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Mycobacterium tuberculosis (Mtb) bacilli are the causative agent of tuberculosis (TB), a
major killer of mankind. Although it is widely accepted that local interactions between Mtb
and the immune system in the tuberculous granuloma determine whether the outcome of
infection is controlled or disseminated, these have been poorly studied due to
methodological constraints. We have recently used a spatial transcriptomic technique,
in situ sequencing (ISS), to define the spatial distribution of immune transcripts in TB
mouse lungs. To further contribute to the understanding of the immune
microenvironments of Mtb and their local diversity, we here present two
complementary automated bacteria-guided analysis pipelines. These position 33 ISS-
identified immune transcripts in relation to single bacteria and bacteria clusters. The
analysis was applied on new ISS data from lung sections of Mtb-infected C57BL/6 and
C3HeB/FeJ mice. In lungs from C57BL/6 mice early and late post infection, transcripts
that define inflammatory macrophages were enriched at subcellular distances to bacteria,
indicating the activation of infected macrophages. In contrast, expression patterns
associated to antigen presentation were enriched in non-infected cells at 12 weeks
post infection. T-cell transcripts were evenly distributed in the tissue. In Mtb-infected
C3HeB/FeJ mice, transcripts characterizing activated macrophages localized in
apposition to small bacteria clusters, but not in organized granulomas. Despite
differences in the susceptibility to Mtb, the transcript patterns found around small
bacteria clusters of C3HeB/FeJ and C57BL/6 mice were similar. Altogether, the
presented tools allow us to characterize in depth the immune cell populations and their
activation that interact with Mtb in the infected lung.

Keywords: Mycobacterium tuberculosis, pathogen–host interaction (PHI), granuloma, in situ sequencing,
automated bacteria identification, distance-based transcript analysis, automated tuberculous lesion
identification, innate immune activation
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INTRODUCTION

Tuberculosis (TB) still causes 1.5 million deaths every year.
Infection with Mycobacterium tuberculosis (Mtb), the causative
agent of TB, occurs when bacilli are inhaled and phagocytized by
lung alveolar macrophages that initiate the formation of a
granuloma, the pathological hallmark of TB (1, 2). Host–
bacteria interactions in the granuloma are required for bacteria
containment, persistence, or clearance (3). However, changes in
the granuloma microenvironment could also enable Mtb growth
and systemic dissemination and transmission (4). If the integrity
of the granuloma is lost due to impaired immunity, reactivation
of Mtb leads to profound damaging of the lung structure and
the transmission of Mtb (3, 5). A major impediment to the
development of new TB vaccines and therapies is the incomplete
understanding of the local protective immunity in the lungs,
which is the primary organ targeted by infection (6–8).

Granulomas show an important histological and immune
heterogeneity. While the histological features of granulomas
have been well characterized, the immune mechanisms that
underlie variable granuloma dynamics and clinical outcomes of
TB infection remain to be further elucidated (9, 10). Importantly,
granulomas in the same tissue may evolve independently of each
other and studies in non-human primates demonstrated that
during active TB, sterile lesions could be found in the same lung
(11). Granulomas have also been shown to provide an
immunosuppressive milieu restricting anti-Mtb immune effector
functions (12). We have previously described the accumulation of
immune suppressive transcripts in the center of necrotic
granulomas of Mtb-infected C3HeB/FeJ mice. Moreover,
another study demonstrated that granuloma-localized TGF-b
signaling impaired the effector function of CD4 T cells in the
lung tissue of Mtb-infected C57BL/6 mice (13, 14). T cells in the
lymphocyte rim of granulomas have been shown not to be in
direct contact with infected macrophages, which impairs a proper
control (15–17).

Our goal in this study was to shed light on the immune
microenvironments of Mtb and the local diversity of Mtb-
induced lesions in connection to their histopathology. For this
purpose, we developed two automated identification pipelines to
connect the localization of Mtb bacteria with immune transcripts
in mouse lung tissue. Our investigation was divided into two
parts: the connection of immune transcripts to single Mtb
bacteria throughout the tissue in order to understand the
proximal immune response to Mtb, and to bacteria-enriched
clusters of structured or non-structured granulomas in order to
understand the immune response towards larger infected areas.

The development of in situ sequencing (ISS), a spatial
transcriptomics method, had a major role in advancing our
ability to integrate functional and spatial information in
biological studies (18, 19). While keeping the tissue
architecture intact, ISS allows the detection of mRNA in tissue
sections in a targeted approach. ISS is based on rolling-circle
amplification (RCA) of padlock probes and was performed using
sequencing-by-ligation chemistry. To complement the spatial
distribution of detected immune transcripts and interaction
networks in the TB mouse lung, we stained the same tissue for
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Mtb followed by staining for hematoxylin and eosin for
histopathology annotation (13). In a previous approach, a cell-
profiler-based pipeline enabled us to correlate the bacteria-
staining with ISS transcripts, indicating the enriched presence
of activated macrophages at subcellular distances to Mtb bacteria
8 weeks post infection of C57BL/6 mice (13). Here, we improved
the detection of single bacteria in the tissue by machine-based
learning, and additionally, we achieved an automated annotation
of bacteria clusters.

Applying our bacteria-guided analysis of ISS data at different
time points after infection in the lung tissue of C57BL/6 mice and
in C3HeB/FeJ mice, we observed heterogenic bacteria–immune
cell associations. C57BL/6 lungs showed enriched macrophage
and activation markers in close proximity to bacteria that
increased over time. In contrast, the immune environment in
the lungs of Mtb-infected C3HeB/FeJ mice was dependent on the
cluster size: small bacteria clusters showed a higher enrichment
of innate immune activation transcripts in contrast to organized
bigger clusters. Thus, these tools allowed us to better understand
the diversity in immune cell composition activation of the Mtb
tissue microenvironment.
METHODS

Ethics Statement
The study was performed under the approval of the Stockholm
North Ethical Committee on Animal Experiments (permit
number N397/13 and N487/11). The animals were euthanized
using cervical dislocation.

Mice and Infection Assay
C57BL/6 mice were purchased from Janvier labs. C3HeB/FeJ
mice were received from Igor Kramnik (BU, Boston, MA). All
mice were housed and handled at the Astrid Fagreus Laboratory,
Karolinska Institutet, Stockholm, under specific pathogen-free
conditions and according to directives and guidelines of the
Swedish Board of Agriculture, the Swedish Animal Protection
Agency and the Karolinska Institutet. For the infection assay,
mice were infected with 150–200 Mycobacterium tuberculosis
(Mtb) Harlingen strain by aerosol using a nose-only exposure
unit (In-tox Products). At the indicated time after infection, mice
were euthanized and lungs were extracted and fixed in 4%
buffered paraformaldehyde for 24 h. Fixed left lungs were
paraffin-embedded. From each lung sample, 8-mm sections
(along the long axis of the lobe) were obtained and stored
at −80°C. Slides were paraffin-removed and dehydrated directly
before further processing.

In Situ Sequencing (ISS)
ISS was performed as described in Carow et al. (13, 19). After
deparaffinization and digestion with pepsin 100 mg/ml in 0.1 M
HCl for 20 min at 37°C, sections were washed with dH2O and PBS
and then dehydrated through ethanol series. Hybridization
chambers were mounted on top of the samples (SecureSeal
Hybridization chambers, Grace Bio-Labs). Reverse transcription
of mRNA was performed overnight at 37°C with the use of
May 2022 | Volume 13 | Article 876321
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random decamer primers and specific primers that partially
overlap with the sequence of the padlock probes in a mix
containing 5 mM random decamers, 300 mM specific primers
(IDT, Leuven, Belgium), 0.2 mg/ml BSA (NEB), 1 mM dNTPs
(Blirt), 20 U/ml TranscriptMe reverse transcriptase (Blirt), and 1
U/ml RiboLock RNase Inhibitor (Blirt) in the TranscriptMe
reaction buffer. The newly synthesized cDNA was crosslinked
with 4% paraformaldehyde at room temperature for 45 min
followed by degradation of mRNA and padlock probe
hybridization and ligation performed in a mix containing 1×
Tth buffer (20 mM Tris-HCl, pH 8.3, 25 mM KCl, 10 mM
MgCl2, 0.5 mM NAD, and 0.01% Triton X-100), 10 nM of each
padlock probe, 0.2 mg/ml BSA, 0.5 U/ml Tth ligase (Blirt), 0.4 U/ml
RNase H (Blirt), 50 mM KCl, and 20% formamide (Sigma).
Samples were incubated at 37°C for 30 min and then 45°C for
45 min. Multiple padlock probes were designed for each of the 36
transcripts of interest. Each padlock probe set for a target gene
contains a unique four-base barcode, which is used for
identification of target genes. Rolling circle amplification mix
included 1 U/ml phi29 (Monserate Biotechnology), 0.4 U/ml
ExoI (Thermo Scientific), 0.25 mM dNTPs, and 5% glycerol in
phi29 buffer [50 mMTris-HCl, pH 7.5, 10mMMgCl2, and 10mM
(NH4)2SO4]. The samples were incubated at 37°C for 5 h and then
at 30°C overnight, generating the rolling cycle product (RCP)
for detection.

Sections were then washed and 0.5 mM Alexa750 anchor
probe was hybridized to the amplification products for 45 min at
room temperature in the dark in a mix containing 2×SSC and
20% formamide. For sequencing by ligation, 0.1 mM of each of
the four interrogation probes conjugated with corresponding
fluorophores (FITC, Cy3, Cy5, or TexasRed) were incubated for
1 h at room temperature in the dark with a mix containing 0.1 U/
ml T4 ligase (Blirt), 1× T4 ligase buffer, 0.2 mg/ml BSA, 1 mM
ATP (Thermo Scientific), and 100 ng/ml DAPI. After PBS
washes, sections were dehydrated through ethanol series and
air dried. Cover slips were mounted with SlowFade™ Gold anti-
fade reagent (Invitrogen). Imaging was performed in a Axio
Imager Z2 epifluorescence microscope (Zeiss) with 20× objective
by acquiring Z-stacks of overlapping tiles that together cover the
tissue section (10% overlap).

After imaging, the samples were prepared for the next
sequencing cycle. For the removal of the interrogation probes,
the samples were treated with 0.02 U/ml UNG (Thermo
scientific) and 0.2 mg/ml BSA in UNG treating buffer for 15
min and washed twice with DEPC-PBS-T. Three washing steps
with 100% formamide for 3 min followed. After washing with
DEPC-PBS-Tw, the anchor hybridization, ligation, and imaging
processes were repeated for the next base. A full list of padlock
probes, reverse transcription primers, and sequencing-by-
ligation oligonucleotides is available in the work of Carow
et al. (13).

Auramine–Rhodamine T Staining
After ISS, the cover slips were removed from the glass slides, the
tissue sections were washed in PBS, and TB Auramine–
Rhodamine T (AR) staining was performed using the TB
Fluorescent staining kit T (BD). Briefly, the tissue sections
Frontiers in Immunology | www.frontiersin.org 3
were incubated at 37°C for 15 min in pre-warmed TB AR
(BD), washed with tap water, and decolorized for 4 min at
room temperature with Decolorizer. After being washed with tap
water, the tissue sections were stained with DAPI for 15 min in
room temperature, washed with tap water, and air dried, and
cover slips were mounted with SlowFadeTM Gold anti-fade
reagent (Invitrogen). Imaging was performed in an Axio
Imager Z2 epifluorescence microscope (Zeiss) with 20×
objective by acquiring Z-stacks of overlapping tiles that
together cover the tissue section (10% overlap).

ISS Image Analysis
The z-stacks of acquired images weremerged to a single image using
themaximum-intensity projection (MIP) in the Zeiss ZEN software.
The resulting images were stitched into a single image containing the
entire scanned area. The images from the four sequencing rounds
were aligned based on the DAPI staining. For the analysis of the
aligned images, a CellProfiler (v2.1.1) automated pipeline was used
(Github repository, Blobidentification_NucleiCounting), which
applied ImageJ plugins for image registration. A manual threshold
for identification of primary objects was set between 0.0015 and
0.0020. The general stain from RCPs (anchor probe) was used for
saving x and y coordinates and the fluorescence intensities for each
RCP for each of the four barcode bases were saved in a.csv file and
decoded using a MATLAB script (Github repository,
InSituSequencing_1). For each RCP and sequencing round, the
base with the highest intensity was assigned to the corresponding
RCP and a fixed quality threshold of 0.35 that was defined as the
maximum signal divided by the sum of all signals for that base
was applied.

For signal visualization the InSituSequencing_1 MATLAB
script was used to plot the transcripts on DAPI, hematoxylin–
eosin (HE), or AR staining images.

Identification of Single Bacteria and
Surrounding Transcripts
AR staining images were used for the single bacteria
identification. Fluorescence from FITC channel was subtracted
from the Cy3 channel to reduce background fluorescence
(ImageSubstraction MATLAB script) and the images were tiled
with InSituSequencing_V3 MATLAB script (both in Github
repository). The tiled images were used as input for a Cell
profiler pipeline (IdentifyImagedBacteria) (v 4.0.6) for the
identification of all imaged objects (Github repository). The
intensity range for the input images was set between 0 and 0.5
except for sections in which we observed oversegmentation of
background and then the threshold was set to 0.008/0.015–0.5.
The selected thresholding method was Otsu 3-classes, which
calculates the threshold separating the three classes of pixels
(foreground, background, and middle intensity) by minimizing
the variance within each class. Threshold correction factor was
set to 0.4 and the size of the smoothing filter was set to 8. The
generated .properties file and training set were used as input for
the Cell profiler-Analyst (v 2.2) to classify single bacteria,
bacterial clumps (when few bacteria are very close to each
other and create one identifiable object), and background. A.txt
May 2022 | Volume 13 | Article 876321
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file was generated containing 20 rules for optimal object
classification (rules_Mixed_20, Github repository).

The obtained object classification rules were used in a final Cell
profiler (v 4.0.6) pipeline with tiledAR images as input. The parameters
used were similar to the Cell Profiler pipeline for the identification of all
the objects (Github repository, FinalSingleBacteria).

The generated .csv files with the x and y coordinates of
identified single bacteria and bacterial clumps were merged
and used as input for the RelateBacteriaAndGene MATLAB
script together with the (details) .csv file obtained from the
MATLAB decoding step that contains the x and y coordinates
of the ISS-identified transcripts from the same tissue (Github
repository). From this analysis, a QT_details_ParentBact.csv file
was obtained, which contained the distance of each transcript to
its closest bacteria. Transcripts within given bacteria distances
were extracted, and the frequency of each immune transcript
among all immune transcripts of the given distance was used for
analysis and normalized to the frequency of the transcript in the
total slide.

Frequency ratio =
%   of transcript  X   in distance  Y
%   of transcript  X   in total slide
Identification of Bacterial Clusters and
Surrounding Transcripts
AR staining images were re-sized to 20% of the original image
and used for the bacterial cluster identification. The re-sizing
allowed the process of one (smaller size) image per tissue section,
avoiding the tiling that is needed for processing original files and
thus not interrupting the recognition of fluorescence signal from
cluster areas. Subtracted images created as described above were
processed with an automated MATLAB script (Github
repository, BacterialClusters_wGradientOutput_Areas) for the
cluster identification and gradient border assignment. For the
bacterial cluster identification, a manual threshold between 78%
and 95% was set for optimal identification depending on how
widespread the staining for each tissue was. A threshold of 90%
means the top 10% pixels are considered as foreground. The
identified clusters were numbered and clusters with area smaller
than 7,000 pixels2 were excluded from further analysis. A
gradient of selected size 300 pixels (97,5 mm) was drawn
around the selected clusters. We were able to identify the
transcripts reads falling in each cluster area or surrounding
gradient by using the x and y coordinates of each identified
transcript, which was produced during decoding with the
InSituSequencing_1 MATLAB script. Finally, the density of
each transcript as the number of transcript reads divided by
cluster area or gradient step area was used for further analysis.
For comparisons between sections, the transcript density was
normalized by a performance factor as the ratio of total number
of identified immune transcripts and total section area.

density ratio =

selected transcript number  ROIð Þ
area  ROIð Þ

total transcript number  sectionð Þ
area section
Frontiers in Immunology | www.frontiersin.org 4
Heatmap and Principal Component
Analysis
Normalized transcript reads or frequencies were uploaded to
ClustVis, a web tool for visualizing clustering of multivariate data
using heatmaps and principal component analysis (https://biit.
cs.ut.ee/clustvis/). ClustVis calculates principal components
using one of the methods in the pcaMethods R package and
plots heatmaps using the heatmap R package (version 0.7.7).

Statistics
Student’s t-test and ANOVA were used as indicated with p < 0.05
marked as significant (*), p < 0.01 (**), p < 0.001 (***), and
p < 0.0001 (****).

Github Repository
All relevant scripts for ISS image analysis, the single bacteria
identification, and the bacterial cluster identification are available
at https://github.com/Moldia/Tuberculosis-bacterial-analysis.
RESULTS

ISS Identifies Expected Patterns of
Immune Transcripts in Tuberculous Lung
Granulomas and Allows the Analysis of
Mtb Immune Environments
In this study, we extended the analysis of the distribution of 33
immune and 3 control transcripts in lung sections of Mtb-
infected mice (13) with the focus of describing the immune
environment of Mtb bacteria in different mouse infection models
and at different time points post infection. We have generated
new datasets in order to compare two different Mtb mouse
models, C57BL/6 and C3HeB/FeJ, since they show different
pathologies after Mtb infection: the former does not develop
necrotic lesions after Mtb infection, while the latter is susceptible
to Mtb and shows necrotizing granulomas (20).

By aligning the generated transcript signals to the HE staining
of the analyzed lung tissue section, we found the predicted
patterns of immune transcripts and that our control Cc10
transcript (coding for Clara cell 10-kDa protein) localized as
expected in airway epithelium (Figure 1A and Supplementary
Figure 1A). For base identification in the barcode reading of the
sequencing rounds, we chose a quality score of 0.35, defined as
the maximum signal divided by the sum of all signals for that
base. We further identified comparable expression patterns and a
strong linear correlation (r2 = 0.97) when using different ISS
quality thresholds (Supplementary Figures 1B, C).

By exploring the distribution of transcripts to identify major
immune cell subsets, we found that transcripts of macrophage-
indicating Cd68 and of inducible nitric oxide synthase-2 (Inos)
that are expressed in activated macrophages increased from 3
weeks post Mtb infection (wpi) to 8 and 12 wpi. These transcripts
were absent in encapsulated granulomas from C3HeB/FeJ mice
at 10 wpi (Figure 1A). Cd11c and Cd86 transcripts expressed by
antigen-presenting cells showed a scattered distribution
(Figure 1A). However, the frequency of both Cd11c and Cd86
May 2022 | Volume 13 | Article 876321
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significantly increased at 8 and 12 weeks as compared to 3 wpi
(Supplementary Figure 1D). As expected, frequency and
occurrence of T cell-related transcripts like Cd8a were elevated
after 3 wpi. In C57BL/6, the distribution was even across the lung
Frontiers in Immunology | www.frontiersin.org 5
tissue, whereas in C3HeB/FeJ mice, they localized mainly to
organized granuloma structures. Cd19 transcripts localized to
lymphoid-rich histology structures (Figure 1A). These potential
B-cell follicles formed at the later time points in C57BL/6 lungs,
A

B C D

FIGURE 1 | Immune environments of Mycobacterium tuberculosis bacteria. Localization of immune transcripts in tuberculous lung granulomas. (A) Fixed lung tissue
sections of C57BL/6 and C3HeB/FeJ mice at the indicated weeks post Mtb infection (wpi) were analyzed by ISS and stained for DAPI, Auramine–Rhodamine T (AR),
and hematoxylin–eosin (HE). ISS signals for indicated transcripts were plotted on AR-stained image as background. One representative image out of the three
sections per condition is displayed. Scale bar: 1,000 mm. (B) Image of AR staining of C57BL/6 lung section 12 wpi is displayed with a scale bar of 1,000 mm.
Rectangular regions for zoom-ins are indicated. (C) Inos and Cd68 transcripts plotted on AR image (zoom-in of B). Scale bar: 200 mm. (D) Magnification of AR
image in B and C is shown for visualization of single bacteria and bacterial clumps. Scale bar: 20 mm.
May 2022 | Volume 13 | Article 876321
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but were reduced in the lungs of C3HeB/FeJ mice, confirming
our previously published results (13) in this new C57BL/6
ISS dataset.

To determine immune transcripts that localized in the
proximity of Mtb, we performed AR staining for the analyzed
sections (Figure 1B). Bacteria accumulated in high-density
regions of Cd68 and Inos transcripts, as reported previously
(13) (Figure 1C). As we were able to locate single bacteria and
immune transcripts generated by ISS (Figures 1C, D), we aimed
to describe the immune molecules in the proximal to single
bacteria and bacteria accumulated in lesions by developing two
different automated pipelines.
Single Bacteria Identification Indicates
Robust Inos Expression in Mtb-Infected
Cells in C57BL/6 but not
in C3HeB/FeJ Lungs
As we were able to locate single bacteria and immune transcripts
generated by ISS (Figures 1C, D), we aimed to describe the immune
molecules in theproximal to single bacteria andbacteria accumulated
in lesions by developing two different automated pipelines.

To objectively and automatically detect the Mtb bacteria in the
tissue, we applied a machine learning approach to identify all
bacteria in lung sections, to exclude background noise, and to
connect the bacteria coordinates to ISS data (Figure 2A). As input,
we used the Cy3 channel of AR images that had been subtracted by
the FITC channel of the same image to reduce the impact of
autofluorescence. In a first Cell Profiler pipeline, objects in tiled
images were detected. These objects were then loaded in Cell
Profiler analyst and manually sorted for a correct classification
into single bacteria, clumps (2–4 bacteria that are not
distinguishable), and background. Using the fast gentle boosting
algorithm in Cell Profiler analyst, we retrieved 20 rules based on
object shape and intensity that were of more than 88% accuracy to
correctly classify unknown objects (Supplementary Figure 2A).
Implementing the identified rules in the initial Cell Profiler pipeline
(Github repository, FinalSingleBacteria) allowed the detection of
objects, retrieving the identification and coordinates for single
bacteria and clumps of bacteria (Figure 2B).

Next, we used a MATLAB script (Github repository,
RelateBacteriaAndGene) to measure the distance of each transcript
to the nearest bacteria, and found distinct frequencies of immune
transcripts at different distances from bacteria (Figures 2C, D).
Results for single bacteria and bacteria clumps were similar, and
therefore pooled data were analyzed (Supplementary Figure 2B). In
a C57BL/6 lung section, 3 wpi showed the most distinct transcript
frequencies of innate immune transcripts (e.g., Cd11b, Cd11c, Cd68,
Inos, Il12p35, and Il6) at subcellular distances (0–3 μm and 3–10 μm)
fromMtb, which we interpret as high expression within the infected
cells or in a cell neighboring an infected cell (Figures 2C, D). By
computing the ratioof a transcript frequencyat a givendistance to the
transcript frequency across the whole slide, we estimate over/
underrepresentation of a given transcript in the selected distance.
As transcript frequencies varied between the time points andmodels,
only comparisons between the distances within one time point/
model were performed (Supplementary Figure 1D).
Frontiers in Immunology | www.frontiersin.org 6
A significant increase of transcripts indicating activated
macrophages was found at subcellular distances compared to
longer distances in C57BL/6 lungs, indicated by Inos expression
at all time points and for Cd68, Cd11b, and Tnf at some time
points (Figure 3A), analyzing three sections per condition. In
contrast, applying this analysis of single bacteria surroundings in
C3HeB/FeJ lungs at 10 wpi did not show any preferential
expression pattern of macrophage and activation markers. The
elevated Cd11c transcript ratio at subcellular distances at 3 wpi
could indicate the infection of Cd11c-expressing cells as
monocytes, alveolar macrophages, or dendritic cells (DCs) by
Mtb (Figure 3B). However, at 8 wpi, no differences between
subcellular and longer distances were observed. At 12 wpi, an
opposite pattern was found with a preferential Cd11c expression
at longer distances. Transcripts for co-stimulatory molecules
Cd80 and Cd86 involved in antigen presentation and T-cell
activation as well as Th1 differentiation cytokine Il12p40
similarly displayed an increase with distance at 12 wpi.
C3HeB/FeJ lungs showed a similar pattern with increased DC-
related transcript ratios for longer distances to identified bacteria
(Figure 3B). As expected, T cell-indicating transcripts were
preferentially found for distances >10 μm (Figure 3C).
However, the transcript ratio for Cd8a was increased at
subcellular distances to Mtb in lungs of C57BL/6 mice at 3 wpi
and of C3HeB/FeJ mice.
Bacteria Cluster Analysis Highlights
Spatial and Temporal Changes Upon
Infection in C57BL/6 Lungs
The single bacteria identification analysis gave a robust overview of
the Mtb immune environment in the analyzed tissue; however, it
might be amore relevant tool for studying the disease development
in the early stages upon infection. That is, because in early stages of
the disease, the bacteria are more spread throughout the tissue,
compared to later time points when Mtb aggregates in lesions
creating distinctmicroenvironments. Our above pipeline described
an average immune environment around single bacteria or small
clumps without the ability to display the environment’s
heterogeneity. Thus, we aimed to automatically identify
individual bacteria clusters corresponding to tuberculous lung
lesions to analyze their associated immunogenic heterogeneity.

For this purpose, we developed a MATLAB script that used a
20% image of the Auramine staining (Cy3 channel subtracted by
FITC channel as above) as this enabled us to analyze the whole
tissue section without dividing images by image tiling.
The bacteria cluster identification was based on the intensity of
the AR staining applying a top-hat filter, smoothening and
thresholding of the image using parameters that consistently
gave a satisfactory separation (Github repository, Bacterial
Clusters_wGradientOutput_with_areas) (Figure 4A ;
Supplementary Figures 3A, B). The identified clusters were
connected to the ISS coordinates resulting in extracted reads
from each assigned cluster. To study areas within distance to the
cluster, we additionally extracted ISS reads from areas in 100-μm
steps starting from the cluster borders. As the ISS assay
performance varies between sections, we normalized the
May 2022 | Volume 13 | Article 876321
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transcript density per cluster to the density of immune
transcripts per slide, which allowed the comparison between
distances and time points.

The percentage of tissue area that was occupied by bacteria
clusters increased from 10% at 3 wpi to around 30% at 8 and 12
wpi, showing the dissemination of bacteria in the lung tissue over
time (Figure 4B). We compared the ratios of all expressed
transcripts at 3 and 12 wpi in C57BL/6 lungs in the bacteria
clusters containing the highest transcript numbers to ensure data
robustness (5 highest at 3 wpi, 10 highest at 10 wpi). This analysis
showed that any cluster from 3 wpi was distinct from 12 wpi,
although some transcript ratios could overlap at the individual
cluster level (Figures 4C, 5). The range of ratios within one
section could reflect the immune heterogeneity of bacteria
clusters. Only 3 transcripts (Inos, Cd68, and Socs3) increased
over time within the analyzed bacteria clusters (Figures 5A, B).
We expected that the most relevant immune responses to
influence the pathogen–host interaction would occur within
Frontiers in Immunology | www.frontiersin.org 7
the identified cluster and within the surrounding 100-μm
radius (Supplementary Figure 4A). In line with our single
bacteria identification, innate immune response-associated
transcripts (Inos and Tnf) showed a strong decrease with an
increased distance to the bacteria cluster (Figure 5A). The
increase of Socs3 from 3 to 12 wpi within the bacteria cluster
showed a preference for the bacteria cluster and lower levels in
the cluster-surrounding 100 mm (Figure 5B). SOCS3 is a
negative feedback regulator of cytokine and growth hormone
signaling and has been shown to regulate the immune response
against Mtb within several immune cell types (21, 22). However,
transcripts of possible SOCS3-inducing cytokines—Il6 and Il10
—did not follow the same pattern as Socs3 (Figure 5B). Most T
cell-related transcript density ratios decreased from 3 to 12 wpi,
which was unexpected (Figure 5C). Importantly, no differences
between transcript ratios within the cluster and its 100-mm
gradient could be detected at 12 wpi, indicating an even
distribution of T cells in the tissue.
A B

C D

FIGURE 2 | Single bacteria identification and their immune environment per distance. (A) Workflow scheme of single bacteria identification pipeline development and
connection to ISS data. (B) Example of tiled AR image that is used as input into the single bacteria identification (final FinalSingleBacteria) pipeline is shown in the left
panel. Automated detection of all imaged objects is annotated in red in the middle panel and identified single bacteria (yellow) and bacteria clumps (green) are in the
right panel. Scale bar: 100 mm. (C, D) Principal component analysis (C) and heatmaps (D) of immune transcript frequencies at different distances from identified
bacteria (0–3 mm, 3–10 mm, 10–30 mm, 30–100 mm, >100 mm) and the frequency taken over the total section are displayed for one representative C57BL/6 lung
section at 3 wpi.
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Bacteria Clusters and Their Immune
Environments in C3HeB/FeJ Mice Show
High Molecular and Histopathological
Heterogeneity
Next,we appliedour bacteria cluster identification script tofindand
describe bacteria clusters in Mtb-infected lung sections of C3HeB/
FeJ mice. After automated cluster identification, we manually
grouped the clusters based on their underlying histopathology
into three different lesion types that we called BOG (big,
organized granulomas), IOG (intermediate, organized
Frontiers in Immunology | www.frontiersin.org 8
granulomas), and SC (small clusters) (Figure 6A and
Supplementary Figure 5A). BOG and IOG bacteria clusters
showed a round structure with a center of necrotic cells
surrounded by a lymphocytic rim, whereas SC bacteria clusters
were of uneven structure, mainly consisting of epithelioid cells
(Figure 6A and Supplementary Figure 5A). Comparing the
transcript ratios of all immune transcripts contained in the cluster
types, we observed a clear distinction between BOG and SC, with
IOG showing overlap within both groups (Figure 6B and
Supplementary Figure 5B).
A

B

C

FIGURE 3 | Single bacteria identification and their immune environment per transcript. Transcript frequency ratios for indicated distances to bacteria were identified
in C57BL/6 mice 3, 8, and 12 wpi and in C3HeB/FeJ mice at 10 wpi. Transcript frequencies for (A) Inos, Cd68, Tnf, and Cd11b; (B) Cd11c, Cd80, Cd86, and
Il12p40; and (C) Cd3e, Cd4, Cd8a, and Cd8b1 are displayed. The transcript frequency ratios were calculated as the % of a transcript at a selected distance divided
to the % of this transcript in the total slide. The mean of log2 ratio ± SEM of indicated transcripts in three sections per condition are shown (ANOVA, * for p < 0.05,
** for p < 0.01, *** for p < 0.001, and **** for p < 0.0001).
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The grouping of bacterial clusters allowed a refinement of the
single bacteria analysis that had shown lower transcript levels
associated with innate-mediated protection compared to C57BL/6
mice. We found reduced levels of macrophage and dendritic cell-
associated transcripts (Cd68, Inos, Tnf, and Cd11c) in BOG
compared to SC (Figures 6C, D). T cell-associated transcripts
Frontiers in Immunology | www.frontiersin.org 9
showed higher expression levels of Tcrb and Cd8b1 in SC and
increasedCd8a, Ifng, and Foxp3 levels inBOG (Figures 6D, E).Cd4
transcript levels were comparable between BOG, IOC, and SC
(Figure 6E). Most of the differences in transcript levels were very
localized as they were only present within the bacteria clusters and
transcript patterns of BOG and SC overlapped when applying the
A

B C

FIGURE 4 | Bacteria clusters and their immune pattern in C57BL/6 mice. (A) Exemplary input and output of bacteria cluster pipeline for one C57BL/6 section at 12
wpi shows the AR image (top left) and cluster identification on the 20% subtracted image (top middle, top right), based on AR staining signal intensity. Lower panel
displays cluster labeling for individual cluster analysis (bottom left), the applied 100 mm gradient around identified clusters (bottom middle), and plotted immune
transcripts (bottom right). Scale bar: 1,000 mm. (B) Percentage of tissue area occupied by bacteria cluster (d0) for C57BL/6 lung sections at 3, 8, and 12 wpi and for
C3HeB/FeJ lung sections at 10 wpi is displayed. Mean frequencies ± SEM for three sections per condition are shown. (C) Principal component analysis displays the
density ratio of immune transcripts in bacteria clusters identified in a representative section at 3 (blue, n = 5) and 12 (red, n = 10) wpi in C57BL/6 mice. The ellipse
around the clusters indicates the area in which 95% of the samples would be located based on gaussian distribution.
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A

B

C

FIGURE 5 | The immune environment of bacteria clusters and bacteria cluster surrounding areas in C57BL/6 mice. Comparisons of density ratios for indicated
transcripts from selected identified bacteria clusters (d0) are displayed with the addition of density ratios of the 100-mm surrounding (d100) of the bacteria clusters for
one representative C57BL/6 lung section at 3 (black) and 12 (red) wpi. Transcript density ratios are displayed (A) Inos, Cd68 and Tnf; (B) Socs3, Il6, and Il10
cytokines; and (C) Tcrb, Cd4, Cd8a, Cd8b1, Ifng, and Cxcr3. Mean density ratios ± SEM and individual values are shown, and significant differences are indicated
(ANOVA, * for p < 0.05, ** for p < 0.01, *** for p < 0.001, and **** for p < 0.0001).
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A

B

D

E

C

FIGURE 6 | Bacteria cluster types and their immune environment in C3HeB/FeJ mice at d(0) and d(100). (A) Annotation of cluster types shown on HE image to
show the underlying histopathology for one representative C3HeB/FeJ section at 10 wpi (top panel, left). Classification into BOG, big organized granulomas, IOG,
intermediate organized granulomas (less pronounced encapsulated structure), and SC, small cluster. Exemplary input and output of bacteria cluster pipeline with AR
image (top middle) and cluster identification on the 20% subtracted image (top right). Lower panel displays cluster labeling for individual cluster analysis (left), the
applied 100-mm gradient around identified clusters (middle), and plotted immune transcripts (right). Scale bar: 1,000 mm. (B) Principal component analysis displays
the density ratio of immune transcripts in bacteria clusters identified across 3 sections for BOG (red, n = 4) IOG (blue, n = 4), and SC (green, n = 9). The ellipse
around the clusters indicates the area in which 95% of the samples would be located based on gaussian distribution. (C–E) Density ratios for indicated transcripts of
the same clusters as in (B) are displayed. The mean of transcript densities in the bacteria cluster (d0) and in the 100-mm (d100) surrounding area was calculated.
Displayed transcripts in (A) Cd68, Inos, and Tnf; (B) Cd11c, Cd86, Foxp3, Il6, and Il10; and (C) Tcrb, Cd4, Cd8a, Cd8b1, and Ifng. Mean density ratios ± SEM and
individual values are shown, and significant differences are indicated (ANOVA, * for p < 0.05, ** for p < 0.01, *** for p < 0.001, and **** for p < 0.0001).
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100-mm radius around the identified clusters (Figures 6C–E;
Supplementary Figures 4B, 5B).

Similarities in Expression Patterns of SC in
C3HeB/FeJ Mice With C57BL/6 Lesions
Despite Genetic Differences
Finally, to illustrate differences in localized immune
environments of Mtb in lungs of C57BL/6 and C3HeB/FeJ
mice considering cluster types and time points after infection,
we compared expression patterns in the bacteria cluster of
C57BL/6 mice at 3 and 12 wpi with BOG and SC in C3HeB/
FeJ mice at 10 wpi (Supplementary Figure 6). A principal
component analysis of normalized transcript densities placed
the SC of C3HeB/FeJ mice between 3 and 12 wpi bacteria clusters
of C57BL/6 mice (Figure 7A). BOG clustered distinct from SC
and from C57BL/6 clusters. The expression levels of Cd68, Inos,
and Tnf were reduced in BOG clusters not only compared to SC
but also in comparison to clusters in early and late time points in
Mtb-infected C57BL/6 lungs (Figure 7B). In contrast, the BOG
characteristic elevated Cd8a and Foxp3 transcripts were found at
increased levels compared to SC but also in comparison to 3 and
12 wpi bacteria clusters of C57BL/6 mice (Figure 7C).
Altogether, this “cross-comparison” further emphasizes the
compartmentalization in two different bacteria environments
in C3HeB/FeJ mice.
DISCUSSION

The here-presented data successfully resolve the spatial
interaction of immune transcripts representing the host’s
immune response and Mtb bacteria in different mouse models
and time points after infection. Using two complementary
pipelines, our work describes the subsequent activation of
innate immunity at subcellular distances to Mtb over time in
lungs of infected C57BL/6 mice without the observation of a
spatial organization of T-cell responses. Transcripts indicating
antigen presentation (Cd11c, Cd80, and Cd86) are enriched in
non-infected cells at later stages of infection. In C3HeB/FeJ mice,
we found that the immune environment differed between lesion
types: in small clusters that resemble the C57BL/6 clusters in
their expression pattern, macrophage transcripts like Cd68 and
Inos were enriched, whereas in organized granulomas, we
observed Cd8a, Tcrb, and Foxp3 enrichment.

Spatial Analysis
Recent developments in the field of spatial transcriptomics and
metagenomics have been focusing either on the identification of
multiple microbial species in situ (23, 24) or on the identification
and transcriptional analysis of selected microbial species (25).
Other approaches have associated the local expression profile
with the manually annotated histopathological features of the
tissue or the expression of specific disease markers (26).

Immunological studies of the TB granuloma have applied
several spatially resolving techniques like laser caption
microscopy in combination with proteomics as well as
multiplexed ion beam imaging by tune of flight (MIBI-TOF)
Frontiers in Immunology | www.frontiersin.org 12
on human tissue sections containing active TB granulomas to
find that granuloma structure and immune cell function are
connected (27, 28). McCaffrey et al. imaged 37 proteins in TB
granulomas constructing an atlas identifying 19 cell subsets and
8 spatial microenvironments. Importantly, one identified
microenv i ronment indica ted immune dys funct ion
characterized by IFN-g depletion and an enrichment for TGF-
b, regulatory T cells, and IDO1- and PD-L1-expressing myeloid
cells. Their analysis increases our understanding of granuloma
immunology and suggests key events leading to active TB, which
opens for new therapies. However, all the aforementioned
approaches lack the association of the microbial presence with
the local immune profile of the tissue.

Mtb is unique with regard to several aspects of pathogen–host
interactions, the formation of granulomas, a non-sterilizing T
cell-mediated immunity, and a bacterial persistence program as
some characteristics. As one step in understanding local immune
responses to Mtb, we present automated analysis pipelines to
combine the localization of Mtb bacteria and immune
transcripts, which allows the definition of differences in the
environment that is proximal to bacteria. The single bacteria
detection pipeline used allowed us to study the immune response
locally in selected distances from Mtb in infected mouse lungs.
This approach proved valuable in the early stages of infection
and in sections of tissue where Mtb is spread or scarce, and where
only frequencies of immune transcripts in given distances could
be calculated (no normalization to area possible). In later stages
of Mtb infection, the bacteria form clusters corresponding to
histopathological lesions or tuberculous granulomas depending
on the murine genetic background. With the cluster analysis, we
were able to identify the bacteria clusters according to the
intensity of the AR Mtb staining and the adjacent areas
allowed to calculate the immune transcript density. Combining
results gained from the single bacteria and the bacteria cluster
analysis gave insights into different aspects of the occurring
pathogen–host interactions. Regarding our results, the
presentation of one sample per time point (in triplicate) limits
the conclusions that can be drawn, but the robustness and
multiplexity of the generated data still allow us to generate
suggestions that may be evaluated in extended studies.

Mtb and Innate Immunity
Mtb has developed mechanisms to escape the microbicidal
mechanisms of macrophages and can instead survive and
replicate within them (29). We found a high expression of
Cd68 and Inos at subcellular distances to bacteria as well as
within bacteria clusters in C57BL/6 mice lungs. Inos and Tnf
levels surrounding infected cells and clusters were also elevated.
Similarly, we found elevated Cd68 and Inos levels in small
bacteria clusters (SC) of C3HeB/FeJ mice but not in their
organized granulomas. No subcellular increase for those
transcripts was found in the single bacteria analysis for
C3HeB/FeJ mice, probably since the average Mtb surrounding
represents a mixture of SC and BOG. The expression of Inos at
subcellular levels is indicative of classically activated M1
macrophages upon infection of the cell. However, as no M2
markers were included in the panel, we cannot compare the M1/
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FIGURE 7 | Bacteria cluster comparison of C57BL/6 and C3HeB/FeJ mice. (A) Principal component analysis of the density ratio of immune transcripts in bacteria
clusters of C57BL/6 and C3HeB/FeJ mice is shown. Clusters were identified as described for Figures 5, 6 with 3 wpi C57BL/6 (blue, n = 5), 12 wpi C57BL/6 (red,
n = 10), C3HeB/FeJ SC (purple, n = 9), and BOG C3HeB/FeJ (green n = 4). The ellipse around the clusters indicates the area in which 95% of the samples would
be located based on gaussian distribution. (B–D) Density ratios for indicated transcripts of the same clusters as in A are displayed: (A) Cd68, Inos, and Tnf; (B)
Foxp3, Cd8a, and Ifng; (C) Cd11c, Tcrb, and Cd4. Mean density ratios ± SEM and individual values are shown, and significant differences are indicated (ANOVA,
* for p < 0.05, ** for p < 0.01, *** for p < 0.001, and **** for p < 0.0001).
Frontiers in Immunology | www.frontiersin.org May 2022 | Volume 13 | Article 87632113

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Magoulopoulou et al. Immune Environments of Mycobacterium tuberculosis
M2 differentiation for infected cells and the Mtb immune
environment, which remains to be studied in the future.

Inos encodes for the enzyme producing bactericidal nitric
oxide (NO) and is central in the innate defense against Mtb in
mice, and its absence leads to mice that are highly susceptible to
Mtb (30, 31). The frequency of Inos mRNA at subcellular
distances to Mtb increased from 3 to 8 and 12 wpi as well as
the lung area occupied by bacteria clusters. We found the highest
expression of Inos mRNA within the infected cells but not in
neighboring cells, excluding a direct transcriptional repression by
Mtb. Despite its correct cellular location and high expression,
there are several possibilities that may account for the insufficient
Mtb control: Toxic NO levels may not have been reached due to
limitation of the iNOS substrate L-Arginine or insufficient
enzymatic activity of iNOS. Another possibility is that Mtb’s
evasion mechanisms prevented the bacterial clearance. Mtb has
been shown to produce proteins that repair NO-damaged
bacterial proteins at the proteasome level (32–34) and inhibits
the recruitment of the enzyme iNOS to the phagosome (35).

Another transcript density that increased over time in C57BL/
6 bacteria clusters besides Cd68 and Inos was Socs3. SOCS3 is a
negative feedback regulator of cytokines of the IL-6 family, and
several growth factors and hormones and SOCS3 in myeloid cells
contribute to defense against Mtb (21, 22). As transcripts of its
main inducing cytokines, IL-6 and IL-10 did not increase within
bacterial cluster over time, and we speculate that other stimuli
like bacterial products may contribute to the increase in Socs3
expression (36). We have previously shown that Socs3 expression
induced by Mtb in macrophages is dependent on NF-kB and
thereby at least partially Il-6 and Il-10 independent (21). It is
worth mentioning that the local expression of immune
transcripts in the bacterial cluster (Figure 5), as measured here
by ISS, can differ from the bulk measurement of cytokines, e.g., in
lung homogenates. Therefore, comparison of ISS data with a
measurement of cytokine levels in the lungs will not
automatically match our findings but would be an interesting
follow-up.

CD11c is commonly used to identify DCs but can also
indicate the presence of alveolar macrophages, monocytes, and
immature macrophages. DCs can take up Mtb antigens but also
get infected by bacteria. Alveolar macrophages reconstitute a
significant proportion of macrophages within the Mtb-infected
mouse lung (37). They are the first cell contact of Mtb with the
host after inhalation and contribute to Mtb dissemination, which
matches our finding of an enriched Cd11c expression at
subcellular distances at 3 wpi but not later (1). At 12 wpi, a
transcript pattern indicating activated and antigen-presenting
cells (Cd80, Cd86, and Il12p40) was preferentially found in
uninfected cells. This is in line with previous observations
showing a negative spatial association of CD11c+ cells with
Mtb bacteria in mouse lungs in contrast to a positive
correlation of CD11b+ cells indicating macrophages in
neighborhood analysis (14, 38). It remains to be investigated
whether these non-infected CD11c+ cells contribute to bacterial
control. Interestingly, elevated levels of Cd11c and transcripts
indicating dendritic cell activation (Cd86 and Il12p40) were
Frontiers in Immunology | www.frontiersin.org 14
found in SC in contrast to BOG of C3HeB/FeJ mice
confirming their functional diversity.

Mtb and Adaptive Immunity
It has been long questioned if a granuloma structure enables the
direct contact of primed T cells with infected macrophages as
required for their activation. Recent studies redirected the focus
of T-cell functionality in, e.g., lung homogenates to the
importance of the localization of T cells close to Mtb-infected
cells to execute their function (16, 17, 39). In the single bacteria
pipeline, we expected a preferential accumulation of T-cell
transcripts especially indicating a differentiation of macrophage
activating CD4 Th1 cells (e.g., Cxcr3, Ifng, and Tbx1) at a 10- to
30-μm distance compared to further distances. This would have
indicated a functional immune interaction between an antigen-
specific T cell and an Mtb-infected macrophage. However, we
did not confirm this hypothesis. Instead, for 8 and 12 wpi, an
increase in T-cell transcript frequencies for 10–30 μm and 30–
100 μm correlated with the onset of adaptive immunity without a
localized accumulation. Contradicting our expectations was the
reduced T-cell transcript density at 12 wpi vs. 3 wpi within the
bacteria cluster. The BOG formed in C3HeB/FeJ mice resembles
human necrotic granulomas despite their susceptible genetic
phenotype and will be discussed in detail below.

C3HeB/FeJ and C57BL/6 Mice
C3HeB/FeJ mice are very susceptible to Mtb infection despite
having a functional immune system with unimpaired CD4 Th1
cell differentiation and macrophages that respond to IFN-g with
NO production (40). Their survival is shorter than iNOS-deficient
mice and susceptibility has been mapped to the sst1 locus and the
interferon-inducible gene Ipr1 that switches the mechanism of cell
death in macrophages (41, 42). C3HeB/FeJ mice are used as a TB
infection model as they develop necrotic granulomas not seen in
C57BL/6 mice, and this severe pathology within a generally
immunocompetent mouse resembles in that aspect human TB
(20). The formation of necrotic granulomas in C3HeB/FeJ mice is
not a consequence of high bacteria loads, as it has been shown to
precede the strong increase in bacteria amplification. The
comparison of bacteria containing parts of necrotic granulomas
(BOG) that were identified by the bacteria cluster pipeline to the
non-necrotic small bacteria cluster (SC) showed a different
immune profile within the cluster types. It also confirmed the
ability of macrophages to induce Inos and Tnf.Our analysis clearly
demonstrates the compartmentalization of immune parameters
looking at SC and BOG, respectively (Supplementary Figure 6).
However, it is important to bear in mind that the mechanisms
leading to necrotic granulomas without control of bacteria growth
in C3HeB/FeJ mice may differ from local immune events leading
to the progression from latent to active TB in humans. BOG
clusters were characterized by an increased expression of Foxp3,
Cd8a, and Ifng transcripts previously identified as characteristic
for necrotic centers in these mice (13). It is uncertain if Cd8a
indicates the presence of T cells as Tcrb and Cd8b levels are low
and Cd8a may also be expressed by dendritic cell subsets in mice
during infections (43). As previously indicated, the low signal
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density did not allow a cell phenotyping with several markers
detected on one cell, and the absence of additional T-cell
transcripts emphasized this uncertainty.

Limitations, Future Developments, and
Translation
Here, we used AR staining, which is an acid-fast fluorescent
staining, a diagnostic method used as an alternative to classical
Ziehl-Neelsen staining. Problems with AR stainability of bacteria in
the necrotic core of C3HeB/FeJ mice at 10 wpi have been reported
previously, as well as a reduction of general acid-fast staining of Mtb
during dormancy in humans; a change in phenotype/cell wall
composition was suggested as a reason for this phenomenon (44,
45). In our study, Mtb bacteria are stainable in all C57BL/6 sections
and in the necrotic center at 10 wpi in C3HeB/FeJ mice, and an
explanation could be that the pepsin treatment of the tissue before
the ISS assaymade the bacteria accessible for the staining. As a long-
term goal, we would like to combine the detection of immune
transcripts with mycobacteria transcripts in our ISS assay, to detect
transcripts indicating viability, stress responses, and replication of
Mtb in connection to their immune environment. The technical
challenge in that approach is to digest the mycobacteria cell wall to
make mycobacterial RNA accessible for detection probes without
damaging the surrounding tissue and degrading host RNA.

Our study is based on a padlock probe panel against 33
immune transcripts of selected immune cell markers, activation
molecules, and cytokines, which were all identified in parallel
within one section. Although cell typing would likely reveal even
more details of the immune environments, our focus was to study
the expression levels of immune transcripts, in relation to the Mtb
bacteria localization in the infected mouse lung tissue and not
doing cell typing per se. Cell typing would require a higher density
of transcript signals as achieved in our samples in combination
with a much larger padlock probe immune panel, in order to base
cell identity in multiple marker reads per cell. The nature of our
samples, which are formalin-fixed and paraffin-embedded (FFPE),
a biosafety requirement for the collection of Mtb-infected tissues,
shows lower signal densities compared to fresh frozen samples.
Methodological advancements have been achieved since the
beginning of our study, e.g., the direct RNA detection for ISS
(46), that would allow for increased transcript detection and
subsequent cell typing in the future. However, we want to
emphasize that ISS has been shown to be highly reproducible
and representative for transcripts even at low signal densities (13,
26, 47) and that several transcript probes have been confirmed by
immunohistochemistry in our previous publication (13).

We demonstrate here the advancement of combining ISS data
(identified transcripts as coordinates) and bacteria localization. ISS
was conducted first and the same slide was used for bacteria (AR)
and HE staining. The fact that all the experimental procedures are
conducted on the same slide allows us to acquire the exact
coordinates of transcripts or bacteria localization and connect
them with the tissue histopathology. However, if coordinates for
identified cells by immunohistochemistry are available, these can be
used as input in the pipelines as well. High multiplexed
immunohistochemistry could not be performed on the same
Frontiers in Immunology | www.frontiersin.org 15
tissues in our case, since the processing with multiple
experimental techniques (ISS, AR, and HE staining) could have
possibly affected the structure of several antibody epitopes.

Altogether, the here-presented tools constitute a toolbox for
analysis of biologically complex tissues and have the potential to
increase our understanding of the localization of immune
components with respect to Mtb. The advantage of using
formaldehyde-fixed paraffin-embedded tissues allows the use of
archived human biopsies. As padlock probes are custom-designed
based on target sequences, this analysis is open to all species with
known target sequences.

Aiming for the translational goal to not only understand the
local immune control of Mtb in mice but also predict disease
progression and status in human TB patients by investigating the
peripheral blood, we suggest the following next steps. Using the
here-presented approach, Mtb immune environments correlated
to Mtb control or progression could be defined by studying non-
human primate (NHP) samples that show a spectrum of latent
and active granulomas and stainable Mtb bacteria. NHPs mirror
the morphology and physiology observed in human TB disease,
and immune correlates of progression in lungs of NHP could be
correlated to immune correlates in the blood of TB progressors
(48, 49). In addition, studies comparing BCG-vaccinated and non-
vaccinated animal groups would allow the definition of differences
in the Mtb environment induced by vaccination and correlated to
bacterial control. Examples of human granuloma samples could be
applied to confirm findings of identified expression patterns in
Mtb immune environments in the different conditions. In vitro
generated granulomas would give the opportunity to manipulate
and challenge the effect of identified protective expression
patterns. Although important progress in the in vitro granuloma
field has been achieved, generating, e.g., three-dimensional
spheroid human granulomas forming single organized structures
consisting of human lung-derived alveolar macrophages
surrounded by layer of autologous T cells to study innate and
adaptive stages of the TB granuloma, the reduced complexity of in
vivo granulomas must be considered (50, 51). Lastly, a
transcriptomic meta-analysis of peripheral blood from patients
with active and latent TB could correlate identified patterns of
Mtb’s immune environments during disease progression to
systemic measurable parameters.

Overall, our here-presented tools allowed for spatial analysis of
transcript expression according to the tissue histopathology and
the causative agent (Mtb) localization, which enabled us to
compartmentalize the disease lesions and their distinct immune
environments. As the identification of bacteria cluster is based on
fluorescence intensity, the analysis pipeline is not limited to Mtb
infections. It could be applied in other infectious diseases in which
pathogens can be visualized in tissues either by direct staining or
by antibody- or hybridization-based detection, enhancing our
understanding of tissue and disease heterogeneity. Another
application could be in the cancer field, in which a combination
of transcripts identified by ISS with areas overexpressing tumor
antigens like c-myc and p53 detected by immunohistochemistry
would lead to a better definition and understanding of
tumor microenvironments.
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