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Abstract

Relative expressions of structural genes and a number of transcription factors of the antho-

cyanin pathway relevant in Vaccinium species, and related key enzyme activities were com-

pared with the composition and content of metabolites in skins of ripe fruits of wild albino

and blue bilberry (Vaccinium myrtillus) found in Slovenia. Compared to the common blue

type, the albino variant had a 151-fold lower total anthocyanin and a 7-fold lower total pheno-

lic content in their berry skin, which correlated with lower gene expression of flavonoid 3-O-

glycosyltransferase (FGT; 33-fold), flavanone 3-hydroxylase (FHT; 18-fold), anthocyanidin

synthase (ANS; 11-fold), chalcone synthase (CHS, 7.6-fold) and MYBPA1 transcription fac-

tor (22-fold). The expression of chalcone isomerase (CHI), dihydroflavonol 4-reductase

(DFR), leucoanthocyanidin reductase (LAR), anthocyanidin reductase (ANR) and MYBC2

transcription factor was reduced only by a factor of 1.5–2 in the albino berry skins, while

MYBR3 and flavonoid 3’,5’-hydroxylase (F3’5’H) were increased to a similar extent. Expres-

sion of the SQUAMOSA class transcription factor TDR4, in contrast, was independent of the

color type and does therefore not seem to be correlated with anthocyanin formation in this

variant. At the level of enzymes, significantly lower FHT and DFR activities, but not of phe-

nylalanine ammonia-lyase (PAL) and CHS/CHI, were observed in the fruit skins of albino

bilberries. A strong increase in relative hydroxycinnamic acid derivative concentrations indi-

cates the presence of an additional bottleneck in the general phenylpropanoid pathway at a

so far unknown step between PAL and CHS.
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Introduction

Bilberry (Vaccinium myrtillus L.) is a well-known deciduous dwarf shrub growing mostly in

cool temperate regions and mountain areas of Europe and Asia. The berries are a rich source

of various phenolic compounds, including large amounts of anthocyanins [1–3]. This flavo-

noid subclass provides the main red, violet and blue pigments in flowers and fruits, in which

they act as insect and animal attractants, possess protective roles against various biotic and abi-

otic stresses and also provide benefits for human health [4]. In fruits, anthocyanins are pre-

dominantly found in the vacuoles of skin, although anthocyanins can also be found in the pulp

in some berries [5, 6].

Differences in the composition and content of anthocyanins and other polyphenols in fruits

are the consequence of complex metabolic networks, regulated by genetic, developmental and

environmental factors [7–11]. Flavonoids are synthesized via the phenylpropanoid/flavonoid

pathway, the main steps of which are well known [4, 12, 13]. The regulation of this pathway

occurs by the interaction of various transcription factors; R2R3 MYB, basic helix–loop–helix

(bHLH), WD40-like proteins and MADS-box genes [7, 14, 15]. R2R3-MYB transcription fac-

tors are the key switches for secondary metabolite gene regulation and are therefore important

regulators of anthocyanin, proanthocyanidin and flavonol biosynthesis in plants [14]. They are

known to regulate the expression of chalcone synthase (CHS), flavanone 3-hydroxylase (FHT),

dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and other flavonoid pathway

genes in various plant parts (leaves, flowers and fruits) of different horticultural plants such as

anthurium [16], apple [17], bog bilberry [18] etc. One of the factors that determines whether

flower and fruit color is also the competition of flavonoid 3’-hydroxylase (F3’H) and flavonoid

3’, 5’-hydroxylase (F3’5’H) with DFR for substrates, as well as substrate specificity of DFR itself

[19, 20]. This results in different compositions of pelargonidin (orange), cyanidin (red) and

delphinidin (blue) derivatives. Mutations of structural and regulatory genes can also result

in different yellow or white anthocyanin-free phenotypes [19, 21]. Such color mutants have

always been valuable study objects to obtain insights into the regulation of anthocyanins in

nature [22]. Previous studies of rare berry colors of other Vaccinium species have thus pro-

vided a detailed insight into the gene expression of structural and regulatory genes of the

anthocyanin pathway [18, 23, 24].

A downregulation of the structural genes of the anthocyanin pathway in Vaccinium seems

to be correlated with strongly decreased expression of the transcription factors VuMYBPA1
and VuMYBR3 and a moderately but significantly lowered gene expression of VuTDR4 and

VuMYBC2 [18]. VuMYBPA1 is a R2R3 MYB transcription factor with a presumed role in

anthocyanin formation in Vaccinium species [18], although a closely related transcription fac-

tor in Vitis vinifera (VvMYBPA1) rather controls proanthocyanidin formation in grapevine

[25]. PhMYB27 and VvMYBC2-L1 are negative regulators of the pathway to anthocyanidins

and proanthocyanidins in petunia and grapevine, respectively [26, 27]. TDR4 has recently

been suggested to play an important role in the accumulation of anthocyanins in Vaccinium
species [24] but final evidence is not yet available.

We recently discovered a rare Slovenian wild-growing albino bilberry (V.myrtillus) differ-

ing from blue wildtypes in terms of fruit quality parameters such as fruit weight, color and pri-

mary and secondary metabolite composition [28]. Common blue ripe bilberries, typically

accumulate high amounts of blue colored delphinidin- and red colored cyanidin-derived

pigments and additionally contain significant levels of hydroxycinnamic acid derivatives,

flavanols and flavonol glycosides. Our albino variant generally showed strongly reduced poly-

phenol content, which was in contrast to a recently reported albino variant of the closely

related wild-type bog bilberries (Vaccinium uliginosum L.) which had reduced amounts of

A wild albino bilberry shows bottlenecks in the anthocyanin pathway and different regulatory gene expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0190246 December 22, 2017 2 / 14

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0190246


anthocyanins but unchanged flavonol and flavanol levels in comparison common blue berries

and thus possesses a bottleneck in the late anthocyanin pathway [18]. Our almost anthocya-

nin-free albino fruits contained predominantly hydroxycinnamic acid derivatives and only

moderate amounts of flavanols and flavonol glycosides.

We here present a detailed study of this albino variant of V.myrtillus and show how the two

color types of wild bilberry (albino and blue) vary in their relative expressions of selected struc-

tural and regulatory genes of anthocyanin biosynthesis. In addition, we measured the specific

activities of selected enzymes and concentrations of primary and secondary metabolites. We

particularly focused on the polyphenol metabolism in berry skins, since previous studies have

indicated that some key genes that are related to anthocyanin accumulation are expressed

mainly in the skin [29, 30].

Materials and methods

Plant material

Wild blue and albino bilberry fruits were collected at the fully ripe stage on 11 June 2015 from

native population in a forest near Žiri, 40 km west of Ljubljana, Slovenia. Blue and albino type

fruits were randomly collected (approx. 300 and 150 g of fruit, respectively) and only undam-

aged fruits were selected for the analysis. Immediately after harvest, berry skin was separated

from the pulp, shock-frozen in liquid nitrogen, and stored at -80˚C until analyses of enzyme

activities, relative expression and secondary metabolite concentrations. For analysis of primary

metabolites, whole berries were stored at -20˚C.

Experimental design

For extraction of sugars, organic acids and phenolic compounds for each bilberry type (blue

and albino), five biological replications were carried out (n = 5), while for enzyme and gene

expression analysis three biological replications were carried out (n = 3). Each replication

included at least 15 berries. For enzyme assays, each replication was analyzed with 2 technical

replications each. RT-qPCR was carried out in biological triplicates with three technical repli-

cations each. Primary metabolites were analyzed in whole bilberry fruit, while secondary

metabolites in addition to gene expression and enzyme activity were analyzed only in berry

skin.

Chemicals

For the determination of primary and secondary metabolites, same reference compounds were

used as previously reported in our study [28]. Methanol, ethanol, and gallic acid were obtained

from Sigma-Aldrich Chemie (Steinheim, Germany) and sodium carbonate from Merck

(Darmstadt, Germany). The Folin-Ciocalteu phenol reagent and the solvents for the mobile

phases, HPLC-MS grade acetonitrile and formic acid, was purchased from Fluka Chemie

(Buchs, Switzerland). Water for the mobile phase was double distilled and purified with the

Milli-Q system (Millipore, Bedford, MA, USA). L-(U-14C) Phenylalanine and (2-14C)-malo-

nyl-coenzyme A were obtained from Amersham International (Freiburg, Germany). (14C)-

Labeled flavonoids naringenin, dihydrokaempferol (DHK), dihydromyricetin (DHM), and

dihydroquercetin (DHQ) were prepared as described previously [20, 31].

Extraction and determination of sugars and organic acids

Berries (2 g) were ground to a fine paste in a mortar, homogenized with 8 mL of double dis-

tilled water and left for 30 min at room temperature. After the extraction, the homogenate was
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centrifuged and the supernatant was filtered and transferred into a vial. The further analysis

was made as described by our previous study [28]. The results were expressed in mg g-1 FW.

Extraction and determination of individual phenolic compounds

Berry skins were ground to a fine paste in a mortar chilled with liquid nitrogen, and 0.5 g were

extracted with 6 (albino) or 8 mL (blue bilberries) methanol containing 3% (v/v) formic acid

in a cooled ultrasonic bath for 1 h. Skin extracts were centrifuged and each supernatant was fil-

tered and transferred to a vial prior to injection into the HPLC system. The further analysis

was made as described by our previous study [28]. The results were expressed in mg kg-1 FW.

Determination of total phenolic content

The extraction of skin berry samples for the determination of total polyphenols was carried

out according to the same protocol as for individual polyphenols. Total polyphenol concen-

trations of extracts were estimated by the Folin-Ciocalteu phenol reagent method [32]

and expressed as gallic acid equivalents in mg kg−1 FW. Absorption was measured in five

replications.

Extraction and enzyme assays

Shock-frozen bilberry skin was ground to powder with liquid nitrogen. A total of 0.20 g fine

skin powder was homogenized with 0.20 g quartz sand, 0.20 g Polyclar AT, and 3 mL extrac-

tion buffer (prepared as described by Thill et al. [33]. The homogenate was centrifuged for 10

min at 4˚C and 13.000 x g. To remove low molecular compounds, 400 μL of supernatant were

passed through a gel chromatography column (Sephadex G25 medium). The protein solution

eluted in the excluded volume of the column (crude extract) was used for enzyme assays.

Enzyme assays were performed as described previously [34] using the assay conditions opti-

mized for bilberry skin (S1 Table). The assays were incubated for 15 min at 30˚C. To deter-

mine the specific enzymatic activity, a modified Lowry method for protein determination [35]

with BSA as a standard was used. Specific activities of PAL (phenylalanine ammonia-lyase),

CHS/CHI, FHT and DFR were calculated and expressed as kat kg-1 protein.

Gene expression studies

Total RNA was prepared according to Chang et al. [36] and subsequently used for the isolation

of mRNA via the μMACS mRNA isolation kit (Miltenyi Biotec, Auburn, CA, USA). cDNA

was prepared using the RevertAid H Minus MuLV reverse transcriptase (Fermentas Life Sci-

ence, St. Leon-Rot, Germany) with the oligo(-dT) anchor Primer GACCACGCGTATCGATGT
CGAC(T)16V.

Relative gene expressions of ANR (anthocyanidin reductase), ANS, CHS, CHI,DFR, F3’5’H,

FHT, FGT (flavonoid 3-O-glycosyltransferase), LAR (leucoanthocyanidin reductase),MYBC2,
MYBPA1,MYBR3 and TDR4 in comparison to the glycerine aldehyde 3-phosphate dehydroge-
nase (GAPDH) control gene were analyzed by qPCR using a StepOnePlus system and the

SYBR Green PCR Master Mix (Applied Biosystems, Darmstadt, Germany) according to

the supplier’s instruction. Primers for RT-qPCR were used as published elsewhere for V.

uliginosum [18]. Specificity was confirmed by melting curve analysis. All primers showed an

efficiency between the limits of 90 and 110%. Primer suitability of V. uliginosum for the ortho-

logous genes of V.myrtilluswas confirmed by sequencing of the amplification products. Addi-

tionally, we designed primers for V.myrtillus FHT, by using a public available sequence (NCBI

AY123766). A summary of the primers used in this study are provided in S2 Table.
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Differences between the cycle threshold (Ct) of the target gene and the GAPDH gene were

used to obtain relative transcript levels of the target gene, and calculated as 2 exp-(Cttarget –

CtGAPDH). The efficiency of the RT-qPCR-reaction was determined on the basis of standard

curves which were obtained by applying different DNA concentrations. Results were calcu-

lated in relation to the control gene.

Statistical analysis

Results were evaluated with the Statgraphics Centurion XV.II program (Statpoint Technolo-

gies Inc., Warrenton, VA, USA). The significance of the type on the content of primary and

secondary metabolites, relative expressions of flavonoid genes, transcription factors and

enzyme activities were tested using One-Way ANOVA. Differences between forms were tested

with the LSD test at a significance level of 0.05.

Results

Relative expression of structural and regulatory genes of the

anthocyanin pathway

The relative expression of the structural genes CHS, CHI, FHT, F3’5’H,DFR, LAR,ANR,ANS
and FGT of the flavonoid pathway and of four transcription factors previously described as

influencing anthocyanin accumulation in Vaccinium was determined in the blue and albino

bilberry skins (Figs 1 and 2). The latter included transcription factors of the R2R3 and R3

MYB family (MYBC2,MYBPA1 andMYBR3) and the SQUAMOSA class transcription factor

TDR4 (Fig 2). After evaluation of nine candidates of housekeeping genes with respect to

expression stability and quality of signals obtained with published primer sequences for

Fig 1. Relative expression of genes from the anthocyanin pathway (CHS, CHI, FHT, F3’5’H, DFR, LAR, ANR, ANS and FGT) of blue and

albino bilberry normalized to GAPDH. Different letters (a, b) above the columns denote significant differences among bilberries (LSD test

P < 0.05).

https://doi.org/10.1371/journal.pone.0190246.g001
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Vaccinium sp. [37], GAPDH, tubulin ß and clathrin adaptor complexes subunit family protein
remained as suitable housekeeping genes. Considering the fact that only fruits from the same

location and grown under identical conditions were analyzed, we used GAPDH as single

housekeeping gene for the studies.

Most of the primers were derived from studies on V. uliginosum but could be used for our

studies as well. The successful application of RT-qPCR primers of V. uliginosum for genes of

the closely related V.myrtillus showed that the interspecific usage of primers can be success-

fully applied if sequence information is lacking.

In comparison to common blue berry skins of V.myrtillus, the albino type showed strongly

decreased gene expression of all tested structural genes, with the exception of F3’5’H expres-

sion, which was only 1.3-fold higher in albino bilberry and thus almost unchanged (Fig 1).

The most affected genes were FGT (33-fold lower), FHT (18-fold lower gene expression), ANS
(11-fold lower) and CHS (7.6-fold lower), while the other structural genes (CHI,DFR, LAR and

ANR) showed only a 1.5–2.1-fold lower gene expression in albino bilberry (Fig 1).

Among transcription factors, the highest difference between V.myrtillus color types, with

almost 22-fold lower relative expression level for albino bilberry, was measured forMYBPA1
(Fig 2). In addition, albino bilberry had 3.7-fold lower relative expression ofMYBC2 but a

1.8-fold higher relative expression ofMYBR3 (Fig 2). For TDR4 gene expression, no significant

differences were observed between blue and albino V.myrtillus berries (Fig 2).

Specific activities of selected flavonoid enzymes

In addition to the gene expression studies, we also measured for the first time the activities of

the enzymes of the main pathway to anthocyanins, PAL, CHS/CHI, FHT and DFR (Fig 3).

ANS could unfortunately not be included, since its activity can so far only be measured with

recombinant enzymes [13].

Significant differences between the two V.myrtillus color types were observed for FHT and

DFR activities, but not for PAL and CHS/CHI (Fig 3). A 6.1-fold lower specific activity of FHT

Fig 2. Relative expression of transcription factors (MYBC2, MYBPA1, MYBR3 and TDR4) of blue and albino bilberry normalized to

GAPDH. Different letters (a, b) above the columns denote significant differences among bilberries (LSD test P < 0.05).

https://doi.org/10.1371/journal.pone.0190246.g002
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was measured in the albino type (Fig 3). DFR enzyme activities were tested with DHK, DHQ

and DHM as substrates (S1 Table). Enzyme preparations from V.myrtillus did not convert

DHK; moreover DFR preferred DHM over DHQ (1.9-fold and 3.7-fold higher conversation

rates for blue and albino bilberry, respectively). Higher differences in DFR enzyme activities

among the tested bilberries were measured with DHQ, with a 4.5-fold lower activity in the

albino bilberry (Fig 3). DFR with DHM as a substrate had only a 2.3-fold lower activity in the

albino compared to the blue bilberry (Fig 3).

Phenolic profile of bilberry fruit skins

To provide a more detailed insight into the complex flavonoid pathway in the two V.myrtillus
types, the composition and content of primary and secondary metabolites were additionally

analyzed (S3–S5 Tables). Since detailed phenolic characterization of both bilberry fruits was

reported in our previously published work [28], in this study we analyzed only fruit skin phe-

nolics, which are presented in S4 and S5 Tables. Fig 4 provides an overview on the relative lev-

els of the main polyphenol classes of both bilberry skins.

In the albino type, the majority of polyphenols were found to be hydroxycinnamic acid

derivatives (61%), followed by flavanols (21%) and flavonol glycosides (13%), whereas total

anthocyanins contributed only 4.5% (Fig 4 and S4 Table). The polyphenol spectrum of blue V.

myrtillus berry skins, in contrast, consisted of 72% anthocyanins, 19% hydroxycinnamic acid

derivatives and 4–5% of flavanols and flavonol glycosides (Fig 4 and S4 Table). Due to the very

low polyphenol concentrations (7-fold lower total phenolic content in albino compared to

blue bilberry), the absolute amounts of each polyphenol class were higher in blue than albino

type berry skins (S5 Table). Although there were differences in the individual composition of

polyphenol classes (S4 Table), no striking qualitative differences could be found between the

two color types. Even in the anthocyanin spectrum, albino V.myrtillus berry skins accumu-

lated the same 15 anthocyanins, albeit in drastically lower amounts (151-fold lower) (S5

Table).

Fig 3. Specific enzyme activities (PAL, CHS/CHI, FHT and DFR (with DHQ and DHM as substrates) (nkat kg-1 protein) of blue and

albino bilberry. Different letters (a, b) above the columns denote significant differences among bilberries (LSD test P < 0.05).

https://doi.org/10.1371/journal.pone.0190246.g003
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An overview of the flavonoid pathway in V.myrtillus according to our results obtained in

this study is summarized in Fig 5.

Discussion

In this study we characterized for the first time the flavonoid pathway of an albino type of V.

myrtillus found in Slovenia [28] by measuring the expression of a range of structural and regu-

latory genes and selected enzyme activities correlated with the polyphenols accumulated in the

berry skins. Whereas the flavonoid pathway is well established and structural genes can be

found in the databases, if not always for V.myrtillus then at least for another Vaccinium spe-

cies, the knowledge on the regulatory genes influencing the formation of polyphenols, espe-

cially flavonoids is fragmented. We included, however, a number of transcription factors, that

have been previously assumed to play a role in the anthocyanin pathway in any of the Vacci-
nium species, to shed first light on the question if our V.myrtillus albino variant can provide

novel insights into the pathway or if it is similar to other Vaccinium color types previously

reported.

Our study revealed significant differences in the expression levels of key structural genes

and specific enzyme activities of the anthocyanin pathway between albino and blue colored V.

myrtillus fruit skins. Key structural genes showed considerably lower expression levels in

albino bilberry skins, compared to common blue type. Among them, the most affected genes

were FGT, FHT, ANS and CHS, followed by CHI,DFR, LAR and ANR, while F3’5’H gene

expression was slightly higher in albino V.myrtillus (Fig 1). This is in line with reports on

albino V. uliginosum and V.myrtillus, in which the whole pathway with the exception of

F3’5’Hwas strongly downregulated in ripe fruits [18, 23]. It also confirms that F3’5’H is regu-

lated separately as suggested from earlier studies of V. uliginosum [18].

Our albino V.myrtillus, however, showed interesting differences in the expression of

transcription factors compared to other albino fruits of V. uliginosum and V.myrtillus. We

observed significantly lower relative expression levels ofMYBPA1 andMYBC2, but higher

relative expression ofMYBR3 in albino compared to blue bilberry, while for TDR4 gene

expression, no differences were observed (Fig 2). A high correlation ofMYBPA1 expression

with the anthocyanin pathway gene expression has largely been reported earlier [15, 16, 18,

24, 38]. Other albino Vaccinium fruits, however, showed a strong correlation between the

Fig 4. Relative levels of the main polyphenol classes of bilberry fruit skins. (A) Blue bilberry. (B) Albino

bilberry.

https://doi.org/10.1371/journal.pone.0190246.g004
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expression of TDR4 and various MYB factors, suggesting that TDR4 plays an important role

in the control of anthocyanin biosynthesis in Vaccinium berries [18, 24]. This was supported

by virus-induced gene silencing of TDR4, leading to a strong reduction of anthocyanin con-

centrations in the berries. It seems, however, that in this experiment the flesh was much

more affected than skin, since the ripe fruits had a clearly faded flesh color, despite an intense

skin coloration [24]. In agreement with this, our data also suggest that TDR4 is not necessar-

ily correlated with anthocyanin based coloration in V.myrtillus, at least not in the skins. The

Fig 5. Simplified flavonoid biosynthesis pathway (combined studies of gene expression, enzyme activity and

metabolite analysis) leading to anthocyanin accumulation in Vaccinium myrtillus L. Abbreviations: ANR,

anthocyanidin reductase; ANS, anthocyanidin synthase; C4H, cinnamate 4-hydroxylase; CHI, chalcone isomerase; CHS,

chalcone synthase; 4CL, hydroxycinnamate: CoA ligase; DFR, dihydroflavonol reductase; F30H, flavonoid 30-hydroxylase;

F3050H, flavonoid 30, 50-hydroxylase; FGT, flavonoid-3-O-glucosyltransferase; FHT, flavanone 3-hydroxylase; FLS, flavonol

synthase; LAR, leucoanthocyanidin reductase; PAL, phenylalanine ammonia lyase. *leading to small amounts of

kaempferol-3-O-glucuronide. The three bottlenecks identified in the anthocyanin pathway of the albino type berry skins are

numbered with 1 (a, b: ANS, FGT), 2 (FHT) and 3 (a so far unknown step located in the general phenylpropanoid pathway

between PAL and CHS). Grey shaded boxes, enzymes/genes analyzed in our work.

https://doi.org/10.1371/journal.pone.0190246.g005
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moderate increase ofMYBR3 gene expression in the albino V.myrtillus type is in contrast

to the observed downregulation in albino V. uliginosum [18] and to PhMYBx (R3-MYB)

from Petunia, which was upregulated when plants begin to accumulate anthocyanins [39].

Although anthocyanin biosynthesis in plants usually involve R2R3 and R3 MYB activators,

there are also multiple types of repressors, which are less understood [26, 39]. In Petunia
hybrida, a putative R2R3-MYB repressor of anthocyanin synthesis PhMYB27was identified

and in strawberry structurally similar FaMYB1, though there are also some other known

ones [39, 40].

The albino type V.myrtillus berry skins showed comparable results as the previously

reported whole bilberry fruits [28]. As expected, a pronounced shift in the composition of

polyphenol classes was observed, which was also characterized by a drastically lower accumula-

tion of total polyphenols, which was as low as 15% of the concentrations found in the blue ber-

ries (S5 Table). The low content of total polyphenols indicates the presence of a bottleneck

early in the pathway, located between PAL and CHS, which was not encompassed by the

enzyme and gene expression studies as the sequences from Vaccinium are not yet available

(Fig 3). The discrepancies between CHS/CHI enzyme activity and CHS gene expression is

most probably the result of the presence of isoenzymes as frequently observed for flavonoid

enzymes [41]. In Dahlia x variabilis two phylogenetically different chalcone synthases were

described sharing only 69% nucleotide sequence identity, of which one is generally present,

whereas the second is specifically upregulated together with DFR and ANS during anthocya-

nin formation [42]. Indeed the presence of several isoforms of the genes from the anthocyanin

pathway was reported for Vaccinium species [23]. This underpins the importance of measuring

enzyme activities in addition to gene expression to obtain a better picture of the pathway.

The shift in the other polyphenol classes correlated nicely with the observed enzyme activi-

ties and gene expression levels. In general, a lower FHT and DFR activity in albino bilberry

was found and correlated with the higher relative FHT and DFR expression in blue bilberry

(Figs 1 and 2). Additionally, the bottleneck created by low ANS and FGT expression resulted in

drastically lower anthocyanin accumulation in albino skins (S5 Table), as described for other

plants [18, 19, 43]. In a previous study [23], a reduction in levels of DFR and ANS in pink and

white colored bilberries was also demonstrated but their transcript abundance was not mea-

sured by RT-qPCR. The increase in the relative epicatechin concentrations in our albino V.

myrtillus berry skins (S4 Table) may reflect the redirection of anthocyanidin formation to epi-

catechin formation, since ANR and ANS expression were reduced to a minor extent compared

to FGT. The slightly increased F3’5’H expression in albino V.myrtillus berry skins, however,

was not reflected in elevated amounts of 3’, 4’, 5-hydroxylated anthocyanins (delphinidin type)

or flavonols (myricetin type). In our albino type V.myrtillus, FHT and DFR seem to form a

two-step bottleneck, with a lower flux at the first FHT step. The low amounts of dihydroflavo-

nols formed are common substrates for DFR and flavonol synthase (FLS). Substrate competi-

tion between DFR (anthocyanin pathway) and FLS (side branch to flavonols) has been

reported previously for many plants [19, 33, 44]. In detail, enzyme preparations from V.

myrtillus did not convert DHK, which is in line with the absence of pelargonidin derived

anthocyanins. A changed flavonoid flux due to the DHM preference of DFR may provide an

explanation of the relatively lower myricetin concentrations in the albino type compared to

the blue (S4 Table). Although DFR preferred DHM over DHQ, higher differences in DFR

enzyme activities among the tested bilberries were measured with DHQ (Fig 2). The 4.5-fold

higher activity in blue bilberry with DHQ compared with a 2.3-fold higher activity with DHM

confirms the presence of DFR isoenzymes in bilberry that show different substrate specificities,

as recently shown for Fragaria species [20]. If only one isoform were to be present, a similar

reduction in the conversion of DHM and DHQ would be expected. Actually at least two
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different types of DFRs (Accession numbers AY780883, AF483836) have been identified in the

closely related V.macrocarpon [45, 46].

Conclusions

This study provides an in-depth characterization of gene expression and enzyme activities and

metabolites of the polyphenol pathway of an albino type of wild V.myrtillus recently found in

Slovenia. We identified three bottlenecks in the anthocyanin pathway in the berry skins of the

albino type at the level of (1) ANS/FGT, (2) FHT and (3) a so far unknown step located in the

general phenylpropanoid pathway between PAL and CHS. The latter is clearly reflected by

drastically lower total polyphenol concentrations in the albino V.myrtillus berry skins and a

shift in the polyphenol profile towards a prevalent presence of hydroxycinnamic acids and

increased relative (but not absolute) concentrations of flavanols and flavonols. Thus our albino

type adds another model type for studying the anthocyanin pathway and its regulation in Vac-
cinium fruits, which particularly offers the possibility to focus on the general phenylpropanoid

pathway upstream of flavonoid formation. Further work will focus on the identification of the

bottleneck located in the general phenylpropanoid pathway, the identification of isoenzymes

of the flavonoid pathway and putative differences in their substrate specificity as well as tran-

scriptome studies to identify so far unknown further regulatory genes involved in the forma-

tion of anthocyanins in Vaccinium species.
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