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Abstract

Increasing vessel traffic in the marine environment due to commercial and recreational

activities has amplified the number of conflicts with marine animals. However, there are lim-

ited multi-year observations of the healing rate of marine animals following vessel strike.

Here we document the healing rate of a reef manta ray Mobula alfredi, following lacerations

caused by a propeller along the pectoral fin. We demonstrate a high healing capacity, with

wound length following a negative exponential curve over time. Lacerations healed to 5% of

the initial wound length (i.e. 95% closure) within 295 days. The wounds appeared to stabilise

at this point as observed more than three years following the incident and resulted in a dis-

tinctive scarring pattern. Examination of an extensive photo-identification catalogue of

manta rays from the Ningaloo Coast World Heritage Area showed that the scarring pattern

occurs more frequently than previously recognised, as the wounds had been previously

attributed to failed predation attempts. This study provides baseline information for wound

healing from vessel strike in reef manta rays and indirect evidence for increased vessel

strikes on manta rays within the Ningaloo Coast World Heritage Area. We discuss the impli-

cation for spatial and behavioural management of vessels around manta rays.

Introduction

Vessel traffic has increased substantially world-wide over the last three decades [1]. With

increased traffic, more vessels strike marine fauna, which may have lethal or non-lethal out-

comes [2]. Most information on vessel strikes concern marine mammals and reptiles [3–8] as

they spend considerable time in surface waters to breathe, and float following lethal contact

with a vessel [2, 3]. By contrast, impacts of vessel strikes on elasmobranchs has received little

consideration.

Although elasmobranchs do not surface to breathe, several species spend considerable time

in surface waters for activities such as basking and feeding, where they are more susceptible to

vessel strike (e.g. basking shark Cetorhinus maximus, [9]; whale shark Rhincodon typus, [10];

reef manta ray Mobula alfredi, [11]; Chilean devil ray Mobula tarapacana, [12]; tiger shark
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Galeocerdo cuvier, [13]). Documenting vessel strike on elasmobranchs is challenging, as lethal

impacts cause animals to sink [14] and non-lethal impacts may not be recognizable. Most

wounds in elasmobranchs have been attributed to causes such as predation [15], mating

attempts [16–18], and fishing related injuries or entanglement [19, 20]. Further, elasmo-

branchs are considered to have high healing capacity [18, 21], likely due in part to a unique

adaptive immune system [22]. However, few studies have investigated the rate of wound heal-

ing in elasmobranchs, and these have focused on impacts of external and internal tagging pro-

cedures e.g. [18, 23]. Healing rates have been reported following predation attempts in reef

manta rays [15, 24] and whale sharks [17]. There are only two examples of wound healing fol-

lowing vessel strike for elasmobranchs: a white shark Carcharodon carcharias [25] and a black

tip reef shark Carcharhinus melanopterus [18]. However, documented recovery following ves-

sel strike remains lacking for many species, including reef manta rays.

Here we report for the first time the rate of wound healing following vessel strike for a reef

manta ray from the Ningaloo Coast World Heritage Area of Western Australia. Increased

tourist visitation to this region to undertake in-water interactions with charismatic megafauna,

as well as recreational fishing, has led to a simultaneous increase in vessel traffic [26, 27], a

trend which is likely to continue. Based on the characteristic healing patterns, we identified the

proportion of the manta ray population within the region that is likely to have been impacted

by vessel collision. Implications for manta ray ecotourism here and in other regions are

discussed.

Methods

We conducted our study in the Ningaloo Coast World Heritage Area of Western Australia.

The reef manta rays of this region have been the focus of a photographic-identification study

spanning 15 years (2004–2019). Individuals are identified based on unique ventral patterning

[24, 28]. Photographs of manta rays are obtained throughout the year from dedicated research

trips, citizen science contributions, and from the tourism industry. Ancillary observations

such as behaviour, maturity and obvious scarring are included in the database. Key areas for

monitoring and observation of reef manta rays in the Ningaloo Coast World Heritage Area

are: (1) All of Bateman Bay, containing several cleaning stations and important foraging

grounds; (2) a 20km stretch of reef along the western side of Cape Range National Park

between Tantabiddi boat ramp and Milyering; and (3) the western edge of Exmouth Gulf from

the town marina to Bundegi (Fig 1). Within Bateman Bay monitoring occurs on a daily basis

throughout the year, whilst the other locations have been largely opportunistic during Autumn

and Spring respectively.

On the 30 June 2015, a female reef manta ray (catalogue number #0018) was observed at

Point Maud in southern Bateman Bay (23o07.460’S, 113o45.630’E). Manta ray #0018 had

noticeable recent wounds, comprising five full thickness cuts on the trailing edge of the left

pectoral fin. Characteristics of the wounds were consistent with those inflicted by propeller

strikes as identified on other marine megafauna [5, 17, 25, 29]. Manta ray #0018 is the focus of

this study.

Manta ray #0018 is a melanistic morph reef manta ray Mobula alfredi with black dorsal and

ventral surfaces and a unique white ventral pattern. Since the first sighting in 2004, manta ray

#0018 has been observed displaying pre-mating behaviours as described in other manta ray

populations [30], and subsequently observed heavily pregnant on several occasions, indicating

sexual maturity. A small incision or wound on the right pectoral fin and a slightly crooked tail

were documented during the earliest sighting of this individual, and both have remained

unchanged through time. Measurements via laser photogrammetry were obtained in 2009 and

Wound healing in a reef manta ray
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again in 2018, with 3.69 m and 3.79 m disc widths recorded respectively [31]. Demonstrating

seasonal visitation to Bateman Bay between April and August each year, behavioural observa-

tions associated with sighting records show manta ray #0018 primarily transiting the shallow

surface waters (~2 m depth), visiting shallow (<10 m) cleaning stations, and surface feeding.

To assess wound healing rates and scarring characteristics, detailed images of manta ray

#0018 were collected when the wounds were first observed and on each subsequent sighting

(up until 24 July 2018). Images were collected using laser photogrammetry with laser pointers

mounted 50 cm apart on either side of the camera (for detailed methodology see Deakos

2010). From the photographs, wound dimensions were estimated at each point in time using

ImageJ software [32]. For a given photograph to be used for analysis it needed to be as close as

possible to the same relative angle to the dorsal side of the target animal. Minor differences are

acknowledged.

We analysed variation in healing rates among cut sites using mixed linear effects models

implemented in the R package ‘lme4’ [33, 34]. Cut lengths were log transformed and the data

set reduced to<300 days because the wound had virtually fully healed after this time. Healing

rates among the five wound sites showed little variation and the inclusion of the cut site as a

random variable was not significant. We fitted a negative exponential using a nonlinear least

squares regression on pooled cut sites and using the R package ‘nls2’ [35]:

y ¼ Ae� Bx þ C

Where y = cut length (y), and A = length of cuts at Day 0, B = exponential rate of decay, and

C = estimates the length of healed cuts. As r2 (the proportion of variance explained) is not

Fig 1. Map of the study area showing the outline of the Ningaloo Coast World Heritage Area in Western

Australia, and key reef manta ray Mobula alfredi monitoring areas: Bateman Bay to the north of the Coral Bay

township, waters to the western side of Cape Range National Park and the northern end of the Exmouth Gulf near

Exmouth township. Figure created using the R package ‘marmap’ [44] with bathymetric data from the ETOPO1

database [45] and the marine component of protected area bounds from The World Database on Protected Areas [46].

Major reef features were added in Adobe Photoshop, from geographically aligned Landsat-8 imagery courtesy of the U.

S. Geological Survey.

https://doi.org/10.1371/journal.pone.0225681.g001
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strictly valid for nls models, we calculated pseudo-r2 as the square of the correlation between

observed and predicted values. The dataset is available for download through eSpace at the

University of Queensland (doi.org/10.14264/uql.2019.869).

To assess the potential frequency of vessel strike on manta rays in the Ningaloo Coast

World Heritage Area population, we interrogated the regional photo-identification database.

Since the commencement of the database in 2004, metadata on scarring visible in images has

been recorded, as well location on the animals and likely cause based on wound characteristics.

Missing tissue (most commonly concave in shape) was assigned as predation attempts whilst

slices or v-shaped cuts were assigned as anthropogenic (most likely propeller if along pectoral

fins and entanglement or undetermined if on cephalic lobes). However, prior to the new infor-

mation on the scarring patterns following the wound healing in manta ray #0018, similar scars

may have been originally assigned to other threats such as predation attempts, rather than ves-

sel strike, underestimating the occurrence of vessel-wildlife conflict. We compared wound

classifications that had been conducted prior to the time of injury to manta ray #0018 in June

2015 (805 individuals), to a reassessment of all photographs in the database after healing had

been completed in July 2018 (1071 individuals).

Results

Injury observations and rates of healing

Changes in wound characteristics and stabilization (near complete healing) in manta ray

#0018 was observed from photographs on seven separate occasions between 30 June 2015 and

24 July 2018 (Fig 2). When first observed (i.e. Day 0, 30 June 2015) there were five full thick-

ness wounds ranging in length from 14.8–20.5 cm and a single surface wound (Fig 2A). Sev-

ered cartilage was visible in some wounds, as was red tissue indicative of recently stopped

bleeding (haemostasis) (Fig 2i). An additional kink and bulge in the tail was also observed add-

ing to the one present since the earliest sightings in 2004. These were not assessed for healing

but were likely caused by the same vessel strike and appear to have remained unchanged dur-

ing this study. A close up observation of wounds on Day 7 (6 July 2015), showed clear signs of

healing, with all tissues a uniform grey. Inflammation was still noticeable around the wound

margins (Fig 2ii). By Day 17 (16 July 2015), the wounds were 23% healed and ranged in length

from 11.3–14.1 cm (Fig 2B), with a linear healing rate of ~0.24 cm day-1 since the wounds were

first observed. By Day 33 (2 August 2015), wounds had healed 33.5% and had reduced in

length to between 9.6 and 12.4 cm (Fig 2C). The linear healing rate had slowed to 0.11 cm/day.

By Day 42 (11 August 2015), healing of the wounds had reached 37.4% and 9–12.1 cm in

length (Fig 2D). Linear healing rates had continued to slow to 0.07 cm/day as the wound mar-

gins were drawn together by new tissue growth. In mid to late August 2015, manta ray #0018

is presumed to have left the area of Bateman Bay with no further sightings in 2015. When

manta ray #0018 was next re-sighted on Day 295 (19 April 2016), measurements of the wounds

showed they were 93.2% healed (Fig 2E), with a length ranging from 0.8–1.8 cm. Re-modelling

of tissue appeared complete, with the wounds presenting as a series of small concave nicks

along the trailing edge of the pectoral fin (Fig 2iii).

The average wound closure rate across the five wound sites was well fitted by a negative

exponential model (y = 15.4e-0.0149x + 0.956, pseudo-r2 = 0.96, Fig 3). From the model, the

mean length of cuts at Time 0 is 15.4 cm. The asymptotic value of y for long time periods is

0.95, implying that cuts leave a 1 cm mark. The half-life for wound healing is -log(0.5)/-0.0149,

which is 46.3 days. The model fit the data, with early healing resulting in 50% wound closure

by Day 46. Wounds stabilized by Day 295 at 95% closed, between 0.6 and 1.7 cm in length (Fig

3).

Wound healing in a reef manta ray
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Origins of wounds

As of July 2018, there were 1071 individuals documented in the Ningaloo Coast World Heri-

tage area photo-identification database, with a total of 243 or 22.7% of individuals recorded

with scars (Table 1). Twenty-eight individuals (2.6% of the total database) had large wounds

with missing tissue on pectoral fins that were attributed unambiguously to predation attempts

(Fig 4). Wounds and persistent scars with clear characteristics of propeller strike or other

anthropogenic origins were present in 12 individuals (1.1% of the total database). All propeller

strike observations were made in Bateman Bay and at no specific time of the year. Wounds

that were observed on only the cephalic lobes or base of the tail in 30 animals, made it difficult

to determine the cause, unless they were in early stages of healing. The largest scarring category

included 140 individuals (13.1% of the total database) with minor concave nicks on the trailing

edge of the pectoral fins. Scars with unknown cause represent a likely underestimation in

wounds caused by boat strike as prior to the injury to manta ray #0018 the majority of these

scars had been categorized as predation attempts (Table 1).

Fig 2. Images of the wounds from Days 0, 17, 33, 42 and 295 (A-E respectively) showing the fresh wound,

incremental healing and near stable wounds on reef manta ray Mobula alfredi #0018. On the right are close up

images of Day 0 (i) showing severed cartilage, Day 7 (ii) (time not used in calculations) showing the start of healing,

and Day 295 (iii) showing near complete healing with concave scars. The red arrows in (i) indicate the protocol for

measuring each wound where the distance from the top of the wound to the mid-point between the adjacent sides at

the extremity was used to indicate wound length.

https://doi.org/10.1371/journal.pone.0225681.g002
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Fig 3. Wound healing rates from reef manta ray Mobula alfredi #0018. The wound length (mm) and percentage of wound healed over time, with Day 0 representing

the first observation of the animal with fresh (severed cartilage and red tissue) wounds. A negative exponential model was fit to the data (y = 15.4e-0.0149x + 0.956,

pseudo-r2 = 0.96).

https://doi.org/10.1371/journal.pone.0225681.g003

Table 1. The location and origin of scars on reef manta rays Mobula alfredi in the Ningaloo Coast World Heritage Area. Values are proportions of the images in the

total photo identification database from the 1071 individual reef manta rays as of July 2018. Values in parentheses are database proportions (805 individuals) assigned

prior to injury to manta ray #0018. Descriptions of wound types in parentheses refer to the scars with undetermined causes.

Origin of scar

(description)

Location of scar

Cephalic Lobe Base of tail Dorsal Fin Pectoral Fin Totals

Predation Attempt 0. (0) 0.09(1.23) 0.09(0.12) 2.43(10.92) 2.61(12.27)

Propeller Injury 0. (0) 0.19(0) 0(0) 0.93(1.10) 1.12(1.1)

Undetermined Injury Totals 1.31(1.72) 1.21(0.37) 0.09(0.12) 16.34(0.25) 18.95(2.45)

(nicks) 0.93(1.23) 0(0) 0(0) 13.07(0) 13.82(1.23)

(slices) 0.28(0.37) 0.09(0) 0(0) 0.56(0) 0.93(0.37)

(missing tissue) 0.28(0.12) 1.12(0.37) 0.09(0.12) 2.52(0) 4.01(0.61)

(scratches) 0(0) 0(0) 0(0) 0.19(0.25) 0.19(0.25)

Totals 1.31(1.72) 1.49(1.6) 0.19(0.25) 19.7(12.27) 22.69(15.83)

https://doi.org/10.1371/journal.pone.0225681.t001
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Discussion

Here we report for the first time on the rate of wound healing following vessel strike in a reef

manta ray Mobula alfredi. We found initial rapid wound healing, with 37% of the wound

closed after 33 days. The healing rate slowed over time following a negative exponential curve

with 95% of the wound closed after 295 days. These findings are relevant to our understanding

of wound healing processes in wild animals, specifically elasmobranchs, but also have signifi-

cant implications for documenting vessel-wildlife conflict and implementing appropriate

management regimes.

Our findings of rapid wound healing in a manta ray agrees with other studies on wound

healing rates in elasmobranchs. For example, a large laceration (25 cm long, 30 cm wide, 8.5

cm deep) caused by a boat propeller in a wild juvenile white shark appeared to be completely

healed nine months after the injury [25]. A study removing skin sections from a captive nurse

Fig 4. Examples of clear predation events on reef manta rays Mobula alfredi. Yellow arrows indicate the bite site on

the fins.

https://doi.org/10.1371/journal.pone.0225681.g004
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shark Ginglymostoma cirratum and a leopard shark Triakis semifasciata found wounds to be

completely covered with new denticles after four months, with differences in denticle forma-

tion between healed and non-impacted skin areas [36]. Even faster healing rates have been

documented for wounds in wild blacktip reef sharks, including neonatal scars (scar area

decreased by 94% in 24 days); bite wounds (20 cm wide wound completely closed in 40 days);

presumed boat strike (24 cm wide wound 3–4 cm deep completely closed within 27 days) and

tag insertion cut sites (healed within 29 days, no scar visible within 129 days) [18]. Shark bites

on manta rays were observed to have completely healed within 126 to 225 days [15], with esti-

mated healing rates likely conservative given the undocumented time point when healing was

complete. Similarly, the reported wound healing in manta ray #0018 might have been faster if

we were able to observe her more regularly between days 42 and 295.

Intrinsically, healing rates will be based on the physiology and immunology of the organ-

ism, but other factors may also have influence including type and severity of the wound, the

wound location on the animal and extrinsic factors. For example, empirical studies on teleosts

have shown faster generation of new tissue in warmer versus cooler waters [37]. Observations

on wild elasmobranchs lend support to this idea, with slower healing rates of small abrasions

and cuts in white sharks in colder waters [21] compared with sicklefin lemon sharks Negaprion
acutidens [38] and blacktip reef sharks in tropical waters [18]. All observations for manta ray

#0018 were from Bateman Bay, which is towards the latitudinal extent of the tropics. During

the first couple of months following the injury the water temperature in the region ranged

between 21–24˚C. Her movements outside of this region are unknown, although reef manta

rays tagged with satellite transmitters in Bateman Bay have moved approximately 450 km into

cooler subtropical waters (Armstrong et al. 2019 submitted). Similar incursions into cooler

subtropical waters have been demonstrated by reef manta rays at comparable latitudes in east

Australia [39]. Therefore, even more rapid wound healing may occur in reef manta rays inhab-

iting tropical waters. Marine cleaner fish have been proposed to assist with wound healing in

hosts through removal of injured or necrotic tissue [40]. There are several cleaning stations

within Bateman Bay and manta ray #0018 is frequently observed visiting these stations, which

may also promote wound healing.

By observing the wound healing through time we were able to determine the resulting scar-

ring pattern. In the earlier assessment of the Ningaloo Coast World Heritage Area population,

similar scarring patterns were designated as having predatory origins with the jagged wing tip

features being attributed to teeth rakes from failed shark bites. Furthermore, studies of wound

healing in manta rays from other populations have mainly reported on predation events and/

or human impacts from fishing gear interactions, and these impacts differ across populations.

For example, 76% of reef manta rays in a Mozambican population showed evidence of shark

bites [15], with 96% of these injuries along the trailing edge of the pectoral fins. By contrast,

just 24% of the Hawaiian population of reef manta rays exhibited shark bite injuries [20], while

10% of this same population from Hawaii displayed cephalic lobe injuries indicative of fishing

line entanglement. In our reassessment of the Ningaloo population, only 29 individuals (2.7%

of the population) had wounds that could be attributed unambiguously to predation events.

However, 13.1% of the population showed scarring patterns similar to the healed wounds of

manta ray #0018, suggesting that the incident of vessel strike on reef manta rays in this region

may be substantially higher than previously identified.

The rapid and near complete wound healing and characteristic scarring pattern we describe

in this study has implications for the management of reef manta rays both within the Ningaloo

Coast World Heritage Area and elsewhere. Whilst high wound healing capacity is likely to be

beneficial for the long-term survival of these animals, the fitness cost of injuries may be

masked. It is unknown what energy reserves are required for wound healing and potential
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reductions in reproductive output and growth over the healing period. Further, the occurrence

of vessel strike is likely to be underestimated, which may have economic as well as conserva-

tion implications. Manta rays are the focus of ecotourism activities world-wide, with estimates

exceeding USD$140 million globally [41] and USD$1.2 million in the Ningaloo Reef Marine

World Heritage area (McGregor unpublished data). Much of this activity is surface viewing

from vessels or in-water surface interactions, with the local industry expanding from just one

manta tourism vessel in the 1990s to present day with five dedicated manta tourism vessels

[42]. Understanding the risk of vessel strike is important for management planning. Future

research should focus on: (1) identifying priority habitat areas, (2) the travel corridors between

these areas and the open water; and (3) investigating the spatial and temporal overlap of usage

by wildlife and vessels [43]. This information in turn could be used to inform policy for design-

ing adequate spatial management for this region to reduce reef manta ray-vessel impact and

protect critical habitat. Such management may include dynamic zoning with speed restrictions

during high usage periods, vessel free zones, the use of propeller guards or alternative motors

(e.g. jet motors), and an increase in education to all stakeholders on vessel-wildlife conflict.
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33. Bates D, Mächler B, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. Journal of Sta-

tistical Software. 2015; 67:1–48.

34. Team RC. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for

Statistical Computing; 2019.

35. Grothendieck G. nls2: Non-linear regression with brute force. R package version 0.2. 2013.

36. Reif WE. Wound healing in sharks. Zoomorphologie. 1978; 90:101–11.

37. Anderson CD, Roberts RJ. A comparison of the effects of temperature on wound healing in a tropical

and a temperate teleost. Journal of Fish Biology. 1975; 7:173–82. https://doi.org/10.1111/j.1095-8649.

1975.tb04588.x.

38. Buray N, Mourier J, Planes S, Clua E. Underwater photo-identification of sicklefin lemon sharks, Nega-

prion acutidens, at Moorea (French Polynesia). Cybium. 2009; 33(1):21–7.

39. Couturier LIE, Jaine FRA, Townsend KA, Weeks SJ, Richardson AJ, Bennett MB. Distribution, site

affinity and regional movements of the manta ray, Manta alfredi (Krefft, 1868), along the east coast of

Australia. Marine and Freshwater Research. 2011; 62:628–37.

40. Foster SA. A possible role of cleaning stations. Copeia. 1985; 1985:875–80.

41. O’Malley MP, Lee-Brooks K, Medd HB. The global economic impact of manta ray watching tourism.

Plos ONE. 2013; 8(5):e65061. https://doi.org/10.1371/journal.pone.0065061

42. Venables S, McGregor F, Brain L, van Keulen M. Manta ray tourism management, precautionary strate-

gies for a growing industry: a case study from the Ningaloo Marine Park, Western Australia. Pacific Con-

servation Biology. 2016; 22:295–300.

43. Schofield G, Scott R, Dimadi A, Fossette S, Katselidis KA, Koutsoubas D, et al. Evidence-based marine

protected area planning for a highly mobile endangered marine vertebrate. Biological Conservation.

2013; 161:101–9.

44. Pante E, Simon-Bouhet B. marmap: A package for importing, plotting and analyzing bathymetric and

topographic data in R. PLoS One. 2013; 9(9):e73051. https://doi.org/10.1371/journal.pone.0073051

PMID: 24019892

45. Amante C, Eakins BW. Etopo1 1 arc-minute global relief model: Procedures, data sources and analysis.

NOAA Technical Memorandum NESDIS NGDC. 2009; 24:1–19.

46. UNEP-WCMC & IUCN, Protected Planet: The World Database on Protected Areas (WDPA) [Internet].

2017. Available from: https://www.protectedplanet.net

Wound healing in a reef manta ray

PLOS ONE | https://doi.org/10.1371/journal.pone.0225681 December 11, 2019 11 / 11

https://doi.org/10.1111/jfb.13768
https://doi.org/10.1111/jfb.13768
http://www.ncbi.nlm.nih.gov/pubmed/30066396
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1186/s12859-017-1934-z
http://www.ncbi.nlm.nih.gov/pubmed/29187165
https://doi.org/10.1111/j.1095-8649.1975.tb04588.x
https://doi.org/10.1111/j.1095-8649.1975.tb04588.x
https://doi.org/10.1371/journal.pone.0065061
https://doi.org/10.1371/journal.pone.0073051
http://www.ncbi.nlm.nih.gov/pubmed/24019892
https://www.protectedplanet.net
https://doi.org/10.1371/journal.pone.0225681

