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Abstract 

Objective: The use of benchtop metabolic profiling technology based on nuclear magnetic resonance (NMR) was 
evaluated in a small cohort of cats with a view to applying this as a viable and rapid metabolic tool to support clinical 
decision making.

Results: Urinary metabolites were analysed from four subjects consisting of two healthy controls and two chronic 
kidney disease (CKD) IRIS stage 2 cases. The study identified 15 metabolites in cats with CKD that were different from 
the controls. Among them were acetate, creatinine, citrate, taurine, glycine, serine and threonine. Benchtop NMR tech‑
nology is capable of distinguishing between chronic kidney disease case and control samples in a pilot feline cohort 
based on metabolic profile. We offer perspectives on the further development of this pilot work and the potential of 
the technology, when combined with sample databases and computational intelligence techniques to offer a clinical 
decision support tool not only for cases of renal disease but other metabolic conditions in the future.

Keywords: Chronic kidney disease, Cat, Metabolite, Metabolomics, NMR

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Metabolic profiling involves the investigation of mol-
ecules within a biological system and the perturbations 
within that in response to internal or external stimuli. 
Metabolic profiling and associated techniques have been 
previously applied to human, animal, and plant models 
[1–7]. High-field nuclear magnetic resonance (NMR) 
and mass spectrometric measurements are considered 
the gold standard for metabolomic investigations [8–14], 
however, there are limitations with employing these tech-
niques in point-of-care or near-patient settings, such as 
veterinary or medical practices, due to the mechanical 

and electrical requirements of such equipment. Benchtop 
NMR (bNMR) however provides an opportunity for the 
selectivity of NMR to be utilised and accessible to health-
care and veterinary professionals, providing a wealth 
of metabolic data to support clinical decision-making. 
bNMR-based metabolomics has recently shown potential 
to overcome human health challenges, for example, dem-
onstrating use in point of care settings for human urinary 
analysis of type 2 diabetic (T2D) patients, with results 
acquired under 15  min [15–21]. Indeed, bNMR-based 
metabolic profiling can therefore be proposed as a trans-
lational healthcare technology to identify perturbations 
in metabolites from disease and the environment.

Typically, a multi-platform approach is used to diag-
nose conditions in felines inclusive of clinical symptoms 
and physical examination. At present, the diagnosis of 
felines for some elements of renal diseases are dependent 
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on histology and are invasive procedures, requiring tis-
sue biopsies [11]. However, cognitive biases are present 
upon observing tissues, and this is not a quantitative 
method of diagnosis due to the discipline predominantly 
being qualitative or semi-qualitative [11]. Alternative 
methods include the growth of aerobic bacteria using 
aerobic urine culture, which is time-consuming and has 
potential contamination risks [12]. Moreover, abdomi-
nal radiographs and ultrasounds can be used to sup-
port clinical examinations however these require owner 
intervention and physical intervention of the clinician 
at the surgery [12]. Furthermore, particularly over the 
COVID-19 pandemic period, veterinary consultations 
took place remotely either via teleconference or video 
link [19]. Diagnostic tests routinely performed are inher-
ently invasive, and particularly complicated in a period of 
lockdown to contain a global pandemic, as well as being 
particularly difficult based on behavioural factors in some 
domesticated species; however, collecting material for 
urinary analysis is relatively facile and benchtop NMR, 
once clinically validated, offers the potential for highly 
rigorous remote investigations  [21–25]. Practically, for 
such remote collections to be of value to the commu-
nity, simple post-sampling steps can be implemented by 
owners; in a time where it is now commonplace to self-
administer lateral flow tests, the post-collection stabilisa-
tion of the urine sample prior to transfer to a laboratory 
would only involve a sterilisation phase which could be 
simply carried out through addition of a pre-aliquoted 
solution (containing reagents described in Experimen-
tal section) to the collected urine sample. Therefore, to 
detect chronic kidney disease (CKD) in the early stages, 
changes in metabolites in urine (as a proximal sample) 
can be identified. Such analysis can provide a deeper 
understanding of the mechanisms and metabolic path-
ways key to the progression of CKD. Cats with CKD are 
staged according to guidelines developed by the Interna-
tional Renal Interest Society (IRIS) and accepted by the 
American and European Societies of Veterinary Nephrol-
ogy and Urology. The IRIS stages range from no azotemia 
(IRIS  stage 1) to the most severe azotemia (IRIS  stage 
4). Staging guidelines are helpful for making diagnostic, 
prognostic and therapeutic recommendations for CKD.

Main text
Free-catch, fasted urine samples were collected from cats 
clinically diagnosed with CKD from urinalysis, GFR and 
serum biochemistry assessments and centrifuged imme-
diately (3500  rpm at 4  °C for 15  min). Healthy subjects 
were recruited from the local institutional cat popula-
tion and had no clinically diagnosed underlying health 
issues. All subjects were administered similar diets. The 
method of urine collection was identical to case subjects 

above. A minimum of 0.5 ml of urine is required for anal-
ysis. The supernatants were then stored at − 80  °C prior 
to analysis. NMR spectra were obtained on an Oxford 
Instruments X-Pulse 60  MHz benchtop NMR spec-
trometer, operating at + 40  °C. Samples were defrosted, 
and diluted by addition of 20% (by volume) deuterium 
oxide,  D2O. One-dimensional proton NMR spectra (with 
and without solvent suppression), and proton-proton 
gradient-selective COSY spectra were obtained for each 
sample. One-dimensional 1H spectra were collected with 
64 scans, 6  s acquisition time and 5  s relaxation delay; 
one-dimensional solvent suppressed 1H spectra [using a 
WET (Water suppression Enhanced through T1 effects) 
sequence] were collected with 128 scans, and the same 
acquisition time, and relaxation delay; COSY spectra 
were obtained with 8 scans of 256 slices. All spectra were 
internally referenced to  H2O/HOD at δH + 4.66 ppm. The 
Kyoto Encyclopedia of Gene and Genomics (KEGG) was 
used to ascribe significant biomolecular modifications 
and describe linkages between metabolic cycles.

High-field metabolomics has already demonstrated 
translational capability for diagnostic and therapeutic 
aims in humans with renal conditions [26]. Herein, we 
use CKD as a case study for the application of this tech-
nology and present pilot data from four subjects consist-
ing of two control (Subjects S2,S4) and two with CKD 
IRIS stage 2 (S1, S3). Subjects S2 and S4 were clinically 
assessed by a veterinarian for confounding conditions 
and assessment as control participants for this pilot study 
as healthy controls with no renal conditions and serum 
creatinine concentrations of < 145 μmol/L. Further details 
on participants availbale within data protection regula-
tions is available in the Additional file 1.

Subjects S1 and S3 were diagnosed with azotaemic 
CKD at Stage 2 according to IRIS guidelines from their 
serum creatinine concentrations of 193 and 188 μmol/L, 
respectively. Additionally, these CKD subjects show 
stronger resonances in the aromatic region (signal 17) 
ascribed to hippurate and phenylacetylglycine aromatic 
protons. Increases in urinary creatinine have previously 
been confirmed in cats with CKD [5]. Creatine is essen-
tial for energy transfer to skeletal muscle through the for-
mation of ATP. Renal dysfunction can lead to an increase 
in creatinine in urine; therefore, the level of creatinine in 
urine is a principal indicator of CKD.

Furthermore, the relatively weak acetate signal com-
pared to healthy controls is indicative of decreased 
excretion in individuals with CKD, as displayed in Fig. 1 
(S1, S3). Indeed, an inverse correlation between uri-
nary excretion of acetate and renal function has been 
established in comparative physiological studies [4]. 
It has been observed elsewhere that the level of ace-
tate was lower in humans with diabetes mellitus and 
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CKD than those with CKD alone [13]. Reduced excre-
tion of acetate in urine indicates further metabolism to 
acetyl coenzyme A which has a central role in fatty acid 
metabolism. Acetyl coenzyme A is involved in the cen-
tral carbon metabolism that subsequently generates 
ATP through catabolism of the acetyl moiety in the tri-
carboxylic acid cycle [27]. Indeed, a reduction in urinary 
excretion of TCA cycle metabolites and renal expression 
of the genes which regulate these metabolites has been 
demonstrated in human cases of CKD, linking to mito-
chondrial dysfunction and CKD progression. Moreover, 
recent genomic and metabolomic assessments of human 
patients with non-diabetic CKD identified reduced TCA 
cycle activity in cases when compared to a control group. 
This reduction in urinary excretion of TCA cycle metab-
olites was linked to a reduction in overall mitochondrial 
biogenesis in kidney tissues from CKD patients likely 
caused by reduced expression of genes such as isocitrate 
dehydrogenase 3 in the tubointerstitial compartment of 
the kidney [9].

Metabolic pathway analysis (MPA) from these pilot 
data identified that glycine, serine and threonine metabo-
lism was associated with classification between CKD and 

control subjects. An impact score from pathway topo-
logical analysis was 0.3, whilst a p value adjusted by the 
Holm-Bonferroni correction was 0.00426. This suggests 
that glycine, serine and threonine metabolism are modi-
fied in CKD subjects compared to the controls. Con-
centration decreases in metabolites excreted through 
both serine and threonine metabolism were detected 
elsewhere [10, 28]. Such a significance of serine metabo-
lism between groups could be an indicator of its biologi-
cal role in renal dysfunction. Serine acts as a mediator 
for methylation and the lowering of blood pressure in 
renal mechanisms. Serine excretion is correlated to glo-
merular filtration rate (GFR) which in-turn is used to 
define reductions in renal function. Therefore, if GFR is 
reduced, D-serine begins to accumulate in tissue [10, 15].

Furthermore, changes in glycine concentration in bio-
fluids over the course of CKD has identified perturba-
tions in amino acid metabolism in both rat and human 
models [18]. Additionally, hippuric acid metabolite sig-
nals in CKD subjects are linked to glycine conjugation 
with benzoic acid in hepatic, intestinal and renal activ-
ity [22]. Taken together, these glycine and glycine-con-
jugated metabolites are linked to oxidative stress and 

Fig. 1 a urinary NMR metabolic profiles from feline subjects S1‑S4 collected at 60 MHz operating frequency; b 2‑dimensional COSY spectrum 
of signal confirmation for S3 sample showing creatinine cross‑peaks; c assigned regions of S3 urinary profile with the following assignments: [1] 
3‑Hydroxybutyrate/Lactate‑CH3/Felinine‑CH3 [2] Tentative Felinine Derivative‑CH3 [3] Tentative Felinine‑CH2 [4] Acetate‑CH3 [5] N‑Acetyl [6] 
Pyruvate‑CH3 [7] Citrate‑CH2AB [8] Citrate‑CH2AB [9] Creatinine/Creatine‑N‑CH2 [10] Felinine‑CH2 [11] TMAO‑N‑CH3/Taurine‑CH2/Betaine‑CH3 
[12] Taurine‑CH2 [13] Glycine‑CH2 [14] Felinine‑CH2 [15] Creatinine‑CH2 [16] Tentative Allantoin and Urea‑NH2 [17] Aromatic signals consisting of 
Hippurate‑CHs and phenylacetylglycine‑CHs
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inflammation through both the IκBα/NF-κB and Keap1/
Nrf2 pathways [23]. Moreover, glycine forms a central 
node in glutathione metabolism, which with tocoph-
erol act as baseline markers of oxidation and concentra-
tions of downstream metabolites are highly mediated by 
CKD stage. Cellular processes determining immunity, 
but particularly inflammation can be assessed by sphin-
golipid metabolites where sphingosines act as signalling 
molecules. These metabolites, also detected as N-acetyl 
functions (signal 5) have been demonstrated to be highly 
sensitive in their concentration to dietary interventions 
for the treatment of CKD in cats. Indeed, successful fibre 
supplementation aligned with positive clinical outcomes 
to changes in diet were ascribed to increased sphin-
golipid metabolite concentrations in plasma of cats with 
CKD [8].

Regarding other metabolites, the reduction of urine 
citrate concentration has also been associated with CKD 
where urine citrate can prevent the formation of calcium-
based kidney stones [17]. Furthermore, the dysfunc-
tion of taurine was connected to CKD in other studies 
[2]. Taurine is involved in osmoregulation, calcium ion 
kinetics and regulation of the membrane potential in 
skeletal muscle. Moreover, taurine can be considered as 
anti-inflammatory and an antioxidant agent [25]. Kid-
neys have a crucial role in maintaining the level of tau-
rine. However, the levels of taurine can be dramatically 
decreased in patients with CKD. Therefore, taurine can 
also feature one of the main regulatory metabolites for 
the detection of CKD [2].

Renal function can be assessed by the measurement of 
glomerular filtration rate and is often referred to as the 
gold standard, however this can involve clinically and 
technically challenging measurements. Indeed, CKD can 
be diagnosed in small animals through a combinatorial 
approach involving creatinine concentration and urine 
specific gravity, and whilst these may be widely used, they 
remain insensitive as prognostic and monitoring mark-
ers. Our preliminary assessment of a pilot feline cohort 
identifies (a) the ability of low field NMR spectroscopy to 
detect > 15 metabolites in feline urine and (b) the poten-
tial of the technology when applied to large cohorts and 
informed by machine learning, to provide fast biofluid 
analysis to support clinical decision making.

Benchtop NMR metabolic profiling offers an opportu-
nity to leverage the selectivity of NMR spectroscopy in 
a portable format capable of being more widely applied, 
whilst taking advantage of chemometric methods to 
deconvolute spectra and offer the facility as a technique 
with diagnostic potential. Benchtop NMR is therefore a 
potential tool for the early detection of diseases and the 
evaluation of health conditions that can provide neces-
sary, timely treatments [29, 30].

Limitations
Whilst the authors are fully cognisant that the small 
sample sizes in this preliminary and pilot exemplar 
study do not allow for the substantiated development 
of a rationale for use in biomarker discovery or elucida-
tion, we intend this article to act as a first case study or 
case report in the application of this miniaturised tech-
nology within the field of animal medicine. Indeed, fur-
ther to our work in human medicine [20], a number of 
more specific feline metabolites (such as felinine) also 
need to be analytically quantified in terms of instru-
mental sensitivity in order to allow us to fully establish 
working thresholds for the technology in terms of lim-
its of detection and quantification.
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