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High-level microsatellite instability (MSI-H) in colorectal cancer accounts for about 12% of colorectal cancers and is typically
associated with a dense infiltration with cytotoxic CD8-positive lymphocytes. The role of regulatory T cells that may interfere with
the host’s antitumoural immune response in MSI-H colorectal cancers has not been analysed yet. Using an antibody directed against
the regulatory T-cell marker transcription factor forkhead box P3 (FOXP3), regulatory T cells were examined in 70 colorectal cancers
with known MSI status (MSI-H, n¼ 37; microsatellite stable, n¼ 33). In MSI-H colorectal cancers, we found a significantly higher
intraepithelial infiltration with FOXP3-positive cells (median: 8.5 cells per 0.25 mm2 vs 3.1 cells per 0.25 mm2 in microsatellite stable,
Po0.001), and a significantly elevated ratio of intraepithelial to stromal infiltration (0.05 vs 0.01 in microsatellite stable, Po0.001).
CD8-positive cell counts were related positively to the number of FOXP3-positive cells (Spearman’s r¼ 0.56 and 0.55, respectively).
Our results show that the elevated number of CD8-positive lymphocytes found in MSI-H colorectal cancers is paralleled by an
enhanced infiltration with CD8-negative FOXP3-positive cells. These data suggest that FOXP3-positive cells may play a role in the
regulation of the immune response directed against MSI-H colorectal cancers at the primary tumour site.
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Colorectal cancers (CRCs) arise through two major molecular
pathways. Although the majority of CRCs is hallmarked by large
chromosomal alterations (Lengauer et al, 1997), about 10–15% of
CRCs are characterised by the high-level microsatellite instability
(MSI-H) phenotype that results from defects in the DNA mismatch
repair system. The anti-tumoural immune response against CRCs is
apparently closely linked to the molecular pathogenesis of these
tumours, and MSI-H CRCs typically present with features of a
pronounced local immune response, for example a high density of
tumour-infiltrating lymphocytes with a high proportion of activated
and cytotoxic CD8-positive lymphocytes (Dolcetti et al, 1999; Smyrk
et al, 2001; Phillips et al, 2004; Jenkins et al, 2007). In line with the
pronounced immunogenicity of MSI-H CRCs, these cancers rarely
develop metastases in distant organs and have a comparably good
prognosis (Buckowitz et al, 2005; Popat et al, 2005) in spite of a
large tumour mass at the primary localisation (Wright et al, 2000).

The immunogenicity of MSI-H CRCs is ascribed to the
generation of multiple immunogenic frameshift-derived antigens

as a consequence of coding microsatellite mutations that result
from mismatch repair deficiency (Linnebacher et al, 2001;
Saeterdal et al, 2001; Schwitalle et al, 2008). The presence of these
well-defined tumour-specific antigens renders MSI-H tumours as a
unique model entity for immunological studies.

The outgrowth of MSI-H CRCs despite the presence of a dense
lymphocytic infiltration suggests that several mechanisms interfere
with the efficiency of the host’s immune response in vivo. For
example, immune evasion mechanisms such as impairment or loss
of the human leukocyte antigen class I-mediated antigen
presentation (Bicknell et al, 1996; Cabrera et al, 2003; Kloor
et al, 2005) or the expression of Fas ligand (Okada et al, 2000;
Michael-Robinson et al, 2003) are frequent in MSI-H CRCs.

In the recent past, regulatory T (Treg) cells and their role in the
suppression of antitumoural immune responses have gained
increasing attention. Treg cells represent a heterogeneous group
of T cells that are defined on the basis of their ability to control the
activation and function of antigen-reactive T cells in the periphery,
thereby preventing self-reactivity (reviewed in Knutson et al,
2007). Treg cells can suppress reactivity of tumour antigen-specific
T cells in CRC patients (Clarke et al, 2006). The number of Treg
cells in the peripheral blood and the tumour itself are increased in
patients suffering from gastrointestinal malignancies including
CRCs (Ichihara et al, 2003; Sasada et al, 2003; Kono et al, 2006;
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Loddenkemper et al, 2006; Ling et al, 2007). This suggests that
Treg cells may modulate the anti-tumoural immune response in
CRC patients.

To date, it is unknown whether the well-established difference
between MSI-H and MSS CRCs concerning the infiltration with
lymphocytes of the cytotoxic and activated phenotype is paralleled
by a difference in Treg cell infiltration. Recently, a novel Treg cell
marker, forkhead box P3 (FOXP3), has been described (Fontenot
et al, 2003; Hori et al, 2003; Khattri et al, 2003). The expression of
FOXP3 in T cells corresponds with immune regulatory function
(Hori et al, 2003; Fontenot et al, 2005; Roncador et al, 2005),
indicating that the number of FOXP3-positive tumour-infiltrating
lymphocytes is representative of the number of potential immune
suppressor T cells in the tumour microenvironment (reviewed in
Banham et al, 2006). To determine potential differences between
Treg cell infiltration between MSI-H and MSS CRCs, we analysed
infiltration with FOXP3-positive cells in 70 primary CRC lesions
tested for their MSI status.

MATERIALS AND METHODS

Tumour samples and MSI analysis

Colorectal cancer samples were collected in the Heidelberg Centre
for Familial Colorectal Cancer as part of a prospective study funded
by the German Cancer Aid (Deutsche Krebshilfe) that has been
approved by the Institutional Ethics Committee of the University of
Heidelberg. Tumours were typed for MSI using the standard NCI/
ICG-HNPCC marker panel (Boland et al, 1998) and CAT25 as
described earlier (Findeisen et al, 2005). For tumour staging, the
UICC/AJCC TNM system was applied (American Joint Committee
on Cancer, 1997). Tumours of the patients who had received neo-
adjuvant chemotherapy and tumours with a mucinous histology or
extensive necrotic areas were excluded from the study. A total
number of 37 MSI-H CRCs and 33 MSS CRCs were analysed.

Immunohistochemistry

Tissue sections (2 mm) were prepared from formalin-fixed,
paraffin-embedded material and mounted on aminopropylsilane-
coated slides (SuperFrost, Menzel, Braunschweig, Germany). After
deparaffinisation and rehydration, the slides were boiled in 10 mM

citrate buffer (pH 6) for 15 min to retrieve the antigens.
Subsequently, the slides were allowed to cool for 30 min.

For the detection of CD3, CD8 and FOXP3 antigens, immuno-
histochemistry using ABC method was applied. The endogenous
peroxidase activity was blocked by incubation with 0.6% H2O2 in
methanol for 20 min. The sections were blocked with 10% normal
horse serum (Vectastain Elite ABC kit, Vector, Burlingame, USA).
For immunostaining, mouse monoclonal antibodies specifically
recognising CD3 (1 : 50 dilution, clone PS1, Acris, Heford,
Germany), CD8 (1 : 40 dilution, clone 4B11, Novocastra,
Newcastle, UK) and FOXP3 (1 : 50 dilution, clone 236A/E7,
eBioscience, San Diego, USA) were applied as primary antibodies
at 41C overnight. The slides were incubated with a biotinylated
secondary antibody (1 : 50 dilution, horse anti-mouse IgG,
Vectastain Elite ABC kit, Vector) for 30 min at room temperature
and AB reagent was applied according to the manufacturer’s
instructions (Vectastain Elite ABC kit). The antigen detection was
performed by a colour reaction with 3,3-diaminobenzidine
(DABþ chromogen, DakoCytomation, Glostrup, Denmark). The
sections were counterstained with haematoxylin (AppliChem,
Germany) and mounted with Aquatex (Merck).

For immunofluorescence staining, slides were co-incubated for
2 h at room temperature with the following monoclonal antibodies:
mouse anti-CD3 (1 : 50 dilution, clone PS1, Acris) and rat anti-
FOXP3 (1 : 100 dilution, clone PCH101, eBioscience) for CD3/

FOXP3 double staining, mouse anti-CD8 (1 : 40 dilution, clone
4B11, Novocastra) and rat anti-FOXP3 (1 : 100 dilution, clone
PCH101, eBioscience) for CD8/FOXP3 double staining. Secondary
antibodies (goat anti-mouse IgG labelled with Alexa Fluor 488 and
donkey anti-rat IgG labelled with Alexa Fluor 594; both from
Molecular Probes, Eugene, OR, USA) were applied in a 1 : 50
dilution for 1 h at room temperature. Slides were counterstained
with 40,6-diamidino-2-phenylindol (2mg ml, Roche, Germany) and
mounted with 9.6% Mowiol 4-88 (Roth, Karlsruhe, Germany) in
Tris glycerol containing 0.1% DABCO (Roth). Negative controls
were prepared by omitting the primary antibodies. In addition,
incubation of rat primary antibodies with anti-mouse secondary
antibody and vice versa was performed to exclude cross-reactivity
of the secondary antibodies.

Microscopic evaluation

Evaluation of the immunohistological stains was performed
without knowledge of the MSI status of the tumour or clinical
data. For counting and documentation of tumour-infiltrating
lymphocytes, five representative fields (i¼ 1 to i¼ 5) of the
tumour were chosen from each slide, and the stained cells were
counted by means of a 10� 10 ocular grid at � 200 magnification
(observed area 0.25 mm2) using a Leica DMRBE microscope (Leica,
Solms, Germany). Each field was subdivided into an epithelial and
a stromal compartment, and for both compartments, cellular
infiltration (ni) and the compartment’s area (number of grid
elements, ai) were recorded separately. The relative numbers of
stained cells per 0.25 mm2 (n) were calculated for tumour
epithelium and stroma using the following formula:

n ¼ 1

5
�
X5

i¼1

ni � 100

ai � 0:25mm2

Pictures were taken using a Leica DMRBE microscope (Leica) and
a digital camera DFC480 (Leica), or scanned using a Hamamatsu
NanoZoomer Digital Pathology system (Hamamatsu, Hamamatsu
City, Japan). Immunofluorescence images were calculated present-
ing each fluorochrome signal with an artificial color: Alexa Fluor
488, green (CD3 and CD8, respectively), Alexa Fluor 594, red
(FOXP3), and DAPI, blue (cell nuclei).

Statistical analysis

The correlation between the numbers of FOXP3-positive,
CD3-positive and CD8-positive cells infiltrating the tumour
compartments was estimated using Spearman’s rank correlation
coefficient. The exact Mann– Whitney test was used for pairwise
comparisons of the location of distributions of quantitative
variables. Fisher’s exact test was applied for pairwise comparisons
of categorical variables. Two-sided tests were used for the pairwise
comparisons. A univariate linear regression analysis was used to
relate the numbers of FOXP3-positive cells to clinical variables. A
result with a P-value lesser than 0.05 was always considered
statistically significant. All statistical analyses were performed
using R (R Development Core Team, 2007), version 2.6.1 together
with the R package exactRankTests, version 0.8-16.

RESULTS

To compare the infiltration with FOXP3-positive cells in CRCs with
different MSI status, we analysed 37 MSI-H CRCs and 33 MSS
CRCs. At diagnosis, the age of patients with MSI-H CRCs was
similar compared with the age of patients with MSS CRCs (median
age 51 vs 49 years, respectively; P¼ 0.92). Localisation in the
proximal colon was more frequent in MSI-H CRCs than in MSS
CRCs (Po0.001). There were no significant differences between
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the MSI-H and MSS groups concerning TNM or UICC stage
distribution. Patient’s characteristics are summarised in Table 1.

Infiltration of the tumour with FOXP3-positive cells was
observed in all CRC specimens. In all tumours, the number of
infiltrating FOXP3-positive cells was higher in the tumour stroma
than in the epithelium. In addition to the staining for FOXP3, all
tumours were stained with antibodies against CD3 and CD8 to
assess the overall infiltration with CD3-positive T cells and with
CD8-positive T cells. As observed for the FOXP3 stain, all tumours
showed infiltration with CD3-positive and CD8-positive lympho-
cytes, which was higher in the tumour stroma than in the
epithelium. The median values for the intraepithelial and stromal
infiltration of MSI-H and MSS CRCs with FOXP3-positive, CD3-
positive and CD8-positive lymphocytes are summarised in Table 2.
The exemplary staining results are displayed in Figure 1.

The comparison of MSI-H and MSS CRCs revealed a higher
infiltration of MSI-H CRCs with FOXP3-positive cells. High-level
microsatellite instability CRCs showed a trend towards a higher
infiltration with FOXP3-positive cells in the tumour stroma
(median: 181.5 cells per 0.25 mm2 in MSI-H vs 137.1 cells per
0.25 mm2 in MSS, P¼ 0.06) and a significantly higher intraepithe-
lial infiltration with FOXP3-positive Treg cells (median: 8.5 cells
per 0.25 mm2 in MSI-H vs 3.1 cells per 0.25 mm2 in MSS, Po0.001).
In addition, the ratio between intraepithelial and stromal FOXP3-
positive cells was significantly higher in the MSI-H CRC group
(0.05 in MSI-H vs 0.01 in MSS, Po0.001), indicating that in MSI-H
CRC, a larger proportion of the FOXP3-positive cells was located in

the epithelial compartment of the tumour. A graphical display of
FOXP3-positive cell counts is shown in Figure 2. In accordance
with previously published studies, we found higher numbers of
intraepithelial CD3-positive T cells (median: 60.8 cells per

Table 1 Characteristics of CRC patients

MSA status

Total MSI-H MSS P-valuea

Number of patients n¼ 70 n¼ 37 (52.9) n¼ 33 (47.1)
Age (years; median, range) 50 (29–82)b 51 (29–82) 49 (29–73) 0.92

Gender 0.16
Male 36 (51.4) 16 (43.2) 20 (60.6)
Female 34 (48.6) 21 (56.8) 13 (39.4)

Localisation o0.001
Proximal 31 (44.3) 24 (64.9) 7 (21.2)
Distal 28 (40.0) 6 (16.2) 22 (66.7)
NA 11 (15.7) 7 (18.9) 4 (12.1)

Primary tumour 0.37
T1 4 (5.7) 2 (5.4) 2 (6.1)
T2 13 (18.6) 4 (10.8) 9 (27.3)
T3 41 (58.6) 24 (64.9) 17 (51.5)
T4 8 (11.4) 4 (10.8) 4 (12.1)
Tx 4 (5.7) 3 (8.1) 1 (3.0)

Lymph node status 0.94
N0 32 (45.7) 17 (46.0) 15 (45.5)
N1/N2 27 (38.6) 16 (43.2) 11 (33.3)
Nx 11 (15.7) 4 (10.8) 7 (21.2)

Distant metastasis 0.49
M0 42 (60) 27 (73) 15 (45.5)
M1 8 (11.4) 4 (10.8) 4 (12.1)
Mx 20 (28.6) 6 (16.2) 14 (42.4)

Stage of disease (UICC) 0.64
I 10 (14.3) 5 (13.5) 5 (15.2)
II 17 (24.3) 11 (29.7) 6 (18.2)
III 14 (20.0) 10 (27.0) 4 (12.1)
IV 8 (11.4) 4 (10.8) 4 (12.1)
NA 21 (30.0) 7 (18.9) 14 (42.4)

NA¼ not analysable. aFisher’s exact test for categorical data and the Mann–Whitney test for age. bNumbers in parentheses indicate percentage values if not otherwise indicated.

Table 2 Intratumoural infiltration with positively stained cells

Intraepithelial Stromal Intraepithelial/stromal

(a) Infiltration with FOXP3-positive cells (median number of cells per 0.25 mm2)
MSI-H CRC 8.5 181.5 0.05
MSS CRC 3.1 137.1 0.01

P-value o0.001 0.06 o0.001

(b) Infiltration with CD3-positive cells (median number of cells per 0.25 mm2)
MSI-H CRC 60.8 370.8 0.18
MSS CRC 14.1 320.1 0.05

P-value o0.001 0.06 o0.001

(c) Infiltration with CD8-positive cells (median number of cells per 0.25 mm2)
MSI-H CRC 32.5 107.4 0.30
MSS CRC 6.3 47.7 0.11

P-value o0.001 0.009 o0.001

All P-values were computed using the exact Mann–Whitney test.
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0.25 mm2 in MSI-H vs 14.1 cells per 0.25 mm2 in MSS, Po0.001)
and CD8-positive T cells (median: 32.5 cells per 0.25 mm2 in MSI-H
vs 6.3 cells per 0.25 mm2 in MSS, Po0.001) in MSI-H compared
with MSS CRCs. In addition, the numbers of CD3-positive T cells
(370.8 cells per 0.25 mm2 in MSI-H vs 320.1 cells per 0.25 mm2 in
MSS, P¼ 0.06) and CD8-positive cells (107.4 cells per 0.25 mm2 in
MSI-H vs 47.2 cells per 0.25 mm2 in MSS P¼ 0.009) infiltrating the
tumour stroma were higher in MSI-H CRCs. The comparison of
FOXP3-positive with CD8-positive cell counts revealed a positive
correlation between the two markers (Spearman’s rank correlation
coefficient r¼ 0.60, 95% confidence interval: 0.43–0.73).

In addition, we evaluated the association of clinicopathological
variables with the intratumoural FOXP3-positive cell infiltration.
We could not identify a statistically significant influence of age or
gender on the overall infiltration of CRC with FOXP3-positive cells,
yet a younger age was associated with a lower number of FOXP3-
positive cells in the stroma and a higher ratio of epithelial-to-
stromal infiltration with FOXP3-positive cells (P¼ 0.07 and

P¼ 0.08, respectively). The infiltration with FOXP3-positive cells
did not differ significantly between the local tumour stages (T1 –
T4). In CRC with nodal metastasis (N1/2), the number of stromal
FOXP3-positive cells was significantly lower than in CRC without
nodal metastasis (N0) (median: 136.9 cells per 0.25 mm2 in N1/2 vs
173.6 cells per 0.25 mm2 in N0, P¼ 0.02), whereas the number of
intraepithelial FOXP3-positive cells was not different between both
groups (median: 5.4 cells per 0.25 mm2 in N1/2 vs 4.4 cells per
0.25 mm2 in N0, P¼ 0.92). Similarly, tumours that had developed
metastases in distant organs (M1) also showed a lower stromal
infiltration with FOXP3-positive cells (median: 75.7 cells per
0.25 mm2 in M1 vs 171.6 cells per 0.25 mm2 in M0, P¼ 0.01)
compared with tumours without distant metastasis (M0), whereas
the intraepithelial infiltration was not different (median: 5.1 cells
per 0.25 mm2 in M1 vs 4.5 cells per 0.25 mm2 in M0, P¼ 0.72).

Recent studies indicated that FOXP3 may be expressed
transiently in CD8-positive effector T cells upon activation
(Shevach, 2006; Baron et al, 2007). To further characterize the
phenotype of FOXP3-positive cells detected in CRC lesions,
immunofluorescence double staining was performed using anti-
bodies specific for CD8/FOXP3, and CD3/FOXP3 as a control. Five
CRC lesions showing high numbers of intraepithelial FOXP3 cells
were selected for the analysis. Immunofluorescence stainings
showed that all detectable FOXP3-positive cells were negative for
CD8. In contrast, nuclear FOXP3 signals were regularly accom-
panied by membrane-bound CD3 staining. Exemplary images of
immunofluorescence analysis are shown in Figure 3.

DISCUSSION

The role of Treg cells as suppressors of the host’s antitumoural
immune response has gained considerable interest in the recent
past. The establishment of FOXP3 as a marker for Treg cells
allowed for a phenotypic characterisation of the otherwise
functionally defined group of Treg cells. Recent studies indicate
that FOXP3 expression is not necessarily linked to a regulatory or
suppressor phenotype in T cells, for example transient FOXP3
expression has been reported in activated CD8-positive effector
T cells (Shevach, 2006; Baron et al, 2007). Therefore, it may be
hypothesised that FOXP3 expression detected in intraepithelial
lymphocytes might be ascribed to locally activated CD8þ
cytotoxic T cells, particularly in MSI-H CRCs that are character-
ized by a high density of CD8-positive tumour-infiltrating T cells.
Immunofluorescence double stainings for CD8/FOXP3 and CD3/
FOXP3 as a control showed that no cells simultaneously expressing

CD8CD3

FOXP3

100 �m100 �m

100 �m 100 �m

Figure 1 Representative immunohistochemical stainings with antibodies
specific for FOXP3 (upper panel), CD3 (lower left panel) and CD8 (lower
right panel). Detailed view of FOXP3 staining (upper right) shows the
presence of FOXP3-positive cells infiltrating the tumour epithelium
(arrow).
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Figure 2 (A) Epithelial counts of FOXP3-positive cells in MSS and MSI-H colorectal cancers. (B) Stromal counts of FOXP3-positive cells in MSS and
MSI-H colorectal cancers. (C) The ratio of epithelial-to-stromal FOXP3-positive cell counts in MSS and MSI-H colorectal cancers. Y axis was truncated at 0.4,
y represents one extreme value at 0.7. Open circles represent outliers (above 1.5 interquartile ranges), * represent extreme values (above 3 interquartile
ranges).
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CD8 and FOXP3 were detectable in these lesions. Together with
reports from the literature that tumour-infiltrating CD4-positive T
cells can be detected in MSI-H as well as in MSS CRC stroma and at
lower number also in the CRC epithelium (Dolcetti et al, 1999),
these data show that the vast majority of FOXP3-positive T cells
infiltrating CRC stroma and epithelium represent CD4-positive
cells and not activated CD8-positive effector cells.

Initial studies on CRC specimens reported an elevated number of
Treg cells in CRC compared with healthy colonic mucosa
(Loddenkemper et al, 2006; Ling et al, 2007). However, Treg cell
numbers varied between the tumour specimens; and there is little
information about the influence of clinicopathological characteristics
of the tumour on intratumoural Treg cell density. It is known from
the literature that the number of tumour-infiltrating lymphocytes
with a cytotoxic potential in CRC depends on the MSI status of the
tumour. In analogy, one may hypothesise that MSI status may also
have an influence on the density of tumour-infiltrating Treg cells.

Although a recent study has examined FOXP3 transcript levels in a
series of CRCs that had been typed for MSI status (Le Gouvello et al,
2008), this study is the first to systematically analyse the infiltration
with FOXP3-positive cells in CRC in dependence of MSI status.
Although Le Gouvello et al (2008) observed higher expression levels
of FOXP3 mRNA in MSS CRCs compared with MSI-H CRCs, this
study detected an enhanced infiltration of FOXP3-postive cells in
MSI-H CRCs by immunohistochemistry. This discrepancy might be
attributed to the different methodology applied in the studies, and
might in part reflect the notion that FOXP3 transcript may be present
without the presence of FOXP3 protein (Yamamoto et al, 2008). In
addition, the analysis of mRNA levels does not allow for the
attribution of FOXP3 expression to specific cell types present in the
tumour and may be influenced, for example, by tumour cells
expressing FOXP3 mRNA (Hinz et al, 2007).

For our analysis, we chose to differentiate between intraepithe-
lial and stromal infiltration, considering an earlier observation that
the prognostic significance of lymphocyte infiltration was mainly
related to the number of intraepithelial lymphocytes (Naito et al,
1998; Sato et al, 2005). In our collection, we observed a
significantly higher number of FOXP3-positive Treg cells in the
stroma compared with the epithelial compartment of the tumour,
which is in accordance with the results reported by Loddenkemper
et al (2006). However, in contrast to the previously reported
absence of Treg cells in tumour epithelium (Ling et al, 2007),
intraepithelial FOXP3-positive cells, although sparse in some
tumours, were detected in all but one of the analysed lesions.

The comparison of MSI-H and MSS CRCs revealed a signifi-
cantly higher number of intraepithelial FOXP3-positive lympho-
cytes in MSI-H compared with MSS CRCs and a trend towards a
higher infiltration with these cells in the tumour stroma of MSI-H
CRCs. Also in MSI-H CRCs, a higher proportion of the tumour-
infiltrating FOXP3-positive cells were located in the epithelium, as
indicated by a higher ratio of epithelial-to-stromal infiltration in
the MSI-H group. This indicates that the previously known

difference between MSI-H and MSS CRCs concerning overall
lymphocytic infiltration as well as the infiltration with CD3-
positive and CD8-positive T cells also extends to a differential
infiltration with FOXP3-positive Treg cells. Moreover, a close
association of FOXP3-positive cell counts with numbers of CD8-
positive cells was shown (Spearman’s rank correlation).

In addition, we looked at several other clinicopathological
parameters that may be associated with Treg cell counts, although
we concede that the number of tumours included in the study limits
the power of the statistical analysis. No significant difference in
infiltration with FOXP3-positive cells could be detected between
tumours of different local tumour stages (T1–T4), potentially reflecting
the limited number of tumour samples in each group. The density of
FOXP3-positive cells in tumour stroma was significantly higher in
unmetastasised CRCs compared with tumours with lymph node or
distant metastases. These data are in accordance with the findings of
Loddenkemper et al, who reported a significantly higher Treg
infiltration in limited than in metastatic CRC that was mainly caused
by Treg infiltrating the tumour stroma. In contrast, no difference in
intraepithelial infiltration was observed. Two studies (Atreya et al,
2007; Ling et al, 2007) failed to find an association of intratumoural
FOXP3-positive Treg cells or FOXP3 mRNA expression with the
presence or absence of metastases. At present, the significance of Treg
cell infiltration for the progression of CRC remains unclear and
warrants further investigation. Similarly, the association of Treg cell
counts with overall or disease-free survival was not feasible in our
collection of patients. Concerning the mechanism underlying the
increased numbers of tumour-infiltrating FOXP3-positive cells ob-
served in CRCs of the MSI-H group, it is interesting to note that
dendritic cells can expand Treg populations (Nagorsen et al, 2007),
thus potentially explaining an increased frequency of FOXP3-positive
cells in MSI-H CRCs as a consequence of a pronounced immune
response observed in these lesions. The mechanisms leading to the
observation of enhanced FOXP3-positive cell counts in MSI-H CRCs
and its clinical significance need to be addressed in future studies.

In summary, this is the first study systematically examining the
association of mismatch repair deficiency and infiltration with
FOXP3-positive cells. Our results suggest that the density of Treg
cells infiltrating CRCs is significantly higher in MSI-H compared
with MSS CRCs, thus paralleling the enhanced number of CD8-
positive cells in these tumours. A dense infiltration of MSI-H CRCs
with FOXP3-positive cells may play a role in local MSI-H tumour
growth in the presence of potentially cytotoxic T cells in the local
tumour environment.
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Figure 3 Representative immunofluorescence stainings. Double stainings for CD8 (Alexa Fluor 488, green) and FOXP3 (Alexa Fluor 594, red) in the left
panel and centre panel, respectively. Double staining for CD3 (Alexa Fluor 488, green) and FOXP3 (Alexa Fluor 594, red) in the right panel.
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