ZYM) (1 mg/mL PBS) from Saccharomyces cerevisiae
(Sigma-Aldrich) and lipopolysaccharide (LPS) (100 µg/mL phosphate-buffered saline—
PBS) from Escherichia coli (Sigma-Aldrich, St. Louis, MO, USA). A total of 50 µL of cells
suspension in 1 mg/mL of PBMCs (containing about 6 × 105 cells) was added to a 96-well
microplate and 50µL of LPS or ZYM prepared in PBS was added to the wells. Finally,
2,7-dichlorofluorescein-diacetate (DCFH-DA) in ethanol was diluted in Hanks’ Balanced
Salts Medium (relation 30 µL DCFH-DA/mL Hanks’) was introduced to all wells. Flu-
orescence (Ex, 480 nm; Em, 530 nm) was measured in FLx800 Microplate Fluorescence
Reader (Bio-tek Instruments, Germany) at 37 ◦C for 60 min by punctual ultraviolet light
exposures and emission readings were recorded every minute with 60 total readings. ROS
concentration was calculated by measuring fluorescence of a standard curve of known ROS
concentration after its reaction with DCFH-DA in the same conditions as the samples.

2.11. Immunoassay Kits

Interleukin 1 beta (IL-1 beta) and monocyte chemotactic protein-1 (MCP-1) levels
were measured in plasma using ELISA kits following the supplies guidelines for use
(RayBiotech, Peachtree Corners, GA, EEUU). The overall intra-assay coefficient of variation
was calculated to be <10% and the inter-assay coefficient of variation was <12% for both IL-1
beta and MCP-1. Xanthine oxidase (XOD) levels were determined in plasma using ELISA kit
(Cusabio® Technology Llc, Houston, TX, USA) following the manufacturer’s instructions.
The overall intra-assay coefficient of variation was <8% and the inter-assay coefficient of
variation was <10% for XOD. All immunoassays were measured in a microplate reader at
450 nm (Epoch, Biotek Instruments, Bad Friedrichshall, Germany).

2.12. Statistics

The Statistical Package for Social Science (SPPS v.28 for Windows, IBM Software Group,
Chicago, IL, USA) was used to perform statistical analysis. Categorical variables were
expressed as n (%). Results of the continuous variables were expressed as the mean ± stan-
dard error (SEM), and the level of significance was established at p < 0.05 for all statistics.
The assumption of normality for continuous variables was assessed with the Shapiro–Wilk
test, and the Bartlett test was used to assess homogeneity of data. An intention to treat
analysis was performed. The statistical significance of the data was assessed by two-way
analysis of co-variance (ANCOVA) after adjustments for time (T) and nutritional and
lifestyle intervention (NI). The sets of data in which there was significant TxNI interaction
were tested by one-way ANCOVA. A Bonferroni post hoc test was performed for all data.
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3. Results
3.1. Anthropometric and Haematological Parameters

The anthropometric characteristics of participants according to nutritional interven-
tion between baseline and 2-years follow up are shown in Table 1. At the beginning of
the study, the subjects of both groups had a similar age of 64.5 ± 0.5 in the control group
and 64.9 ± 0.4 in the intervention group, as well similar values in the anthropometric and
general biochemical parameters. After two years of intervention, a significant reduction in
diastolic blood pressure was observed in the control and intervention groups, while BMI,
WHtR, abdominal obesity, systolic blood pressure and triglycerides were decreased com-
pared to the initial values only in the intervention group. No differences were evidenced in
weight, height, glucose, HDL-cholesterol and total physical activity in any group after the
intervention period.

Haematological parameters of participants are presented in Table 2. No differences
were evidenced in haematocrit and erythrocyte counts between baseline and 2-years follow
up groups. The number of leukocytes, neutrophils, lymphocytes, basophils, eosinophils
and monocytes was also similar between patients from both groups, and no differences
were reported.

Table 1. Characteristics of participants according to nutritional and lifestyle intervention between
baseline and 2-years follow up.

Baseline 2-Year ANCOVA

Control (n = 49) Intervention
(n = 48) Control (n = 49) Intervention

(n = 48) NIxT
Mean ± SEM Mean ± SEM Mean ± SEM Mean ± SEM

Weight (kg) 88.0 ± 1.19 87.0 ± 1.17 87.5 ± 1.32 83.9 ± 1.20 0.439

Height (cm) 162.7 ± 0.78 162.8 ± 0.82 162.7 ± 0.83 162.4 ± 0.87 0.497

BMI (kg/m2) 33.2 ± 0.33 32.7 ± 0.30 33.0 ± 0.40 31.7 ± 0.32 0.132

WHtR 0.689 ± 0.005 0.679 ± 0.005 0.679 ± 0.006 0.657 ± 0.006 0.033

Abdominal obesity (cm) 111.9 ± 0.89 110.4 ± 0.86 110.6 ± 1.07 106.7 ± 0.92 0.104

Systolic blood pressure (mmHg) 143.2 ± 1.54 141.2 ± 1.47 138.9 ± 1.65 136.1 ± 1.73 0.039

Diastolic blood pressure (mmHg) 82.4 ± 0.78 82.7 ± 0.76 76.4 ± 0.87 * 75.9 ± 0.86 * <0.001

Glucose (mg/dL) 117.5 ± 3.04 118.5 ± 3.25 115.5 ± 3.22 114.9 ± 2.96 0.823

Triglycerides (mg/dL) 154.6 ± 6.10 148.2 ± 6.57 152.1 ± 6.57 132.6 ± 5.49 0.376

HDL-cholesterol (mg/dL) 45.0 ± 0.94 43.5 ± 0.87 45.6 ± 1.17 46.0 ± 0.98 0.672

Mediterranean Diet adherence (score) 7.31 ± 0.23 7.68 ± 0.20 10.86 ± 0.29 * 12.66 ± 0.23 * <0.001

Total physical activity
(MET·min/week) 3250 ± 272 2763 ± 222 3026 ± 254 3040 ± 298 0.424

N (%) N (%) N (%) N (%) p-value

Antidiabetic drug intake 19 (39.1) 16 (33.6) 20 (41.7) 17 (34.7) 0.496

Antihypertensive drug intake 37 (75.9) 39 (81.7) 38 (78.7) 42 (87.1) 0.133

Results are expressed as mean ± SEM. Abbreviations: BMI: body mass index; MET: metabolic equivalent of
task; WHtR: Waist to Height Ratio; SEM: Standard error media. Statistical analysis: two-way analysis of co-
variance (ANCOVA). NIxT interaction between time and nutritional intervention. * Difference in means between
participants in time (baseline and 2-year). Results are expressed as mean ± SEM.

Table 2. Hemogram of participants according to nutritional and lifestyle intervention between
baseline and 2-years follow up.

Baseline 2-Year ANCOVA

Control (n = 49) Intervention
(n = 48) Control (n = 49) Intervention

(n = 48) NIxT
Mean ± SEM Mean ± SEM Mean ± SEM Mean ± SEM

Hematocrit (%) 43.0 ± 0.4 42.8 ± 0.3 43.0 ± 0.4 43.0 ± 0.3 0.668

Erythrocytes (106/mm3) 4.77 ± 0.04 4.78 ± 0.04 4.75 ± 0.05 4.73 ± 0.04 0.776
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Table 2. Cont.

Baseline 2-Year ANCOVA

Control (n = 49) Intervention
(n = 48) Control (n = 49) Intervention

(n = 48) NIxT
Mean ± SEM Mean ± SEM Mean ± SEM Mean ± SEM

Leukocytes (103/mm3) 7.32 ± 0.13 7.45 ± 0.20 7.41 ± 0.18 7.35 ± 0.19 0.390

Neutrophils (103/mm3) 4.56 ± 0.41 4.17 ± 0.16 4.12 ± 0.13 4.77 ± 0.67 0.752

Lymphocytes (103/mm3) 2.44 ± 0.06 2.39 ± 0.07 2.39 ± 0.08 2.30 ± 0.07 0.924

Monocytes (103/mm3) 0.61 ± 0.01 0.65 ± 0.02 0.62 ± 0.02 0.618 ± 0.02 0.174

Eosinophils (103/mm3) 0.26 ± 0.04 0.231 ± 0.02 0.228 ± 0.02 0.223 ± 0.01 0.855

Basophils (103/mm3) 0.055 ± 0.007 0.056 ± 0.007 0.053 ± 0.003 0.060 ± 0.005 0.948

Results are expressed as mean ± SEM. Abbreviations: SEM. Standard error of media. Statistical analysis: two-way
analysis of co-variance (ANCOVA) after adjustment for time (T) and nutritional and lifestyle intervention (NI).
NIxT interaction between time and nutritional and lifestyle intervention.

3.2. Oxidative Stress Biomarkers

The results of oxidative stress biomarkers determined in blood and urine are presented
in Table 3. All the determined parameters present similar values between the two groups
at the beginning of the study.

CAT activity was higher in the 2-year groups compared to baseline groups; on the other
hand, MPO levels were lower in 2-year groups than baseline groups. The obtained data
reported lower levels in plasma MDA from 2-year groups than baseline groups, whereas
polyphenols levels in plasma and polyphenols urine/creatinine were higher in the 2-year
group than baseline groups. A significant decrease was evidenced in neutrophils stimulated
with LPS. Although there were no significant differences, the levels of ROS production in
PBMCs stimulated with zymosan and in neutrophils stimulated with LPS were lower in
the 2-year groups. Moreover, 8oxodG urine/creatinine levels were lower, although there
were no significant differences, in both groups after 2-year follow-up, similarly to 8oxoGuo
urine/creatinine levels. No significant differences were evidenced in SOD, XOD, MDA
urine/creatinine, polyphenols urine/creatinine and ROS production in PBMCs stimulated
with LPS.

Table 3. Biomarkers of participants according to nutritional and lifestyle intervention between
baseline and 2-years follow up.

Baseline 2-Year ANCOVA

Control (n = 49) Intervention
(n = 48)

Control
(n = 49)

Intervention
(n = 48) NIxT

Mean ± SEM Mean ± SEM Mean ± SEM Mean ± SEM

Plasma enzymes

CAT (kat/L sang) 48.0 ± 3.76 53.3 ± 4.16 98.15 ± 6.05 * 84.1 ± 6.93 * <0.001
SOD (pkat/L sang) 162.9 ± 13.7 155.2 ± 14.0 188.4 ± 12.5 170.1 ± 6.29 0.174

MPO (µkat/mL sang) 57.5 ± 4.23 63.5 ± 4.85 29.1 ± 2.21 * 27.2 ± 1.55 * <0.001
XOD (ng/mL) 0.430 ± 0.046 0.449 ± 0.046 0.424 ± 0.036 0.286 ± 0.029 0.402

Oxidative Damage

MDA plasma (nM) 1.190 ± 0.085 1.025 ± 0.105 0.485 ± 0.035 * 0.467 ± 0.035 * <0.001
MDA urine/

creatinine (mM/mM) 94.4 ± 10.8 96.1 ± 13.3 100.5 ± 7.99 111.0 ± 12.5 0.652

Polyphenols plasma (mg/mL) 0.058 ± 0.003 0.057 ± 0.002 0.102 ± 0.009 * 0.087 ± 0.009 * <0.001
Polyphenols urine/

creatinine (g/L/mM) 11.2 ± 0.58 11.4 ± 0.72 13.5 ± 1.1 13.7 ± 0.922 0.941

8oxoGuo urine/
creatinine (nM/mM) 2.04 ± 0.085 2.01 ± 0.073 1.91 ± 0.076 1.76 ± 0.055 0.566

8oxodG urine/
creatinine (nM/mM) 1.49 ± 0.092 1.40 ± 0.073 1.26 ± 0.045 1.17 ± 0.051 0.247
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Table 3. Cont.

Baseline 2-Year ANCOVA

Control (n = 49) Intervention
(n = 48)

Control
(n = 49)

Intervention
(n = 48) NIxT

Mean ± SEM Mean ± SEM Mean ± SEM Mean ± SEM

ROS production

PBMCs Zym
(RLU/min·103 cells) 3424 ± 261 3617 ± 282 2892 ± 153 2881 ± 146 0.373

PBMCs LPS
(RLU/min·103 cells) 1327 ± 104 1312 ± 100 1240 ± 74 1210 ± 68 0.986

Neutrophils Zym (RLU/min·103 cells) 11219 ± 661 11341 ± 714 9750 ± 674 9248 ± 416 0.182
Neutrophils LPS (RLU/min·103 cells) 3339 ± 198 3490 ± 251 2877 ± 249 2633 ± 180 * 0.022

Results are expressed as mean± SEM. Abbreviations: CAT: Catalase; SOD: Superoxide dismutase; MPO: Myeloper-
oxidase; XOD: Xanthine Oxidase; MDA: Malondialdehide; 8oxoGuo: 8-oxo-7,8-dihydroguanosine; 8-oxodG:
8-oxo-7,8-dihydri-2′-deoxyguanosine; PBMCs Zym: Peripheral blood mononuclear cell stimulated with Zymosan;
PBMCs LPS: Peripheral blood mononuclear cell stimulated with lipopolysaccharide; Neutrophils Zym: Neu-
trophils estimulated with Zymosan; Neutrophils LPS: Neutrophils stimulated with Lipopolycchacaride. Statistical
analysis: two-way analysis of co-variance (ANCOVA) after adjustment for time (T) and nutritional and lifestyle
intervention (NI). NIxT interaction between time and nutritional and lifestyle intervention. * Difference in means
between participants in time (baseline and 2-year).

3.3. Cytokine Levels

The plasma levels of IL-1β, MCP-1, TNFα and IL-6 are shown in Figure 2A–D, respec-
tively. The levels of MCP-1 were significantly lower after 2 years in the intervention group.
The levels of IL-1β, TNFα and IL-6 did not show differences.

Figure 2. IL-1β (A), MCP-1 (B), TNFα (C) and IL-6 (D) levels in plasma classified according to
nutritional and lifestyle intervention between baseline and 2-years follow up. Statistical analysis:
two-way analysis of co-variance (ANCOVA) after adjustment for time (T) and nutritional and lifestyle
intervention (NI). Results are presented as mean ± SEM. * Differences in means between participants
in time (baseline and 2-years follow up).
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4. Discussion

The main findings of the current study are the improvement of the oxidative and
proinflammatory prolife after 2-years of lifestyle intervention. Results revealed that patients
from both control and intensive intervention groups in the second year of follow-up showed
better anthropometric parameters than at baseline point. Moreover, intervention patients
showed lower BMI, WHtR, abdominal obesity, systolic and diastolic blood pressure than
the control group. This improvement was associated with higher adherence to the MedDiet
but also with the prevention of weight gain and abdominal obesity [50]. In this sense,
a meta-analysis of randomized controlled trials showed that higher adherence to the
Mediterranean causes a significant weight loss, with or without energy restriction [51].
Several mechanisms allow explaining the beneficial effects of the Mediterranean diet on
weight loss. Specifically, this dietary pattern provides a high amount of dietary fiber, which
increases satiety, and has a low energy density and glycaemic load, which leads to better
appetite control, contributing to a lower energy intake [52]. Moreover, people with lower
level of physical activity at the beginning of the intervention and higher levels of BMI and
waist circumference (WC) were more likely to improve their adherence to the MedDiet [53].
It has been previously observed that after 1-year follow-up, aged patients with MetS and
higher CVD risk evidenced a significant improvement in the excess of weight and MetS
after increased nut consumption [26].

The current results showed higher CAT activity and lower MPO activity and XOD
levels in plasma after 2-year follow-up, although the changes were not significant for XOD.
Previous studies showed a decrease in the activities of antioxidant enzymes in subjects
with obesity and MetS compared to the population with normal weight [18,41]. Thus, the
improvement of the anthropometric parameters associated with the intervention allows
the recovery of the antioxidant capacity of these patients and improves their oxidative
status. In addition, the presence of bioactive compounds in the Mediterranean diet such
as polyphenols is related to the activation of signalling pathways such as Nuclear factor
erythroid 2 (NF-E2)-related factor 2 (Nrf2), which induces the expression of antioxidant
enzymes [54]. It has been observed that MPO and XOD increased in patients with obesity
and MetS [55–57]. The high values of MPO and XOD may derive from the pro-inflammatory
state showed by MetS patients and the higher degree of activation of immune cells and
the release of cytokines that induce the release of MPO and the conversion of endothelial
xanthine dehydrogenase to XOD [58]. Similarly to the current results, a decrease in XOD
and MPO levels was reported in patients after weight loss and after nutritional intervention
with MedDiet [59–61].

MDA plasma levels, as a biomarker of oxidative damage to lipids, were significantly
lower in patients after 2-year follow-up than baseline values. These findings are consistent
with previous results, showing that increased MDA levels could derive from decreased
antioxidant enzymes [62], which are the main cause of ROS in inflammatory disorders [63].
In this sense, the improvement in antioxidant defence mechanisms after nutritional inter-
vention can contribute to a significant decrease in MDA levels. This decrease may also
be favoured by the increase in circulating polyphenols with antioxidant capacities, which
is associated with better adherence to the MedDiet. Polyphenols derived from mango
supplementation were found to improve pro-inflammatory cytokines and metabolic hor-
mones in obese individuals after six weeks [64]. It was reported that obese people absorbed
fewer polyphenols, showing lower area under the curve after acute intake compared to
lean people [65].

Circulating immune cells in patients with MetS are in a state of pre-activation derived
from the pro-inflammatory state of these patients, which can lead to an excessive production
of ROS [66]. In this sense, a greater production of ROS was evidenced in obese and
overweight subjects than in subjects with normal weight [67]. Furthermore, the higher
concentration of circulating fatty acids in obesity was correlated with enhanced ROS
production by neutrophils [68]. In the current study, the tendency to decrease in ROS
production by PBMCs and neutrophils activated with zymosan and LPS observed after
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2-year follow-up, although there were only significant differences in neutrophils activates
with LPS, may be a consequence of a reduction in the pro-oxidative and pro-oxidant status.
Another factor to consider is the presence of compounds that modulate immune activity in
the Mediterranean diet, such as omega 3 polyunsaturated fatty acids (N-3 PUFAs), which
are capable of reducing the activation of immune cells [69].

When analysing the inflammatory mediators, the results showed lower levels of
plasma cytokines after 2-year follow-up than baseline values, especially in the intervention
group. This response is in accordance with previous studies reporting that a loss weight is
associated with a reduction in grade inflammation [70,71]. IL-6 and TNFα are cytokines
that are widely used as indicators of the pro-inflammatory state that characterises obesity
and contribute to insulin resistance [72]. In the current study, both cytokines tend to
decrease in both groups after 2 years of intervention. In the levels of MCP-1 and IL-1β,
the highest decrease was observed in the more intensive intervention group. IL-1β is a
strong proinflammatory cytokine, which is mainly produced by inflamed human adipose
tissue and also immune cells in obesity but also impairs insulin signalling and increases
lipolysis [73]. MCP-1 is a cytokine mainly produced by vascular cells and in the visceral
adipose tissue, which induces macrophage infiltration and insulin resistance [74]. Several
studies reported a decrease in these cytokines after diet-induced weight loss, improving
cardiometabolic risk factors [75,76]. The improved inflammatory profile in the intervention
group could derive from better anthropometric parameters after two years of follow-up and
also from a lower degree of activation of immune cells evidenced with a lower capacity to
produce ROS after stimulation. In addition, the Mediterranean diet components can down-
regulate pro-inflammatory pathways, mainly nuclear factor kappa β (NF-κβ), leading to a
reduction in the production and release of pro-inflammatory cytokines [77].

Regarding the parameters analyzed in urine, a tendency to decrease was observed in
the levels of 8oxodG in both groups and in 8oxoGuo in the intervention group, while the
other parameters, MDA and polyphenols, remained unchanged after the intervention. Both
8-oxodG and 8-oxoGuo are recognized as valuable markers of intracellular oxidative stress
and are considered prognostic factors for all causes and CVD-related mortality in patients
with DMT2 [78]. Both markers of nucleic acid oxidation increased with obesity and insulin
resistance and were observed to decrease after weight loss [79,80]. Moreover, a decrease in
urinary levels of 8-oxo-dG has been observed after one year of nutritional intervention with
a Mediterranean diet [81]. The reduced levels of both parameters evidenced after 2 years of
lifestyle intervention, mainly in the group with a more intensive intervention, could reflect
the higher adherence to the Mediterranean diet, which is rich in antioxidants.

5. Strengths and Limitations

The main strength of the current study is the better evolution of the oxidative stress
and proinflammatory biomarkers in the more intensive intervention group, which may
also be useful for the management of metabolic syndrome in clinical practices and reduce
the severity of other cardiovascular risk factors. A limitation of this study is that the
sample size was relatively small and does not allow, among other analyses, separation
between sexes. However, this sample size was enough to demonstrate the differences in
the biomarker levels between both groups. A second limitation may be inter-observer
variations in anthropometric measurements. In order to avoid this, an accurate training of
personnel has been performed.

6. Conclusions

An intervention based on the consumption of a low-calorie Mediterranean diet
improves anthropometric and biochemical parameters and the pro-oxidative and pro-
inflammatory state after two years of intervention. This improvement increased in the
intervention group where, in addition to the diet, the promotion of physical activity and
behavioural therapy was carried out. The reduction in oxidative stress and inflammatory
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biomarkers mainly in the intervention group could contribute to reducing cardiometabolic
risks and to improving the overall health status of the participants.

Supplementary Materials: The following supporting information can be downloaded at: https://
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