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Abstract

Objective

To determine the optimum definition of growth for indeterminate pulmonary nodules

detected in lung cancer screening.

Materials and methods

Individuals with indeterminate nodules as defined by volume of 50–500 mm3 (solid nodules)

and solid component volume of 50–500 mm3 or average diameter of non-solid component

�8 mm (part-solid nodules) on baseline lung cancer screening low-dose chest CT (LDCT)

were included. The average diameters and volumes of the nodules were measured on base-

line and follow-up LDCTs with semi-automated segmentation. Sensitivities and specificities

for lung cancer diagnosis of nodule growth defined by a) percentage volume growth�25%

(defined in the NELSON study); b) absolute diameter growth >1.5 mm (defined in the Lung-

RADS version 1.1); and c) subjective decision by a radiologist were evaluated. Sensitivities

and specificities of diagnostic referral based on various thresholds of volume doubling time

(VDT) were also evaluated.

Results

Altogether, 115 nodules (one nodule per individual; 93 solid and 22 part-solid nodules; 105

men; median age, 68 years) were evaluated (median follow-up interval: 201 days; interquar-

tile range: 127–371 days). Percentage volume growth�25% exhibited higher sensitivity but

lower specificity than those of diametrical measurement compared to absolute diameter

growth >1.5 mm (sensitivity, 69.2% vs. 42.3%, p = 0.023; specificity, 82.0% vs. 96.6%, p =

0.002). The radiologist had an equivalent sensitivity (53.9%; p = 0.289) but higher specificity

(98.9%; p = 0.002) compared to those of volume growth, but did not differ from those of

diameter growth (p>0.05 both in sensitivity and specificity). Compared to the VDT threshold
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of 600 days (sensitivity, 61.5%; specificity, 87.6%), VDT thresholds�200 and�300 days

exhibited significantly lower sensitivity (30.8%, p = 0.013) and higher specificity (94.4%, p =

0.041), respectively.

Conclusion

Growth evaluation of screening-detected indeterminate nodules with volumetric measure-

ment exhibited higher sensitivity but lower specificity compared to diametric measurements.

Introduction

With cumulative evidence of lung cancer mortality reduction, lung cancer screening with low-

dose chest CT (LDCT) for a high-risk population is recommended [1–4]. Resultantly, a nation-

wide screening program has been implemented in various countries across the world [1–4].

Defining the positive screening results requiring additional LDCT or diagnostic evaluation

(e.g., biopsy, surgery) is paramount to lung cancer screening [3, 5–7]. With an inclusive

threshold, a considerable number of false-positive results lead to increased medical resource

usage without substantial benefits, as well as additional radiation exposure, complications

from unnecessary invasive procedures, and potential psychosocial consequences for partici-

pants [3, 5–7]. Conversely, a conservative threshold could delay or miss the detection of lung

cancer [3, 5–7].

Positive baseline screening LDCT results are defined based on the size and consistency of

pulmonary nodules, and participants with indeterminate pulmonary nodules underwent fol-

low-up LDCTs [5–7]. Meanwhile, in the follow-up LDCTs, the presence of nodule growth and

growth rate are key components for defining positive results that require invasive diagnostic

procedures [4, 8, 9]. Conventionally, growth assessment of a pulmonary nodule is based on

uni- or bi-dimensional diametrical measurement [10–12], and the lung CT screen reporting

and data system (Lung-RADS) from the American College of Radiology defines nodule growth

as an absolute increase in average diameter>1.5 mm [13]. Meanwhile, volumetric measure-

ment is expected to detect nodule growth more sensitively and reduce inter- and intra-reader

variability [12, 14]. In the Dutch-Belgian lung cancer screening trial (NELSON), the growth of

nodules was defined as a relative increase in nodule volume greater than 25% and a volume

doubling time (VDT) <400 days indicated positive results necessitating a diagnostic referral

[4, 8, 9].

However, there is limited research on the definition of nodule growth and the growth rate

is optimal for identifying lung cancer among indeterminate-sized pulmonary nodules, defined

as volume of 50–500 mm3 (solid nodules) and solid component volume of 50–500 mm3 or

average diameter of non-solid component�8 mm (part-solid nodules), detected in baseline

screening LDCTs. Therefore, we aimed to evaluate the diagnostic accuracy of different criteria

(i.e., diametrical measurement, volumetric measurement, and subjective decision by a radiolo-

gist) for growth and diagnostic referral of indeterminate pulmonary nodules for lung cancer in

lung cancer screening.

Materials and methods

The Institutional Review Board of Seoul National University Hospital approved this study and

waived the requirement for informed consent from the patients.
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Study population

We enrolled the study population from two consecutive cohorts: (a) participants of The

Korean Lung Cancer Screening (K-LUCAS) project enrolled in our institution between 2017

and 2018 [15, 16]; and (b) subjects who underwent screening LDCTs for a health check-up at

our institution and were consequently diagnosed with lung cancer between 2011 and 2019.

The common inclusion criteria for the two cohorts were: (a) Individuals with indeterminate

baseline LDCT results defined by the criteria of NELSON (i.e., solid nodules with a volume

50–500 mm3; part-solid nodules with a volume of solid component 50–500 mm3 or average

diameter of non-solid component�8 mm; non-solid nodule with average diameter�8 mm)

[4, 9]; (b) individuals with follow-up LDCT for nodules detected on baseline LDCT; and (c)

individuals with solid or part-solid nodules, not non-solid nodule. Individuals with nodules

that disappeared in the follow-up LDCT in the K-LUCAS project were excluded (Fig 1). In this

study, we defined lung cancers as pathologically proven pulmonary nodules and otherwise

regarded as benign nodules.

For individuals with two or more nodules on baseline LDCTs, one dominant nodule was

selected with the following criteria because the most suspicious nodule guides the patients’

management strategy [11]: (a) the nodule with the largest volume (volume of solid component

for part-solid nodules) was selected and (b) solid nodules were accorded priority over part-

solid nodules.

Consequently, we included 115 indeterminate nodules from 115 individuals in this study.

LDCT examination

CT examinations were performed using one of the nine different scanners from four manufac-

turers (Brilliance 64, Ingenuity, iCT, IQon [Phillips Medical Systems, Best, Netherlands];

Somatom Sensation 16, Somatom Definition, Sonatin Force [Siemens Medical Solutions, For-

chheim, Germany]; Aquilion One [Canon Medical Systems, Otawara, Japan]; Discovery

CT750HD [GE Medical Systems, Waukesha, United States]). Common acquisition and recon-

struction protocols were: (a) Image acquisition in a single breath-hold at full inspiration with

supine position; (b) transverse CT image reconstruction with a high-frequency algorithm with

slice thickness<1.5 mm without an inter-slice gap. The same CT scanner was used for baseline

and follow-up LDCTs in 26.1% (30 of 115) of individuals, while different CT scanners were

used in the remaining 73.9%.

Fig 1. Flowchart of the study population.

https://doi.org/10.1371/journal.pone.0274583.g001
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Nodule measurement

To evaluate nodule size, a thoracic radiologist (E.J.H., 11-year experience in chest CT interpre-

tation) measured the indeterminate pulmonary nodules on the baseline and follow-up LDCTs

using a commercial software (A-view LungScreen, Coreline Soft). By designating the target

nodule by the user, the software automatically segmented the boundary of the nodule (separate

segmentation of ground-glass component and solid component for part-solid nodules). If seg-

mentation by the software is not judged to be appropriate by the user, users can adjust the seg-

mentation manually. Subsequently, the software provided the maximum average diameter

measured on the transverse plane (average diameter, hereafter) and volume of the target nod-

ule based on the segmentation results (Fig 2). Indeed, this software was implemented during

the first year of The K-LUCAS project, and attending thoracic radiologists in the participating

institutions read lung cancer screening LDCT using this software [16–18].

To evaluate inter-reader agreement of the semi-automated nodule measurement, 14 ran-

domly sampled nodules (solid nodules, n = 8; part-solid nodules, n = 6) were independently

Fig 2. Semi-automated measurement of pulmonary nodules. (A) Baseline low dose chest CT (LDCT, right side) and

follow-up LDCT (left side) show a solid nodule at right lower lobe of the lung. (B) Semi-automated segmentation and

measurement of the nodule can be initiated by drawing a line on the nodule. (C) The software can visualize the result

of semi-automated segmentation as well as the result of measurement. On the baseline LDCT, average diameter and

volume of the nodule were 4.6 mm and 52.0 mm3, respectively. (D) On the follow-up LDCT, the average diameter and

volume of the nodule were 5.3 mm and 76.1 mm3, respectively. Consequently, absolute diameter growth and

percentage volume growth of the nodule were 0.7 mm and 31.7% respectively, and the volume doubling time was 602

days.

https://doi.org/10.1371/journal.pone.0274583.g002
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measured by another thoracic radiologist (J.H.L, 9-year experience in chest CT interpretation)

using the same software.

Evaluation of nodule growth

To evaluate nodule growth, the following metrics were evaluated for each nodule based on the

semi-automated measurement (separate evaluation of the whole nodule including ground-

glass component and solid component for part-solid nodules):

ðaÞ Percentage volume growth ð%Þ ¼

Volume on follow� up LDCT ðmm3Þ � Volume on baseline LDCTðmm3Þ

Volume on baseline LDCT ðmm3Þ
� 100

ðbÞ Absolute diameter growth ðmmÞ ¼

Average diameter on follow� up LDCT ðmmÞ � Average diameter on Baseline LDCT ðmmÞ

ðcÞ Volume doubling time ðVDT; daysÞ ¼

ln 2� ðDate of follow� up LDCT � Date of baseline LDCTÞ

ln
Volume on follow� up LDCT ðmm3Þ

Volume on baseline LDCT ðmm3Þ

VDTs were evaluated in nodules that exhibited a percentage volume growth�25%, as sug-

gested by the NELSON and European position statement [4, 8, 9, 19].

For subjective evaluation of nodule growth, one thoracic radiologist (J.H.L.) and one gen-

eral radiologist (W. H. L., 7 years of experience in chest CT interpretation) who was blinded to

the diagnosis of lung cancer reviewed baseline and follow-up LDCTs and decided whether (a)

there was any growth of the nodule and (b) diagnostic process other than follow-up LDCT is

required (diagnostic referral, hereafter). For the subjective evaluation of nodule growth, mea-

surement of nodules using an electronic caliper was allowed, but the semi-automated measure-

ment results, including nodule volume, were not provided. Inter-reader agreement was

evaluated between the interpretation of the two radiologists, while only interpretation by one

radiologist (J.H.L.) was used for the performance evaluation.

To evaluate the diagnostic performance for lung cancer in different definitions of nodule

growth, we evaluated three different definitions of nodule growth: (a) Percentage volume

growth of�25% (as defined in the NELSON) [4, 8, 9]; (b) absolute diameter growth of>1.5

mm (per the Lung-RADS) [13]; and (c) any growth defined by the subjective evaluation of the

radiologist. For part-solid nodules, growth of either the ground-glass or solid components was

considered growth.

We evaluated the diagnostic performance of different thresholds of VDT (VDT of 600, 500,

400, 300, 200, and 100 days) and the radiologists’ subjective diagnostic referrals for diagnosing

lung cancer.

Statistical analysis

To evaluate the diagnostic performance for lung cancer of each growth metric (i.e., percentage

volume growth, absolute diameter growth, and VDT), we performed receiver-operating char-

acteristic curve analyses, and area under the receiver-operating characteristic curves (AUCs)

were obtained. Sensitivity and specificity were obtained for diagnostic performance at specific

thresholds of growth and diagnostic referral. Comparison of AUCs was performed using the

method suggested by DeLong, while comparisons of sensitivities and specificities were
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performed using McNemar tests. Subgroup analyses were performed in the same manner,

with nodules presenting as solid nodules on baseline screening CTs.

Inter-reader agreement for semi-automated lung nodule measurement was evaluated using

the interclass correlation coefficient and Bland-Altman plots [20, 21], while inter-reader agree-

ments for nodule growth and diagnostic referral by radiologists’ subjective interpretation were

evaluated with percentage agreement and Cohen’s kappa coefficient [22].

All statistical analyses were performed using Medcalc version 20.009 (MedCalc Software

Ltd) and R version 4.1.0 (R Project for Statistical Computing), and a p-value of<0.05 was con-

sidered to indicate statistical significance.

Results

Baseline characteristics

Of the 115 individuals included in the study (men, n = 115; women, n = 10; median age 68

years, interquartile range [IQR], 63–72 years), 46 were current smokers, 59 were former smok-

ers, and 10 were non-smokers. In 112 individuals with pack-year information, the median

smoking burden was 40 pack-years (IQR, 30–43 pack-years). The median time interval

between baseline and follow-up LDCT was 201 days (IQR, 127–371 days). Of the 115 nodules,

93 were solid nodules, 22 were part-solid nodules, and 26 were lung cancers (22.6%, solid nod-

ules, n = 11; part-solid nodules, n = 15). The average diameter and volume of the 115 nodules

in the baseline and follow-up LDCT are tabulated in Table 1.

Nodule growth and lung cancer diagnosis

The percentage volume growth and absolute diameter growth based on semi-automated nod-

ule measurements are summarized in Table 1. For the diagnosis of lung cancer, the percentage

volume growth and absolute diameter growth exhibited similar AUCs (0.812 [95% CI: 0.694–

0.931] vs. 0.810 [95% CI: 0.693–0.927]; p = 0.995; Fig 3). At the pre-defined thresholds for

growth, percentage volume growth�25% exhibited higher sensitivity than absolute diameter

growth >1.5 mm (69.2% [95% CI: 51.5–87.0%] vs. 42.3% [95% CI: 23.3–61.3%]; p = 0.023).

The sensitivity of the subjective evaluation of growth by a radiologist (53.9% [95% CI: 34.7–

73.0%]) did not significantly differ between the two pre-defined thresholds. Meanwhile, per-

centage volume growth�25% (82.0% [95% CI: 74.0–90.0%]) exhibited lower specificity than

absolute diameter growth >1.5 mm (96.6% [95% CI: 92.9–100%]; p = 0.002) and subjective

evaluation of growth by radiologist (98.9% (95% CI: 96.7–100%); p<0.001) (Table 2).

In the subgroup analysis with solid nodules only, percentage volume growth and absolute

diameter growth exhibited similar AUCs (0.921 [95% CI: 0.817–1.000] vs. 0.911 [95% CI:

0.806–1.000]; p = 0.548; S1 Fig). Percentage volume growth�25% (81.8% [95% CI: 59.0–

100%]) exhibited slightly higher sensitivity without statistical significance compared to abso-

lute diameter growth >1.5 mm (54.6% [95% CI: 25.1–84.0%]; p = 0.083) and subjective evalua-

tion of growth by radiologist (54.6% [95% CI: 25.1–84.0%]; p = 0.083). Meanwhile, percentage

volume growth�25% (84.2% [95% CI: 76.2–92.1%]) exhibited lower specificity than absolute

diameter growth >1.5 mm (100% [95% CI: 95.6–100%]; p<0.001) and subjective evaluation of

growth by radiologist (100% [95% CI: 95.6–100%]; p<0.001) (S1 Table).

Volume doubling time and lung cancer diagnosis

Among the 25 nodules that exhibited volume growth�25%, average VDT ± standard devia-

tion was 260.3 days ± 100.0 (range, 70.8–391.3 days). Solid nodules (n = 13), ground-glass and

solid component of part-solid nodules (n = 12) exhibited average VDT of 275.5 days ± 95.4
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(range, 118.0–387.7 days), 243.8 days ± 106.3 (range, 70.8–391.3 days), and 243.8 days ± 106.4

(range, 70.8–391.3 days), respectively. For the diagnosis of lung cancer, the VDT exhibited an

AUC of 0.793 (95% CI: 0.707–0.863) (Fig 3). The sensitivities and specificities of the different

VDT thresholds are described in Table 3 and S2 Fig, respectively. VDT thresholds of 200 days

Table 1. Volume and average diameter of the 115 nodules measured in baseline and follow-up screening low-dose chest CT.

Criteria Group Subgroup Baseline LDCT Follow-up LDCT Number of growing

nodules�

Volume

(mm3)

Total nodules

(n = 115)

Total nodules (n = 115) 341.0mm3 ± 497.8 (51.7–

3372.4mm3)

427.9mm3 ± 638.7 (22.8–

3229.7mm3)

34 (29.6%)

Solid nodules (n = 93) 167.5mm3 ± 122.3 (51.7–

167.5mm3)

198.9mm3 ± 183.2 (22.8–

894.3mm3)

22 (23.7%)

Part-solid nodules (n = 22) 1074.6mm3 ± 763.4 (218.2–

3372.4mm3)

1395.9mm3 ± 924.1 (279.5–

3229.7mm3)

12 (54.5%)

Solid component of part-solid

nodules (n = 22)

104.1mm3 ± 109.4 (5.2–

411.1mm3)

176.4mm3 ± 232.2 (3.3–

1036.5mm3)

Not applicable

Cancer nodule

(n = 26)

Total cancer nodules (n = 26) 850.1mm3 ± 806.5 (52.1–

3372.4mm3)

1203.3mm3 ± 935.6 (227.9–

3229.7mm3)

18 (69.2%)

Solid nodules (n = 11) 287.0mm3 ± 152.6 (52.1–

488.8mm3)

549.4mm3 ± 239.5 (227.9–

894.3mm3)

9 (81.8%)

Part-solid nodules (n = 15) 1262.9mm3 ± 844.5 (218.2–

3372.4mm3)

1682.9mm3 ± 969.4 (462.0–

3229.7mm3)

9 (60%)

Solid component of part-solid

nodules (n = 15)

127.4mm3 ± 124.1 (6.8–

411.1mm3)

224.3mm3 ± 268.4 (13.0–

1036.5mm3)

Not applicable

Benign nodule

(n = 89)

Total benign nodules (n = 89) 192mm3 ± 193.2 (51.7–

1153.8mm3)

201.4mm3 ± 224.2 (22.8–

1302.9mm3)

14 (15.7%)

Solid nodules (n = 82) 151.5mm3 ± 109.1 (51.7–

496.1mm3)

151.9mm3 ± 110.1 (22.8–

110.1mm3)

11 (13.4%)

Part-solid nodules (n = 7) 670.9mm3 ± 311.0 (354.1–

1153.8mm3)

780.7mm3 ± 385.1 (279.5–

1302.9mm3)

3 (42.9%)

Solid components of part-solid

nodules (n = 7)

53.9mm3 ± 40.2 (5.2–

111.1mm3)

73.8mm3 ± 50.7 (3.3–

134.4mm3)

Not applicable

Diameter

(mm)

Total nodules

(n = 115)

Total nodules (n = 115) 7.7mm ± 3.5 (3.8–19.4mm) 8.1mm ± 4.0 (3.5–22.8mm) 14 (12.2%)

Solid nodules (n = 93) 6.4mm ± 1.9 (3.8–12.3mm) 6.6mm ± 2.2 (3.5–12.4mm) 6 (6.5%)

Part-solid nodules (n = 22) 13mm ± 3.4 (7.2–19.4mm) 14.5mm ± 4.0 (8.6–22.8mm) 8 (36.4%)

Solid component of part-solid

nodules (n = 22)

5.5mm ± 2.9 (1.7–11.9mm) 6.7mm ± 3.2 (1.4–14.3mm) Not applicable

Cancer nodule

(n = 26)

Total cancer nodules (n = 26) 11.2mm ± 4.3 (4.1–19.4mm) 13.0mm ± 4.3 (7.4–22.8mm) 11 (42.3%)

Solid nodules (n = 11) 7.9mm ± 2.0 (4.1–10.4mm) 10.1mm ± 1.8 (7.4–12.4mm) 6 (54.5%)

Part-solid nodules (n = 15) 13.6mm ± 3.9 (7.2–19.4mm) 15.1mm ± 4.3 (8.6–22.8mm) 5 (33.3%)

Solid component of part-solid

nodules (n = 15)

6.0mm ± 3.1 (1.7–11.9mm) 7.2mm ± 3.3 (2.2–14.3mm) Not applicable

Benign nodule

(n = 89)

Total benign nodules (n = 89) 6.6mm ± 2.4 (3.8–14.1mm) 6.7mm ± 2.7 (3.5–16.0mm) 3 (3.4%)

Solid nodules (n = 82) 6.2mm ± 1.8 (3.8–12.3mm) 6.2mm ± 1.8 (3.5–10.9mm) 0 (0%)

Part-solid nodules (n = 7) 11.8mm ± 1.9 (9.6–14.1mm) 13.1mm ± 3.0 (8.8–16.0mm) 3 (42.9%)

Solid components of part-solid

nodules (n = 7)

4.4mm ± 1.7 (1.7–8.0mm) 5.5mm ± 2.7 (1.4–10.5mm) Not applicable

LDCT: low-dose chest CT

Numbers in parentheses are ranges of average diameter or volume

� Nodule growth between baseline and follow-up LDCTs were adjudicated as per the percentage volume growth of 25% or more (volumetry criterion) and absolute

diameter growth more than 1.5 mm (diametric criterion)

https://doi.org/10.1371/journal.pone.0274583.t001
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(sensitivity, 30.8% [95% CI: 13.0–48.5%]; specificity, 100% [95% CI: 95.9–100%]) exhibited sig-

nificantly lower sensitivity than VDT threshold of 600 days (61.5% [95% CI: 42.8–80.2%];

specificity, 87.6% [95% CI: 80.8–94.5%]), while VDT thresholds of 300 days or shorter exhib-

ited significantly higher specificity than VDT threshold of 600 days.

In the subgroup analysis with solid nodules only, the AUC of VDT for lung cancer diagno-

sis was 0.867 (95% CI: 0.725–1.000) (S1 Fig). The sensitivities and specificities of the different

VDT thresholds are described in S2 Table.

The added value of diagnostic referral by subjective interpretation of the radiologist in all

nodules and solid nodules are described in S3 Table and S2 Fig, and S4 Table and S3 Fig,

respectively.

Fig 3. (A) Receiver operating characteristic (ROC) curves of the volumetric and diametric measurement for diagnosing lung cancers.

The area under the curve (AUC) values of growth adjudicated by volumetric and diametric measurement for diagnosing lung cancers

were 0.812 and 0.810, respectively (p = 0.995). (B) ROC curve of volume doubling time for diagnosing lung cancer (AUC, 0.793). The

sensitivity and specificity of the radiologist’s diagnostic referral were 76.9% and 96.6%, respectively.

https://doi.org/10.1371/journal.pone.0274583.g003

Table 2. Comparison of diagnostic performance for lung cancer diagnosis between growths adjudication of volumetric and diametric measurements, and subjective

radiologist’s assessment.

Diagnostic measures p-value

Criteria Sensitivity vs. diametric� vs. radiologist

Volumetric� 69.2% (51.5–87.0%) [18 of 26] 0.023 0.289

Diametric� 42.3% (23.3–61.3%) [11 of 26] N.A. 0.505

Radiologist 53.9% (34.7–73.0%) [14 of 26] 0.505 N.A.

Criteria Specificity vs. diametric� vs. radiologist

Volumetric� 82.0% (74.0–90.0%) [73 of 89] 0.002 <0.001

Diametric� 96.6% (92.9–100%) [86 of 89] N.A. 0.480

Radiologist 98.9% (96.7–100%) [88 of 89] 0.480 N.A.

The numbers in parentheses are 95% confidence intervals. The numbers in brackets are raw data.

� Nodule growth between baseline and follow-up LDCTs were adjudicated as per the percentage volume growth of 25% or more (volumetry criterion) and absolute

diameter growth more than 1.5 mm (diametric criterion)

https://doi.org/10.1371/journal.pone.0274583.t002
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Inter-reader agreement

Regarding inter-reader agreement for semi-automated measurement of pulmonary nodules

(n = 14), the average diameter and volume of the nodules showed inter-class correlation coeffi-

cients of 0.773 (95% CI: 0.509–0.895) and 0.878 (95% CI: 0.736–0.944), respectively. In Bland-

Altman plots (Fig 4), 95% limit of agreement for the average diameter of nodules was -2.9–2.6

mm, while that for nodule volume was -85.5 to 107.4 mm3. For growth evaluation of these 14

nodules, Cohen’s kappa coefficient and percentage agreement were 0.696 (95% CI: 0.324–

1.000) and 85.7% for percentage volume growth�25%, 0.054 (95% CI: -0.477–0.585) and

Table 3. Diagnostic performance of volume doubling time for lung cancer diagnosis in 115 indeterminate nodules detected in baseline screening CT.

Threshold of VDT Sensitivity p-value (vs. VDT of

600)

p-value (vs.

radiologist)

Specificity p-value (vs. VDT of

600)

p-value (vs.

radiologist)

600 days 61.5% (42.8–80.2%) [16

of 26]

Reference 0.221 87.6% (80.8–94.5%) [78

of 89]

Reference 0.043

500 days 57.7% (38.7–76.7%) [15

of 26]

>0.999 0.131 92.1% (86.5–97.7%) [82

of 89]

0.134 0.289

400 days 57.7% (38.7–76.7%) [15

of 26]

>0.999 0.131 92.1% (86.5–97.7%) [82

of 89]

0.134 0.289

300 days 42.3% (23.3–61.3%) [11

of 26]

0.074 0.016 94.4% (89.6–99.2%) [84

of 89]

0.041 0.683

200 days 30.8% (13.0–48.5%) [8

of 26]

0.013 0.003 100% (95.9–100%) [89

of 89]

0.003 0.248

100 days 3.9% (0–11.2%) [1 of

26]

<0.001 <0.001 100% (95.9–100%) [89

of 89]

0.003 0.248

Diagnostic referral by

radiologist

76.9% (60.7–93.1%) [20

of 26]

0.102 Reference 96.6% (92.9–100%) [86

of 89]

0.035 Reference

VDT: volume doubling time

The numbers in parentheses are 95% confidence intervals. The numbers in brackets are raw data.

https://doi.org/10.1371/journal.pone.0274583.t003

Fig 4. Bland-Altman plots for agreement (A) between mean diameters measured by two radiologists and difference of diameters between the two radiologists (the

95% limit of agreement was between -2.9mm to 2.6mm), and (B) between mean volumes measured by two radiologists and difference of volumes between the two

radiologists (the 95% limit of agreement was between -85.5mm3 and 107.4mm3).

https://doi.org/10.1371/journal.pone.0274583.g004
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64.3% for absolute diameter growth >1.5 mm, and 0.276 (95% CI: -0.026–0.578) and 57.1%

for subjective radiologists’ adjudication, respectively.

Regarding inter-reader agreement of the radiologists’ subjective assessment for nodule

growth (n = 115), Cohen’s kappa coefficient and percentage agreement were 0.587 (95% CI:

0.377–0.796) and 89.6%, respectively. Meanwhile, for inter-reader agreement of radiologists’

decision for diagnostic referral, Cohen’s kappa coefficient and percentage agreement were

0.796 (95% CI: 0.661–0.931) and 93.0%, respectively.

Discussion

In our study, growth of screening-detected indeterminate pulmonary nodules defined as per-

centage volume growth�25% exhibited higher sensitivity and lower specificity for the diagno-

sis of lung cancer compared to the growth defined as absolute diameter growth >1.5 mm

(sensitivity, 69.2% vs. 42.3%; specificity, 82.0% vs. 96.6%). Regarding diagnostic referral based

on VDT, thresholds�200 and�300 days exhibited significantly lower sensitivity (30.8%) and

higher specificity (94.4%) than those with a VDT threshold of 600 days (sensitivity, 61.5%;

specificity, 87.6%), respectively.

The major advantage of volumetric measurement of pulmonary nodules is that they can

sensitively detect nodule growth [12, 14]. The 25% threshold has been considered the margin

of measurement variability [23, 24] and has been adopted in several European lung cancer

screening trials [4, 25, 26]. The diametric changes of up to 1.5 or 2 mm are usually regarded as

measurement variability [10, 11, 13]. Concordant with this, our results suggest that volumetric

measurement of lung nodules with a threshold of percentage volume growth�25% can detect

early lung cancer more sensitively compared to diametrical measurement (69.2% vs. 42.3%),

although their AUCs were not significantly different (0.812 vs. 0.810). However, the percentage

volume growth�25% showed lower specificity than absolute diameter growth >1.5 mm

(82.0% vs. 96.6%) in our study. In other words, nodule growth defined by volumetry can lead

to false-positive detection of growth in benign nodules, which can be due to measurement var-

iability or true growth of benign nodules.

To reduce false-positive nodule growth, further evaluation of the growth rate of nodules is

required. Previous studies have reported a relatively wide range of VDTs for lung cancers,

ranging from 100–600 days [11]. Indeed, considering the VDT of lung cancers, previous lung

cancer screening trials have adopted a VDT threshold of 400 days for diagnostic referral [4,

27], while the European position statement suggested a more conservative threshold of 600

days [19]. In our study, the 600-day VDT threshold exhibited sensitivity and specificity of

61.5% and 87.6%, respectively, and VDT thresholds <600 days resulted in lower sensitivity

and higher specificity. All VDT thresholds showed lower sensitivities than diagnostic referrals

based on the subjective decision of the radiologist, suggesting that a substantial proportion of

lung cancer patients might undergo diagnostic delays in VDT-based diagnostic referral only.

This could be due to pulmonary adenocarcinomas appearing as part-solid nodules, which usu-

ally show relatively longer VDTs [11]. Indeed, in our study, 17 of 26 lung cancers (65.4%; solid

nodules, n = 8; part-solid nodules, n = 9) had VDTs ranging from 100–600 days, the other 9

lung cancers (34.6%) had VDTs shorter than 100 days (part-solid nodule, n = 1) or longer than

600 days (solid, n = 3; part-solid nodules, n = 5). Reflecting this, in a subgroup analysis with

only solid nodules, a 600-day VDT threshold exhibited slightly higher sensitivity than the sub-

jective decision by the radiologist (72.7% vs. 63.6%).

It would be difficult to define an optimum VDT threshold because there is a trade-off

between the benefit of sensitive detection of early lung cancer and the cost of unnecessary diag-

nostic referral or invasive procedures. A previous study by Heuvelmans et al. suggested a
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232-day VDT threshold for the identification of lung cancers in three-month follow-up

LDCTs [28]. However, in our study, VDT thresholds�200 days led to a substantial reduction

in sensitivity. Nonetheless, adding subjective decisions for diagnostic referral by a radiologist

can improve the balance between sensitivity and specificity. In our study, the VDT threshold

of 200 days with combined radiologist adjudication for diagnostic referral resulted in the same

sensitivity at higher specificity compared with the VDT threshold of 600 days.

Reduced inter- or intra-reader variability is another key advantage of volumetric lung nod-

ule measurements using segmentation. Simple diametric measurement or volume measure-

ment by simply using tumor diameter cannot reflect the three-dimensional nature of

pulmonary nodules and therefore are prone to inter- or intra-reader variability [10, 12, 29].

Concordant with these previous studies [10, 12, 14, 29, 30], our results corroborated a higher

kappa coefficient value (0.696) and percentage agreement (85.7%) for nodule growth with vol-

umetric measurement than those of diametric measurement (kappa coefficient = 0.054, per-

centage agreement = 64.3%) and subjective radiologists’ adjudication (kappa

coefficient = 0.276, percentage agreement = 57.1%).

This study had several limitations. First, the retrospective nature and relatively small study

population might have limited our study’s results. For example, heterogeneity of CT scanners

or protocols, even the baseline and follow-up CT in one individual, could affect the result, but

this was inevitable due to the retrospective nature of this study. To overcome this limitation, a

prospective study with uniform CT scanners and protocols should be warranted. Alternatively,

applying state-of-the-art techniques such as the deep learning-based image reconstruction ker-

nel conversion model can be helpful. Second, a diagnostic case-control study, in which

researchers collect disease-positive and disease-negative cases through convenience sampling,

cannot reflect real-world screening settings from the perspective of unrealistic disease preva-

lence. Indeed, this study has a selection bias in that two cohorts with different characteristics

were included. That is, while individuals in the K-LUCAS project were included regardless of

whether lung cancer was diagnosed, individuals in our institution were included if they were

diagnosed with lung cancer. Third, although inter-observer variabilities were investigated in

measuring average diameter and volume, and subjective assessment, only two radiologists par-

ticipating in this study may limit the generalizability of the results. Furthermore, because vari-

ous types of commercially available segmentation software can affect the measurement and

classification of nodules [12], we used only a single software.

In conclusion, growth evaluation of screening-detected indeterminate nodules with volu-

metric measurement exhibited higher sensitivity but lower specificity compared to diametric

measurements.
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