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Abstract: Bacteria are one of the significant causes of infection in the body after scaffold implantation.
Effective use of nanotechnology to overcome this problem is an exciting and practical solution.
Nanoparticles can cause bacterial degradation by the electrostatic interaction with receptors and
cell walls. Simultaneously, the incorporation of antibacterial materials such as zinc and graphene in
nanoparticles can further enhance bacterial degradation. In the present study, zinc-doped hydroxya-
patite/graphene was synthesized and characterized as a nanocomposite material possessing both
antibacterial and bioactive properties for bone tissue engineering. After synthesizing the zinc-doped
hydroxyapatite nanoparticles using a mechanochemical process, they were composited with reduced
graphene oxide. The nanoparticles and nanocomposite samples were extensively investigated by
transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. Their antibacterial
behaviors against Escherichia coli and Staphylococcus aureus were studied. The antibacterial prop-
erties of hydroxyapatite nanoparticles were found to be improved more than 2.7 and 3.4 times
after zinc doping and further compositing with graphene, respectively. In vitro cell assessment was
investigated by a cell viability test and alkaline phosphatase activity using mesenchymal stem cells,
and the results showed that hydroxyapatite nanoparticles in the culture medium, in addition to
non-toxicity, led to enhanced proliferation of bone marrow stem cells. Furthermore, zinc doping in
combination with graphene significantly increased alkaline phosphatase activity and proliferation of
mesenchymal stem cells. The antibacterial activity along with cell biocompatibility/bioactivity of
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zinc-doped hydroxyapatite/graphene nanocomposite are the highly desirable and suitable biological
properties for bone tissue engineering successfully achieved in this work.

Keywords: antibacterial; biocompatibility; nanocomposite; hydroxyapatite; zinc; graphene

1. Introduction

Bacterial infections caused by orthopedic surgeries (such as implantation of bone scaf-
fold and artificial joints) can lead to allergies, inflammation, and necrosis of tissues in the
implanted area [1,2]. Damage in tissues could even require re-surgeries to remove the im-
plant or scaffolds [3,4]. Using innovative materials to construct implants or bone scaffolds
possessing antibacterial properties together with biocompatibility is an attractive solution
to control bacterial infections [4,5]. Considering the biomaterials used for bone implants
and scaffolds, hydroxyapatite (HA) is one of the preferred choices [6,7]. Possessing chemi-
cal composition of Ca10(PO4)6(OH)2, HA is one of the main components of bone (nearly
70%) which forms the mineral part of bones tissues [8]. Because HA is biocompatible, non-
toxic, and non-inflammatory at the same time, it is one of the most favored biomaterials for
fabricating bone scaffolds [9,10]. Due to its osteoinductivity and osteoconductivity proper-
ties, HA in scaffolds can accelerate new bone tissue formation [11]. As a significant factor
in advancing the medical engineering field, nanotechnology can create superior capabilities
in biomaterials by modifying their structures [12,13]. For example, upon modifying the
crystal structure of HA by doping with antibacterial elements, and further compositing it
with carbon nanomaterials, can not only improve the new HA nanocomposite material’s
bioactivity but also its other biological features such as antibacterial properties [14,15].
Zinc (Zn) has a unique state among the elements that have antibacterial properties [16].
Zn causes bacterial death due to mechanisms such as reactive oxygen species, such as
peroxides and hydroxides, and direct reactions with bacterial proteins such as phospho-
lipids [16,17]. Therefore, Zn as a doping element promotes HA nanoparticles’ antibacterial
potency while increasing its bioactivity [17]. Recent studies showed that Zn can boost
osteoblast cell proliferation and osteogenic differentiation [18,19]. During the natural bone
remodeling process, Zn is released from the bone. Research has shown that Zn released
from bone reduces osteoclast resorption and increases osteoblast ossification [20]. Zn also
accelerates the hydrolysis of phosphomonoesters to mineral phosphates, creating a suitable
alkaline environment for mineral phosphate mineralization on the extracellular matrix
(ECM) [21]. Moreover, Zn affects mitochondrial anaplerotic reactions by decreasing lactate,
and increasing intermediates of the Krebs cycle; these increase citrate accumulation and
deposition of bone apatite. As a result, due to increased citrate anabolism, mineralization
occurs more rapidly [22]. The bioenergetic changes of mitochondria and transportation of
calcium and citrate in the mitochondria and cytoplasm are manifest during stem cell differ-
entiation [23]. Meanwhile, genes related to mitochondrial biogenesis, such as ERRα and
PGC-1α, are activated to increase anaplerotic reactions to intermediate replenishment of
the Krebs cycle [24]. As a result, it causes compounds such as α-ketoglutarate to have high
concentrations during osteogenic differentiation. In addition, glutaminolysis-related genes
such as GLAST, GLS, and GDH are also activated to produce more α-ketoglutarate. More
expression of CS and CTP genes during differentiation helps increase citrate anabolism
and citrate transportation, leading to citrate catabolism reduction [22]. The cooperation
of Zn with Runx2 and OSX results in the Zn-Runx2/OSX-ZIP1 regulatory axis formation,
increasing Zn transporter protein expression (ZIP1). An increase in ZIP1 leads to an influx
of Zn into the cell, enhancing the proliferation and differentiation signaling pathways such
as TGF-β and BMP. Since extracellular citrate deposition is derived from the metabolism
of the mitochondrial Krebs cycle [25], induction of ZIP1 can reduce citrate catabolism
by suppressing mitochondrial aconitase activity. Citrate catabolism reduction results in
enhanced citrate accumulation and deposition, a crucial factor in bone-strengthening [26].
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Meanwhile, graphene-based nanomaterials, due to their unique physical and chemical
properties, have exceptional potential for use in biomedicine, such as drug delivery, cancer
therapy, and tissue engineering [27,28]. For example, in bone tissue engineering, reduced
graphene oxide (rGO) provides significant biological performance, such as improving
osteoblastic differentiation and antibacterial activity [29,30]. Recent research work proved
that graphene nanomaterials can not only deactivate bacteria with impressive results,
but at the same time it has shown high osteoconductivity and osteoinductivity capacities
for regulating osteogenic differentiation [31,32]. Moreover, graphene supports bone cell
growth and osteogenic differentiation due to its high stiffness modulus and is suitable
for bone scaffolds [33]. By integration of graphene and Zn-doped HA in the form of a
nanocomposite, the synergistic effect of nanomaterial can be expected simultaneously to
show two behaviors: antibacterial and bioactivity. In this study, Zn-doped HA nanoparti-
cles were synthesized using a mechanochemical process, and rGO was composited to them
by photochemical reduction to form a novel HA-based nanocomposite. The nanoparticles
were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD),
and Raman spectroscopy, and evaluation of their cellular behavior was conducted using
mesenchymal stem cells (MSCs) by cell viability tests and alkaline phosphatase (ALP)
activity. The antibacterial behaviors of nanoparticles were also studied with Escherichia
coli (E. coli) and Staphylococcus aureus (S. aureus).

2. Results
2.1. Characterization of Nanoparticles

The X-ray photoelectron spectroscopy (XPS), XRD, and attenuated total reflectance-
Fourier transform infrared (ATR-FTIR) characterizations of the nanoparticles have been
thoroughly studied in the previous work [34]. The TEM images for (a) HA, (b) ZnHA,
and (c) ZnHA-rGO nanoparticles are presented in Figure 1. As shown in Figure 1a,b,
the HA and ZnHA nanoparticles have a flake-like or quasi-spherical shape with a rough
surface. Figure 1c demonstrates the ZnHA-rGO sample; the ZnHA nanoparticles formed
a nanocomposite with the rGO sheets. Furthermore, the phase analysis results (XRD
patterns) in Figure 2 show the hexagonal structure for HA nanoparticles (JCPDS 09-432).
The ZnHA nanoparticles also show a hexagonal structure like HA [35–38]. At the same
time, compositing the ZnHA nanoparticles with rGO nanosheets did not affect the crystal
structure, but a new peak associated with graphene nanosheets (002) appeared [39].
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(c) ZnHA-rGO showing ZnHA nanoparticles composited with rGO sheets.



Int. J. Mol. Sci. 2021, 22, 9564 4 of 16Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 2. XRD patterns of HA, ZnHA, and ZnHA-rGO nanoparticles. The diffraction pattern of 
HA nanoparticles was well in accordance with the standard pattern of HA (JCPDS card No. 09–
0432); hexagonal structure. The XRD patterns of ZnHA and ZnHA-rGO nanoparticles were highly 
similar to that of HA nanoparticles. A peak corresponding to graphene nanosheets (002) was seen 
in ZnHA-rGO. 

Figure 3a shows the Raman spectra for HA, ZnHA, and ZnHA-rGO nanoparticles. 
Representative bands of the HA sample are associated with the doubly degenerate bend-
ing mode v2(PO43−) (426 cm−1), triply degenerate bending mode v4(PO43−) (583 cm−1), sym-
metric stretching mode v1(PO43−) (951 cm−1), and asymmetric stretching mode v3(PO43−) 
(1024 cm−1) [40–42]. These bands are also well-observed in the ZnHA and ZnHA-rGO 
spectra, indicating the stability of the molecular structure of HA after doping and compo-
siting with Zn and rGO, respectively. In the ZnHA-rGO sample, two broad bands are re-
lated with the vibration of carbon atoms in the graphene lattice, the D and G bands in the 
range of 1347 and 1601 cm−1, respectively [43]. The D band is associated with lattice dis-
tortions, and the G band is related to sp2 hybridized carbon–carbon bonds in graphene 
[43]. Furthermore, Zn doping in the HA structure and its compositing with rGO has made 
PO43− bands lower and broader. This is well seen in Figure 3b for the v1(PO43−) band in the 
region of 950 cm−1. The difference in ionic radius between Zn2+ and Ca2+ can distort the 
PO43− structure [40,41]. Moreover, the interaction between the rGO atoms with the surface 
atoms of HA nanoparticles can affect the structure of PO43− [34]. 

Figure 2. XRD patterns of HA, ZnHA, and ZnHA-rGO nanoparticles. The diffraction pattern of
HA nanoparticles was well in accordance with the standard pattern of HA (JCPDS card No. 09–
0432); hexagonal structure. The XRD patterns of ZnHA and ZnHA-rGO nanoparticles were highly
similar to that of HA nanoparticles. A peak corresponding to graphene nanosheets (002) was seen in
ZnHA-rGO.

Figure 3a shows the Raman spectra for HA, ZnHA, and ZnHA-rGO nanoparticles.
Representative bands of the HA sample are associated with the doubly degenerate bending
mode v2(PO4

3−) (426 cm−1), triply degenerate bending mode v4(PO4
3−) (583 cm−1), sym-

metric stretching mode v1(PO4
3−) (951 cm−1), and asymmetric stretching mode v3(PO4

3−)
(1024 cm−1) [40–42]. These bands are also well-observed in the ZnHA and ZnHA-rGO
spectra, indicating the stability of the molecular structure of HA after doping and com-
positing with Zn and rGO, respectively. In the ZnHA-rGO sample, two broad bands are
related with the vibration of carbon atoms in the graphene lattice, the D and G bands
in the range of 1347 and 1601 cm−1, respectively [43]. The D band is associated with
lattice distortions, and the G band is related to sp2 hybridized carbon–carbon bonds in
graphene [43]. Furthermore, Zn doping in the HA structure and its compositing with rGO
has made PO4

3− bands lower and broader. This is well seen in Figure 3b for the v1(PO4
3−)

band in the region of 950 cm−1. The difference in ionic radius between Zn2+ and Ca2+ can
distort the PO4

3− structure [40,41]. Moreover, the interaction between the rGO atoms with
the surface atoms of HA nanoparticles can affect the structure of PO4

3− [34].

2.2. In-Vitro Cell Analysis

The effect of nanoparticles on MSC proliferation was investigated for 7 and 14 days
by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole) assay.
As shown in Figure 4, the MSC proliferation in culture media treated by the nanoparticles
is higher than in the control one. Moreover, doping HA nanoparticles with Zn increased
MSC proliferation, and it was further enhanced by the addition of rGO.

ALP plays a vital function in the matrix mineralization process during bone formation.
The bone differentiation capacity of MSCs was assessed by ALP activity after 7 and 14 days
of incubation. The ALP activity in culture media treated with HA, ZnHA, and ZnHA-rGO
nanoparticles compared with the control media is presented in Figure 5. The ALP activity of
all three nanoparticles increased with incubation time, considerably higher for ZnHA-rGO.
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Figure 4. The viability of MSCs incubated in culture media treated by the HA, ZnHA, and ZnHA-rGO
nanoparticles using MTT assay. During the incubation period (14 days), the presence of nanoparticles
caused an appreciable increase in cell proliferation, especially ZnHA-rGO, compared to the non-
treated control.
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Figure 5. ALP activity of MSCs in culture media treated by the HA, ZnHA, and ZnHA-rGO nanopar-
ticles. Incubation with ZnHA-rGO nanoparticles for 7 to 14 days significantly induced ALP activity.

2.3. Antibacterial Assay

Figure 6 shows the time-dependent cell viability for E. coli and S. aureus bacteria for
HA, ZnHA, and ZnHA-rGO nanoparticles. The loss of viability of bacterial cells was
assessed by the colony counting method after every 4 h interval. As shown in Figure
6, doping Zn in HA nanoparticles significantly affected the bacterial cell loss, and the
inclusion of rGO increased it further.
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concentration of HA, ZnHA, and ZnHA-rGO nanoparticles for different time exposure (4, 8, and 12 h).

Figure 7 shows the disk diffusion antibacterial test results for all three nanoparticles.
The inhibition zone indicates the resistance of nanoparticles against bacterial strains. The
HA sample had a small inhibition zone against E. coli and S. aureus. Doping Zn in HA
and compositing it with rGO showed significant impacts on the inhibition zone. Zn in HA
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effectively inhibits the growth of E. coli and S. aureus on agars. The bactericidal activity of
ZnHA nanoparticles can be due to the release of Zn ions, acting as an anti-bactericidal agent.
Moreover, rGO further enhanced the antibacterial activity of ZnHA; a larger inhibition
zone against bacteria. At the same time, the Gram-positive S. aureus was more resistant
than Gram-negative E. coli for all samples.
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3. Discussion
3.1. Cellular Behavior

Calcium ions in HA positively affect MSC proliferation in culture media [44]. The
doped Zn in HA further promoted this phenomenon by stimulating signaling pathways
that lead to boosting cell proliferation [18,19]. Simultaneous Zn doping and rGO com-
positing improved the adsorption of molecules on the surface of nanoparticles. It has
been reported that rGO facilitates the adsorption of ions and proteins at the surface of
nanoparticles [29,30], leading to improvement in cell proliferation [44].

The ALP enzyme participates in the process of maturation of osteoblast cells and alka-
lizes the environment, which results in hydrolyzing the phosphomonoesters to inorganic
phosphates [45]. Mineralization of the organic phosphates results in the formation of ECM
for the bone cells [46]. The presence of calcium, Zn ions, and rGO nanoparticles in the cell
culture media can boost the activity of ALP enzymes, and as such, the differentiation of
MSCs into osteoblasts would intensify [18,30].

3.1.1. Effect of Hydroxyapatite on Cellular Behavior

HA can differentiate and proliferate HMSCs by stimulating intracellular signaling.
Stimulation of HMSCs by HA raises the activity of the CREB transcription factor, which
regulates several osteoblast marker genes. HA nanoparticles can enter the cytoplasm
through the endosome and decompose into its ingredients, calcium, and phosphate [47].
Xu et al. [47] revealed that increasing the intracellular concentration of calcium ions stimu-
lates several signaling pathways, including calcium, cAMP, Ras, Rap1, and MAPK. As a
product of adenylate cyclase activity, cAMP is a secondary messenger that arouses Epac
and subsequently Rap1 [48]. Rap1 has the potential to activate Raf1, and Raf1 induces
phosphorylation of MEK and ERK1/2, and Raf1 also activates PI3K and then AKT, which
eventually increases the CREB transcription factor [49]. Phosphorylated CREB can help
mRNA expression associated with osteoblastic differentiation, such as Runx2, ALP, OCN,
Col1, and OSX [50].
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3.1.2. Effect of Zinc on Cellular Behavior

Zn has been known as a stimulant factor of osteoblastic differentiation and prolifer-
ation in vitro and in vivo [51]. Several mechanisms have been identified for Zn-related
osteogenesis, including several intracellular signaling pathways that eventually lead to
the expression of genes that contribute to differentiation, mineralization, and proliferation.
The mRNA and protein levels of the transcription factor Runx2, TGF-β, smad2, smad3, and
BMP2 increase upon initial contact of Zn ions with HMSCs [19]. TGF-β phosphorylates
smad2 and smad3 proteins by binding to TGF-β receptors. These proteins, together with
smad4, lead to the proliferation of chemotaxis and early differentiation [52]. BMP2 also
phosphorylates smad1, smad5, and smad8 proteins via binding to BMP2 receptors [53].
When these proteins enter the cell nucleus, genes such as DLX5, OPN, OSX, and Runx2 are
transcribed for cell differentiation and proliferation [52]. On the other hand, Zn increases
phosphorylated CREB through stimulation of the cAMP-PKA-CREB signaling pathway,
which leads to the expression of other osteogenesis markers such as OCN, ALP, Col1, and
Runx2 [54].

3.1.3. Effect of rGO on Cellular Behavior

rGO in the ZnHA-rGO nanosystem, via interacting with the surface of HMSCs, will
create optimal conditions for focal adhesion to differentiate. In addition, rGO increases
bone scaffold strength and cell adhesion. The addition of graphene and its derivatives
to bone scaffolds increases their mechanical strength and modulus [55]. Matrix stiffness
plays a crucial role in the orientation of cell differentiation by stimulating the expression
of specific genes. Hence, with increasing matrix stiffness, the expression of osteogenesis
genes in HMSCs increases. The relationship between matrix stiffness and HMSC differ-
entiation can be observed in Figure 8. Accordingly, the higher the matrix stiffness, the
higher the expression of osteogenesis genes [56]. rGO in the ZnHA-rGO nanosystem
increases the stiffness of ECM and helps osteoblastic differentiation of HMSCs. rGO causes
actin polymerization by stimulating integrin (a protein that mediates between ECM and
cytoskeleton). Integrin stimulation creates a chain of connections between the Talin, Vin-
culin, Zyxin, Actinin, Paxillin, Parvin, and FAK proteins. FAK helps to activate RhoA
and subsequently ROCK by phosphorylating RhoGEF [57]. ROCK phosphorylates MLC,
which induces actin polymerization. The actin polymerization, followed by forming actin
filaments attached to myosin, causes internal forces in the cytoskeleton [58] (between the
nucleus and the membrane). These internal forces lead to more calcium ions entering the
cell and mechanotransduction signaling events, which activate the transcription factors
YAP and TAZ [59]. Besides, FAK activates the β-catenin protein by activating the PI3K-
AKT pathway, which is a major transcription factor in the expression of genes involved in
osteoblast proliferation [60]. Alternatively, rGO phosphorylates p130Cas by stimulating
integrin and FAK, leading to Crk activation. Finally, Crk activates JNK by stimulating
Dock180 and ELMO and subsequently Rac. As a result, more activity of FOXO1 can be
seen, an important transcription factor in osteoblast differentiation [61]. On the other hand,
Crk activity can activate GRF2, Rap1, and Raf1, and subsequently can phosphorylate MEK
and ERK, and this pathway increases phosphorylated CREB [62].
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3.1.4. Synergistic Effect in ZnHA-rGO Nanosystem

As a result, not only Zn and HA increase CREB-activated transcription factor levels,
but also rGO has a similar effect on upregulating CREB-related genes. Generally, Zn,
HA, and rGO in this nanosystem can increase the level of transcription factors related to
osteogenesis by stimulating specific signaling pathways. Since each of the HA, Zn, and
rGO agents individually have positive effects on osteogenesis and cell proliferation, using a
combination of these agents in a nanocomposite form helps to generate a synergistic effect
on the proliferation and osteogenic differentiation of HMSCs. The synergistic effect of this
nanosystem leads to the activation of important transcription factors for the expression
of genes related to osteogeneses such as Smad1, Smad2, Smad3, Smad4, Smad5, Smad8,
β-catenin, CREB, FOXO1, TAZ, and YAP. The synergistic influence of this nanosystem on
the proliferation and osteoblastic differentiation of HMSC can be observed in the schematic
presented in Figure 9.

3.2. Antibacterial Behavior
3.2.1. Effect of Hydroxyapatite on Antibacterial Behavior

The HA nanoparticles can have an antibacterial effect against both Gram-positive and
Gram-negative bacteria. HA causes mechanical damage to the bacterial membrane due
to its abrasive surface [63]. Electrostatic interaction between HA nanoparticles and the
bacterial cell wall can lead to the entry of nanoparticles into the cytoplasm. With the entry
of HA and its reformation inside the bacterium, it will cause the bacterium’s death. The
antibacterial efficiency of HA nanoparticles will be increased by activation of groveling and
spores [63,64]. In addition, HA increases oxidative stress by affecting the amount of ROS
inside and outside the cell. Oxidative stress attacks many of the cell components inside a
bacterium that are needed for life [65]. Gram-positive bacteria are also less sensitive to HA
nanoparticles than Gram-negative bacteria, due to differences in membrane structure.
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3.2.2. Effect of Zinc on Antibacterial Behavior

The ZnHA nanoparticles attack bacteria by different mechanisms. These mechanisms
are divided into two categories: direct interaction of nanoparticles with bacteria and
interaction of released Zn2+ ions with the bacterial wall and its constituents. ZnHA
nanoparticles can damage the wall and membrane of bacteria and enter the bacteria
through channels, damaged areas, and accumulate in the cytoplasm. Accumulation of
nanoparticles within bacteria is one of the possible mechanisms in the death of bacteria by
ZnHA nanoparticles [66]. However, as shown in the antibacterial test results presented in
Figures 6 and 7, it has been found that Gram-positive bacteria are less sensitive to ZnHA
nanoparticles than Gram-negative bacteria. The reason for this can be attributed to the
greater thickness of the peptidoglycan layer in Gram-positive bacteria [67,68] in such a way
that the predominant mechanism of inhibiting Gram-positive S. aureus bacteria by ZnHA
nanoparticles can be attributed to the induction of downregulating of amino acid synthesis
and dysfunction of vital bacterial enzymes [69]. Another mechanism of bacterial inhibition
is related to Zn2+ ions released from the ZnHA-rGO nanosystem into bacteria. For example,
Zn2+ ions can interfere with mitochondrial function or damage DNA and RNA. In addition,
high concentrations of Zn2+ ions in bacteria may alter the three-dimensional conformation
of proteins and disrupt the function of enzymes and electron transport chains [70].

3.2.3. Effect of rGO on Antibacterial Behavior

rGO and GO both have antibacterial properties. rGO, as a component of the nanocom-
posite, has several mechanisms to inhibit bacterial growth. The principal antibacterial
mechanism of rGO for Gram-negative and -positive bacteria is cell wall mechanical damage
and inhibition of cell division, respectively [71]. Antibacterial mechanisms of rGO include
cell entrapment, bacterial aggregation by rGO sheet, a sharp edge-mediated cutting effect
that leads to rupture of the bacterial cell wall, and oxidative stress by increasing ROS levels
leading to structural damage to nucleic acids and proteins [72]. Since the three components
of the nanocomposite can damage the cell wall and intracellular components of bacteria,
the synergistic effect of these materials creates a higher antibacterial potential for this
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nanosystem. The synergistic effect of the nanosystem compounds in the face of bacteria
can be seen in a schematic presentation in Figure 10.
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4. Materials and Methods
4.1. Material Preparations

Extraction of natural HA nanoparticles was performed according to the method
presented in a previous study [34]. Doping Zn in HA nanoparticles and compositing it
with rGO has also been described in a previous study [34].

4.2. Characterization

To study the morphology and structure of nanoparticles, TEM, XRD, and Raman
spectroscopy analyses were used. Morphology of the nanopowders was analyzed using
transmission electron microscopy (TEM, JEOL JEM-ARM200CFEG UHR-TEM). The XRD
examination was also conducted using a single-beam, Cu Kα, λ = 1.5406 Å (PANalytical, Pro
MPD model, Almelo, Netherlands). The step size and step time of XRD were considered as
0.02◦ and 2 s, respectively. The Raman spectra were achieved by an inVia Reflex Renishaw
(Wotton-under-Edge, Gloucestershire, United Kingdom) Raman spectrometer equipped
with a laser diode (λ = 785 nm, 30 mW).

4.3. Cellular Behavior
4.3.1. Cell Culture

The initial density of 105 MSCs/well was seeded in a culture plate containing Dul-
becco’s modified Eagle’s medium (DMEM). Then, 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin were added to the mixture. The culture media were incubated at
37 ◦C in a humidified atmosphere of 5% CO2. After overnight incubation, the cells were
treated with 100 µg mL−1 concentrations of nanoparticles. The media were replaced with
fresh ones at intervals of two days.
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4.3.2. Cell Viability Assessment

The proliferation of MSCs for culture media treated with nanoparticles was investi-
gated for 7 and 14 days by MTT assay.

The MTT assay (Sigma Inc., Marlborough, MA, USA) was carried out to assess the
expansion of MSCs cultured on 24 well plates. At the first step, 5 mg of MTT powder
was dissolved in phosphate-buffered saline (PBS) solution. To dilute the MTT solution in
the second step, 900 µL of DMEM/F12 medium was added to the solution. In the third
step, 1 mL of the prepared solution was poured into each well to form the Formazan
crystals and kept in dark incubation for 2 h. Then, the supernatants of the wells were
removed completely, and for dissolving the prepared crystals, 1 mL of a stabilized solution
(including 10% Triton x-100, 0.1 M HCl, and isopropanol) was added to each well. Finally,
a microplate (Elx808, BioTek, Winooski, VT, USA) at a wavelength of 570 nm was used to
read the absorbance of each well sample.

4.3.3. Alkaline Phosphatase Activity

ALP is an osteogenic marker whose activation is intensified in the bone growth
duration; the expression value of ALP rises during the beginning of differentiation of
MSCs [45,46]. Such an increment of ALP expression develops bone formation by nucleating
calcium phosphate on ECM, causing mineralization, and acting as an essential function in
osteoblast differentiation and maturation [45,46].

The HA, ZnHA, and ZnHA-rGO nanoparticles were exposed to MSCs for 7 and
14 days to assess their ALP activities. After incubation, the MSCs were washed with PBS,
lysed by lysis buffer, incubated for 30 min at 37 ◦C, and held for 12 h at 4 ◦C. Afterwards, the
cells were centrifuged for 10 min at 12,000 rpm. Then, the supernatant and p-nitrophenyl
phosphate solution (1 to 20) were mixed and incubated for 1 h at 25 ◦C. The ALP activity
was determined utilizing the fluorescence microscope system (Cytation 5, BioTek, Winooski,
VT, USA) at a wavelength of 405 nm.

4.4. Antibacterial Activity

To assess antibacterial activities, the samples were tested using both E. coli and S. aureus
bacteria, because these are the two most common bacteria in any hospital environment that
can cause bacterial infection. Moreover, bacteria belonging to both groups were selected;
Gram-positive (E. coli) and Gram-negative (S. aureus).

4.4.1. Cell Viability Assessment

The nanoparticles were dispersed in deionized (DI) water with concentration of
100 µg mL−1. In addition, dilution 106 CFU/mL of bacteria were incubated with dispersed
nanoparticles in DI water at 37 ◦C under 150 rpm stirring speed for up to 6 h. Bacterial
samples in DI water without nanoparticles were considered as the control. Eventually,
100 µL of each sample was spread onto LB plates after each 4 h of time interval and left
to grow for 12 h at 37 ◦C. Colonies were counted and compared with those of the control
samples to determine the total viable count and percentage of the non-viable cells.

4.4.2. Disk Diffusion Method

The disk diffusion test was carried out by pouring lysogeny broth and brain heart
infusion agar into Petri dishes. The nanoparticles (50 mg) suspended in ethanol were
applied to sterilized filter paper disks (6 mm in diameter). Bacteria suspension (100 µL)
was spread uniformly on the surface of solidified nutrient agar, followed by placing
sterilized disk specimens onto the agar dishes. Finally, samples were placed in an incubator
with a humidified atmosphere of 5% CO2 and 95% air for 18 h at 37 ◦C. All disk diffusion
tests were performed in triplicate, and the diameters (mm) of the inhibition zone were
measured after incubation.
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5. Conclusions

In this work, HA nanoparticles extracted from bovine cortical bone were doped with
Zn by mechanical alloying. The ZnHA nanoparticles were also composited with rGO by
photochemical reduction. The microstructural studies confirmed the hexagonal crystal
structure for HA and ZnHA nanoparticles. The influence of HA nanoparticles on stem cell
behavior revealed no toxic effect, and significantly improved cell proliferation and alkaline
phosphatase activity, and that Zn and rGO have a synergistic effect on these behaviors. The
antibacterial test results showed that HA nanoparticles have antibacterial function against
Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria. The antibacterial activity of
HA nanoparticles was significantly increased by Zn doping such that the bacterial cell loss
raised to 3-fold in 12 h. Finally, rGO also had a positive effect on increasing the antibacterial
activity of the ZnHA nanoparticles.
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