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Abstract

Identifying recent HIV-1 infections is crucial for monitoring HIV-1 incidence and optimizing

public health prevention efforts. To identify recent HIV-1 infections, we evaluated and com-

pared the performance of 4 sequence-based diversity measures including percent diversity,

percent complexity, Shannon entropy and number of haplotypes targeting 13 genetic seg-

ments within the env gene of HIV-1. A total of 597 diagnostic samples obtained in 2013

and 2015 from recently and chronically HIV-1 infected individuals were selected. From the

selected samples, 249 (134 from recent versus 115 from chronic infections) env coding

regions, including V1-C5 of gp120 and the gp41 ectodomain of HIV-1, were successfully

amplified and sequenced by next generation sequencing (NGS) using the Illumina MiSeq

platform. The ability of the four sequence-based diversity measures to correctly identify

recent HIV infections was evaluated using the frequency distribution curves, median and

interquartile range and area under the curve (AUC) of the receiver operating characteristic

(ROC). Comparing the median and interquartile range and evaluating the frequency distri-

bution curves associated with the 4 sequence-based diversity measures, we observed that

the percent diversity, number of haplotypes and Shannon entropy demonstrated significant

potential to discriminate recent from chronic infections (p<0.0001). Using the AUC of ROC

analysis, only the Shannon entropy measure within three HIV-1 env segments could accu-

rately identify recent infections at a satisfactory level. The env segments were gp120 C2_1

(AUC = 0.806), gp120 C2_3 (AUC = 0.805) and gp120 V3 (AUC = 0.812). Our results clearly

indicate that the Shannon entropy measure represents a useful tool for predicting HIV-1

infection recency.
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Introduction

At the end of 2014, the Public Health Agency of Canada (PHAC) estimated that approximately

75,500 people were living with HIV/AIDS in Canada, of whom 21% were unaware of their sta-

tus [1]. Some efforts are made nowadays to increase diagnosis and linkage to care to newly

diagnosed persons. But it is important to differentiate individuals who were recently infected

from those with chronic infection as it may have a different impact on the epidemic and its

control. It is estimated that the probability of HIV transmission is 26 times higher during the

first 3 months of infection [2, 3] due to the high viral load in newly infected individuals [2–7].

Hence, identifying recently infected individuals is not only a key measure for better estimating

HIV-1 incidence within the general population [4, 6, 8–10], but is also a valuable tool for mon-

itoring HIV-1 epidemics and optimizing prevention efforts [3–6] to reduce HIV-1 forward

transmission [2, 11–13].

Several strategies have been developed to identify recent infections, each exhibiting a vary-

ing efficacy [4, 14–18]. The traditional epidemiological method consists of prospectively fol-

lowing-up HIV infection rates within cohorts of HIV-1 negative individuals presenting with a

high risk of HIV infection [4, 18]. This approach requires complicated logistics, is expensive

and leads to outcome results that are not representative of the situation prevailing in the gen-

eral population [18–22]. Serology-based methods consist of evaluating biomarkers, such as the

presence of antigens and specific antibodies, and their modulation in time [23–35].

A multi-assay based serological algorithm based on two commercially available avidity

assays [24] was recently developed in our laboratory. It has been shown to provide good

discriminatory power to identify individuals infected within 136 days mean duration of

recent infection (MDRI), with an estimated false recency rate of 3.3% [24]. This algorithm

was used in the present study to classify clinical specimens as recently infected individuals

(MDRI < 136 days) or chronically infected individuals (>136 days) [24]. Finally, a variety

of molecular-based assays monitoring the HIV-1 viral genetic diversity throughout disease

progression have been described, including: 1) The High Resolution Melting Assay (HRM),

which evaluates the melting temperatures of HIV amplicons to estimate the number of

HIV-1 quasi-species present in a given individual specimen [36–38]; 2) the number of

ambiguous nucleotides (mixed bases) [17, 39], for which DNA sequences are usually pro-

vided by first generation sequencing; 3) the Hamming Distance (HD), which measures

points of variation between two sequences of equal length [40, 41] using first generation

sequencing; and 4) sequence-based diversity measurements as assessed by next generation

sequencing (NGS) [42, 43], which is able to detect minor variants/mutations at low rates

[44]. NGS is a powerful tool for evaluating HIV-1 sequence-based diversity [45] and was

previously shown to be more accurate at detecting recent infections than any other molecu-

lar-based method [46]. In this study, HIV-1 env gene sequences, rather than those from pol
or gag, were analyzed, as they are known to evolve more rapidly than other HIV-1 gene

sequences[47–49]. The env diversity has already been shown to correlate with the HIV-1

Fiebig stages [50].

The HIV-1 envelope is a complex trimeric glycoprotein located on the viral surface and

composed of the gp120 and gp41 subunits [47–49]. The gp120 subunit is subdivided into five

conserved sub-domains (C1–C5) and five hyper-variable glycosylated loops (V1-V5) [51–54].

The gp41 subunit consists of an ectodomain (ECD), transmembrane domain (TM), and long

cytoplasmic domain (CP) [55]. Each HIV-1 env subdomain or region plays a specific role in

pathogenesis [52, 54, 56] and is differentially impacted by selective pressure. The present study

evaluated the capacity to predict HIV-infection recency using four sequence-based diversity

measures including the percent diversity, percent complexity, Shannon entropy and number

Shannon entropy, measure for recent HIV-1 infections identifying
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of haplotypes, screening 13 HIV-1 env segments throughout the gp120 V1-C5 and the gp41

ectodomains.

Materials and methods

Patients and specimens

HIV positive samples. In the province of Québec (Canada), all serum samples that are

repeatedly reactive using a screening HIV-1,2 enzyme immunoassay (EIA) are submitted to

the provincial reference microbiology laboratory “(Laboratoire de Santé publique du Québec

(LSPQ)” for confirmation mainly via a HIV-1 Western blot (WB) and/or HIV-1 p24 EIA.

Western blot positive samples are submitted to a multi-assay algorithm (MAA) that combines

a Centers for Disease Control and Prevention (CDC) modified Bio-Rad-Avidity assay followed

by the Sedia-LAg-Avidity assay [24]. This MAA previously demonstrated good performance

for identifying recent HIV-1 infections, showing a false recent rate (FRR) of 3.3% for a mean

duration of recent infection (MDRI) of 136 days [24]. After the WB and EIA assays, residual

sample volumes are stored at -20˚C. For this study, recent infection samples were defined as

follows: WB Negative or indeterminate, positive for HIV-1 p24 or positive according to WB

but determined by MAA to be recent (within 136 days of infection). Established infection

(chronic) samples were those that were positive according to WB and determined by MAA to

be longstanding (> 136 days of infection).

A total of 164 recent (including 26 p24 antigen positives) and 154 chronic infection samples

collected in 2013 as well as 117 recent (including 28 p24 antigen positives) and 162 chronic

samples collected in 2015 were evaluated.

Amplification and sequencing

Total nucleic acids were extracted from 100 μl of serum using an automated BioRobot MDx

extraction platform using the QIAamp1Virus BioRobot1 MDx Kit (QIAGEN, Valencia, CA,

USA). HIV-1 RNA was amplified using the Superscript III One-Step RT-PCR system with Pla-

tinium1 Taq DNA polymerase (Invitrogen, Thermo Fisher Scientific, Carlsbad, CA, USA)

and the primers env-up forward (5’-GTTTCTTTTAGGCATCTCCTATGGCAGGAAGAAG-
3’, HXB2 positions 5957–5983) and env-lo reverse (5’-GTTTCTTCCAG
TCCCCCCTTTTCTTTTAAAAAG-3’, HXB2 positions 9063–9088)[57]. The ampli-

fication conditions were as follows: 53˚C for 30 minutes (for reverse transcription) and 94˚C

for 2 minutes for Taq DNA polymerase activation, followed by 40 cycles at 94˚C for 15 s, 55˚C

for 30 s, and 68˚C for 4 min. Nested amplification was performed using the Expand™ High

Fidelity PCR System kit (Roche Diagnostics, Indianapolis, USA) as described by the manufac-

turer. The primers E60F forward (5’- TAATCAGTTTATGGGATCAAAGC -3’, HXB2
nucleotides positions 6547–6569) [58] and E55R reverse (5’-GCCCCAGACTGT
GAGTTGCAACAGATG-3’, HXB2 nucleotides positions 7940–7914) [59] were

used. The amplification conditions were: 94˚C for 2 min, followed by 45 cycles at 94˚C for 15

s, 55˚C for 30 s, and 68˚C for 2 min. PCR products were visualized by agarose gel electrophore-

sis and purified using the QIAquick 96 PCR Purification Kit from QIAGEN (QIAGEN, Valen-

cia, CA, USA).

The nested RT-PCR generated� 1400 bp of the env gene. For next generation sequencing

(NGS), one nanogram (1 ng) of DNA quantified using the Quant-iT™ PicoGreen1 dsDNA

Assay kit (Life technologies, Oregon, USA) was used for library preparation using the Nextera

XT DNA library preparation kit from Illumina (Illumina, San Diego, CA) following the manu-

facturer’s protocol. DNA sequencing was performed on a MiSeq instrument (Illumina, San

Shannon entropy, measure for recent HIV-1 infections identifying
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Diego, CA, USA) using MiSeq1 Reagent Kits v3 (600 cycles) following the manufacturer’s

protocols.

Sequence data processing and genetic diversity calculation

The quality of the NGS runs was evaluated using the Illumina Sequencing Analysis Viewer

v1.10.2 Software and the FastQC application (http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/). Sequencing depth and coverage were available under Coverage.txt and Com-

puteGP120Coverage.sh in OneDrive HIV_A_kafando project following these links respectively:

https://onedrive.live.com/?authkey=%21AB4CmrTlu182Xw8&cid=709AAE8E69A7368F&id=

709AAE8E69A7368F%21361&parId=709AAE8E69A7368F%21351&o=OneUp. A species with

a coverage less than 100x were excluded in final statistical analyses.

Sequences were de novo assembled using Iterative Virus Assembler (IVA) [60] to generate a

consensus. The HIV-1 env subdomains gp120-V1 to C5 and a part of the gp41 ectodomain

(first 158pb) were analyzed separately. The gp120-C2 and C3 subdomains were subdivided

into 3 and 2 segments for subsequent analyses to compare DNA sequences of sizes like the

other regions as showed in Fig 1.

To map subdomains, consensus sequences were aligned with the HXB2 env reference

sequence (Genbank accession number K03455.1-HIVHXB2CG env nucleotides positions

6225–8795) using Clustal W in MEGA7.0 (www.megasoftware.net) [62].

The env subdomain length delimitations followed the HXB2 complete genome numbering

were as follows: gp120 V1 (6615–6692�78pb), V2 (6696–6812�116pb), C2_segment 1 (6813–

6913�100pb), C2_segment 2 (6914–7014�100pb), C2_segment 3 (7015–7109�94pb), V3

(7110–7217�108pb), C3_segment 1 (7218–7320�102pb), C3_segment 2 (7321–7376�56pb),

V4 (7377–7478�102pb), C4 (7479–7556�78pb), V5 (7557–7637�80pb), C5 (7638–

7757�120pb) and gp41-ectodomain (7758–7915�158pb).

Intra-patient genetic diversity was evaluated for each subdomain/segment using an in-

house coded Python pipeline. SMALT (http://www.sanger.ac.uk/science/tools/smalt-0) was

used to map the reads against their respective consensus sequence, and SAM tools (Sequence

Alignment/Map)[63] were used for analysis of the mapping file generated by SMALT. Biocon-

ductor packages (https://bioconductor.org/) [64] were used for the genetic diversity calcula-

tion. More details about the specific packages and the python codes used for diversity

Fig 1. Schematic figure showing all env segments used for diversity estimates. Segments length

corresponds to that of strain HXB2 of HIV-1 nucleotides positions. Segments used are denoted by asterisks. Env

domain abbreviations: SP, signal peptide; C1–C5, conserved domains 1 to 5; V1–V5, variable domains 1 to 5;

FP, fusion peptide; HR1, heptad repeat 1 (NHR); DL, disulfide loop; HR2, heptad repeat 2 (CHR); MPER,

membrane proximal ectodomain region; TM, transmembrane domain; CD, cytoplasmic domain. Image were

friendly adapted from Michael Caffrey[61]; Trends in Microbiology, Volume 19, Issue 4, Pages 191–197 (April

2011) 10.1016/j.tim.2011.02.001.

https://doi.org/10.1371/journal.pone.0189999.g001
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estimates are available and DOIs to access are below: https://github.com/EricFournier3/

HIVvariant and https://1drv.ms/f/s!Ao82p2mOrppwgl8eApq05btfNl8P

The four sequence-based diversity measures were calculated as previously described [36,

42] as show in S1 Table. Briefly, the percent diversity was evaluated as the average pairwise

genetic distance between two sequences [42], the percent complexity was expressed as the

number of distinct variants divided by the total number of reads x 100 [42], and the Shannon

entropy index (S) was calculated using a formula that accounts for both the number of distinct

reads and their proportional representation in the dataset [42, 43]. The number of haplotypes

strictly included the number of distinct quasi-species or variants present in at least 1% or more

in the viral population [42]. The frequency distribution curves (ggplot2) of the percent diver-

sity, percent complexity, Shannon entropy and number of haplotypes for recent versus chronic

sequences were generated using R [65].

Determination of HIV subtypes

We used two HIV subtyping tools to determine a consensus HIV subtype. The Rega HIV

Subtyping Tool V3 [66] (http://regatools.med.kuleuven.be/typing/v3/hiv/typingtool) and,

Confirmation with the NCBI HIV Subtyping tool [67] (https://www.ncbi.nlm.nih.gov/

projects/genotyping/formpage.cgi).

Determination of the sequence-based diversity measure performance

The performance of individual or combined sequence-based diversity measures for discrimi-

nating recent from chronic infections was evaluated using the area under the curve (AUC) of

the receiver operating characteristics (ROC) [68]. The best value for the AUC is 1.0, which rep-

resents 100% sensitivity and 100% specificity at distinguishing recent from chronic infections.

Interpretations of the AUC values for the sequence-based diversity of recent versus chronic

HIV-1 infected individuals in our study followed the grading guidelines that were previously

described by D.G Kleinbaum and M. Klein (2012) [68]. Briefly, scores from 0.90–1.0 were

excellent discrimination (scored A), scores from 0.80–0.90 good discrimination (scored B),

scores from 0.70–0.80 fair discrimination (scored C), scores from 0.60–0.70 poor discrimina-

tion (scored D) and scores from 0.50–0.60 failed discrimination (scored F). AUC of ROC anal-

ysis was also used to identify the optimal cut-off values that would distinguish recent from

chronic infections with high accuracy (high sensitivity and high specificity) as previously

described [69]. The following online link will help understanding calculation methods and

identification of the optimal or best cut-off values: https://ncss-wpengine.netdna-ssl.com/wp-

content/themes/ncss/pdf/Procedures/NCSS/One_ROC_Curve_and_Cutoff_Analysis.pdf. The

best cut-off values of measures must have the highest accuracy, which corresponds to its capac-

ity to correctly classify the highest true positive rate (TPR) or sensitivity and highest true nega-

tive rate (TNR) or specificity. Here, the TPR represents the recent HIV-1 infected individuals

who were correctly classified and the TNR represents the chronic HIV-1 infected individuals

who were also correctly classified by the same test.

Statistical analyses

Summary statistics (mean, median and interquartile range) were used to estimate the intra and

inter-patient envelope genetic diversity.

The student t-test was used to compare the diversity measures between sequences from

recent and chronic infections. Analyses were performed using Epi Info™ 7 (www.cdc.gov/

epiinfo) and IBM SPSS Statistics software. P-values below 0.05 were considered statistically

significant.

Shannon entropy, measure for recent HIV-1 infections identifying
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Ethics statement

A retrospective patient’s samples were used in this study and were obtained from the LSPQ

serobank collection. They were collected for routine diagnostic purposes in 2013 and 2015. All

sample were anonymized before we accessed them for the study. No nominals information’s of

patient were used for analysis and data management. Written informed consent was obtained

from individuals in the primary HIV infection (PHI) cohort of Quebec included in study. Ethi-

cal clearance was obtained from the “Le Comité d0éthique de la recherche (CÉR) du Centre

hospitalier de l0Université de Montréal (CHUM), Montreal, Canada.

Nucleotide sequence accession number

The Miseq d’Illumina sequencing data obtained in this study (n = 249) were deposited and

available in the GenBank Sequence Database (NCBI) under GenBank accession KY946451 to

KY946713 as reported in S1 Dataset.

Results

A total of 597 specimens from individual newly diagnosed HIV-1+ and sampled in years 2013

and 2015 were collected in this study. All, except for p24 positive samples, were subjected to an

avidity Multi-assay algorithm (MAA) to assess infection recency by serological tests. From

those, 281 were categorized as recent infections and 316 as chronic. These specimens were not

successfully passed the PCR amplification and sequencing process. The success rate of the

nested RT-PCR step was 46% (276/597), and 97% of the latter were successfully sequenced

(n = 263) as presented in Fig 2. At the sequences data management and processing, the very

shorts ones or containing gaps estimates to 5% (14/263) after alignment with HXB2 env refer-

ence sequence were excluded. Finally, n = 249 sequences that corresponds to one per patient

were included in this current study (Fig 2 and S1 Dataset).

Fig 2. Number of sequences (one per patient) used in this study. N = 249 derived from 134 recently

versus 115 chronically HIV-1 infected individual’s sequences data were included in the study.

https://doi.org/10.1371/journal.pone.0189999.g002
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For HIV-1 subtyping, seventy-seven per cent (77%) of the sequenced samples (n = 192/249)

were clade B subtypes and 30% for non-B as presented in Table 1 and reported in S1 Dataset.

The HIV-1 env diversity in specimens from recent and chronic infections was examined

using four distinct sequence-based diversity measures including percent diversity, percent

complexity, Shannon entropy and number of haplotypes. To study the profile of diversity val-

ues that are associated with recent versus chronic specimens, frequency distribution curves

(ggplot2 of R) were generated for each of the 4 sequence-based diversity measures and across

all the HIV-1 env segments selected (Figs 3–6).

These frequencies of diversity distribution curves for each measure comparing recent to

chronic HIV-1 infected individuals by env segment are also available online following this

link: https://1drv.ms/f/s!Ao82p2mOrppwgl8eApq05btfNl8P.

As shown in Fig 3, the percent complexity frequency distribution curves from recent versus
chronic infections were overlapped at the same low complexity level. These results showed that

this diversity measure did not allow for a clear discrimination between the two HIV-1 infected

populations. The medians and means analyses of diversity seemed to confirm these observa-

tions for all the HIV-1 env segments analyzed (S2, S3 and S4 Tables). But, A statistical analysis

(student t-test) confirm this view for only env gp120 C3_2, V1 and V5 segments (P>0.05), the

others env segments were statistically significant(P<0.05) as summarized in S4 Table.

Conversely, the percent diversity (Fig 4), number of haplotypes (Fig 5) and Shannon

entropy (Fig 6) distribution curves of recently infected individual’s sequences peaked at lower

diversity values compared to the curves associated with chronic infections, which were more

widely distributed and shifted towards higher diversity values for all the env segments ana-

lyzed. These observations were indicative of the good discriminatory power of these 3 diversity

measures for all the env segments tested. The summary statistics (mean, medians and IQR

observations seemed to confirm the differences between recent and chronic HIV-1 infected

populations as showed in S2, S3 and S4 Tables.

Also, the statistical analyses using student t-test confirms and demonstrates a significant

difference between recent and chronic sequences diversity (P<0.05) for these 3 measures for

any env segments analyzed as showed in S4 Table.

The area under the curve (AUC) of receiver operating characteristics (ROC) analysis was

used to compare the performance of each sequence-based diversity measure in their ability to

identify HIV-1 infection recency based on analysis of the 13 segments of HIV-1 env (Figs 7

and 8). Using the percent complexity measure, we observed that both the gp120-V2 and V3

Table 1. HIV-1 subtype distribution of the sequences analyzed in this study.

HIV-1 Subtype Number of sequences for recently

HIV-1 infected individuals

Number of sequences for chronically

HIV-1 infected individuals

Total of number of sequences

No % No % No %

A1 11 8,21% 12 10,43% 23 9,24%

B 106 79,10% 86 74,78% 192 77,11%

C 3 2,24% 6 5,22% 9 3,61%

CRF 01_AE 7 5,22% 0 0,00% 7 2,81%

CRF 02_AG 1 0,75% 3 2,61% 4 1,61%

CRF11 0 0,00% 1 0,87% 1 0,40%

D 5 3,73% 2 1,74% 7 2,81%

F1 1 0,75% 3 2,61% 4 1,61%

G 0 0,00% 2 1,74% 2 0,80%

TOTAL 134 100% 115 100% 249 100%

https://doi.org/10.1371/journal.pone.0189999.t001

Shannon entropy, measure for recent HIV-1 infections identifying
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Fig 3. Frequency polygons (ggplot2) of percent complexity of env sequences of recent HIV-1 infected individuals

compare to chronically infected ones by env segments. The Y axis represents the density of observations (frequency)

and the X axis the percent complexity distribution as sequence-based diversity measure. The blue color represents plot and

distribution for recent HIV-1 infected population and the red color plot and distribution for chronic infected ones.

https://doi.org/10.1371/journal.pone.0189999.g003
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Fig 4. Frequency polygons (ggplot2) of percent diversity of env sequences of recent HIV-1 infected individuals

compare to chronically infected ones by env segments. The Y axis represents the density of observations (frequency)

and the X axis the percent diversity distribution as sequence-based diversity measure. The blue color represents plot and

distribution for recent HIV-1 infected population and the red color plot and distribution for chronic infected ones.

https://doi.org/10.1371/journal.pone.0189999.g004
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Fig 5. Frequency polygons (ggplot2) of number of haplotypes of env sequences of recent HIV-1 infected

individuals compare to chronically infected ones by env segments. The Y axis represents the density of observations

(frequency) and the X axis the number of Haplotypes distribution as sequence-based diversity measure. The blue color

represents plot and distribution for recent HIV-1 infected population and the red color plot and distribution for chronic

infected ones.

https://doi.org/10.1371/journal.pone.0189999.g005
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Fig 6. Frequency polygons (ggplot2) of Shannon entropy index of env sequences of recent HIV-1 infected

individuals compare to chronically infected ones by env segments. The Y axis represents the density of observations

(frequency) and the X axis the Shannon entropy index distribution as sequence-based diversity measure. The blue color

represents plot and distribution for recent HIV-1 infected population and the red color plot and distribution for chronic

infected ones.

https://doi.org/10.1371/journal.pone.0189999.g006
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Fig 7. ROC curves comparing the performance of the 4 sequence-based diversity measures for

discriminating recent from chronic HIV-1 infection. Four selected HIV-1 gp120 conserved subdomains

(C2, C3, C4 and C5) subdivided on seven segments were analyzed, 3 segments on the gp120-C2 region

(C2_1; C2_2 and C2_3), 2 segments on the gp120-C3 region (C3_1 and C3_2), 1 segment on gp120-C4 and

1 segment on gp120-C5. The Y axis represents the proportion of sequences from true recent HIV-1 infected

individuals (sensitivity), and the X axis the proportion of recent HIV-1 infected individuals who were incorrectly

classified (1-specificity). ROC = receiver operating characteristics. AUC (area under the curve) values

between 0.8 and 1 were considered performance measures.

https://doi.org/10.1371/journal.pone.0189999.g007

Fig 8. ROC curves comparing the performance of the 4 sequence-based diversity measures for

discriminating recent from chronic HIV-1 infection. Five HIV-1 gp120 variable loops and one part of gp41

ectodomain (NHR). Five segments represented each of the HIV-1 gp120 variable loop as well as 1 segment

of the gp41- NHR ectodomain were analyzed: gp120-V1 loop, gp120-V2 loop, gp120-V3 loop, gp120-V4 loop,

gp120-V5 loop and part of the gp41-NHR ectodomain. The Y axis represents the proportion of sequences

from true recent HIV-1 infected individuals (sensitivity), and the X axis represents the proportion of recent HIV-

1 infected individuals who were incorrectly classified (1-specificity). ROC = receiver operating characteristics.

NHR = N-terminal heptad repeat. AUC values between 0.8 and 1 were considered performance measures.

https://doi.org/10.1371/journal.pone.0189999.g008
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loop segments showed fair discrimination (AUC = 0.7) as opposed to the other eleven env seg-

ments tested, which presented poor discrimination (AUC� 0.6). Using the percent diversity

measure, fair discrimination was observed for 11 env segments (AUC = 0.7), while the 3 env
segments, gp120- C4, C5 and V5, exhibited poor discrimination (AUC�0.6). The number of

haplotypes measures exhibited fair discrimination for 10 env segments (AUC = 0.7) and poor

discrimination for 3 env segments, gp120 C5, V1 and V5 (AUC�0.6). However, the Shannon

entropy showed good discrimination power for 3 env segments, gp120 C2_1, C2_3 and V3

(AUC�0.8); fair discriminatory power (AUC = 0.7) for 9 env segments, gp120 C2_1, C3_1,

C3_2, C4, C5, V2, V4, V5 and gp41-ectodomain; and poor discriminatory power (AUC� 0.6)

for the env gp120 V1 segment. The Shannon entropy was the only single sequence based diver-

sity measure for which a significantly good discriminatory power was observed. It is therefore

identified as the best performing diversity measure for the HIV-1 env segments analyzed.

More specifically, the gp120 C2_1, C2_3 and V3 HIV-1 env segments appeared to be the most

predictive for identifying HIV-1 recency (Table 2 and Figs 7–11).

To increase the discriminatory power of our assays, we combined the 4 sequence-based

diversity measures and used logistic regression analyses to identify the combination that per-

formed best. As presented in Figs 9 and 10, only combinations including Shannon entropy,

such as Shannon entropy + percent diversity + percent complexity, or Shannon entropy + per-

cent diversity or Shannon entropy + percent complexity of gp120 V3 (AUC = 0.815), gp120

C2_1 (AUC = 0.806) and gp120 C2_3 (AUC = 0.805), presented a performance equivalent to

that of Shannon entropy alone for the same respective env segments, gp120 V3 (AUC = 0.812),

gp120 C2_1 (0.806) and gp120 C2_3 (0.805). The other sequence-based diversity measure

Table 2. Performance of Shannon entropy as a measure for identifying recent HIV-1 infections.

HIV-1 env

segment

Diversity

measure

Optimal Cut-off

value

HIV-1 Subtype AUC AUC (95%

CI)

TPR

(Sn)

TNR

(Sp)

N recent/

chronic

GP120-C2_1 Shannon entropy 0.054 Multiple 0.806 [0.752–

0.861]

82% 69% 134/115

GP120-C2_3 Shannon entropy 0.059 Multiple 0.805 [0.749–

0.862]

90% 67% 134/115

GP120-V3 Shannon entropy 0.083 Multiple 0.812 [0.758–

0.866]

87% 66% 134/115

GP120-C2_1 Shannon entropy 0.054 B 0.791 [0.726–

0.856]

80% 69% 106/86

GP120-C2_3 Shannon entropy 0.06 B 0.810 [0.747–

0.873]

91% 66% 106/86

GP120-V3 Shannon entropy 0.083 B 0.831 [0.773–

0.889]

90% 66% 106/86

GP120-V3 Shannon entropy 0.083 Multiple:WB+/MAA+specimens as

recent

0.801 [0.740–

0.863]

89% 66% 80/115

GP120-V3 Shannon entropy 0.097 Multiple: p24+ specimens as recent 0.827 [0.763–

0.891]

93% 60% 54/115

GP120-C2_1 Shannon entropy 0.06 Multiple: p24+ specimens as recent 0.850 [0.794–

0.905]

93% 66% 54/115

GP12-C2_3 Shannon entropy 0.048 Multiple: p24+ specimens as recent 0.844 [0.786–

0.902]

91% 71% 54/115

TPR (true positive rate) = sensitivity: recent HIV-1+ specimens correctly classified,

TNR (true negative rate) = specificity: chronic HIV-1+ specimens correctly classified. The optimal cutoff value indicates the proportion of patients correctly

classified and represented the highest TPR (recency) + TNR (chronic) or (Sensitivity+ Specificity).

https://doi.org/10.1371/journal.pone.0189999.t002
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Fig 9. ROC curves comparing the predictive performance of different combinations of sequence-

based diversity measures of HIV-1 gp120 conserved subdomains to identify HIV-1 infection recency.

Five combinations of sequence-based diversity measures were analyzed. Shannon entropy + percent

diversity + percent complexity: P1; percent diversity+ number of haplotypes+ percent complexity: P2; number

of haplotypes+ percent complexity: P3; Shannon entropy+ percent complexity: P4 and percent diversity

+ percent complexity: P5. Seven HIV-1 env segments were considered: gp120-C2_1; gp120-C2_2;

gp120-C2_3; gp120-C3_1; gp120-C3_2; gp120-C4 and gp120-C5. ROC = receiver operating characteristics;

AUC = area under the curve. AUC values between 0.8 and 1 were considered performance measures.

https://doi.org/10.1371/journal.pone.0189999.g009

Fig 10. ROC curves comparing the predictive performance of different combinations of sequence-

based diversity measures of five HIV-1 env gp120 variable loops and one part of the gp41-ectodomain

(NHR) to identify HIV infection recency. Five combinations of sequence-based diversity measures were

analyzed. Shannon entropy + percent diversity + percent complexity: P1; percent diversity+ number of

haplotypes+ percent complexity: P2; number of haplotypes+ percent complexity: P3; Shannon entropy

+ percent complexity: P4 and percent diversity+ percent complexity: P5. Six HIV-1 env segments were

considered: gp120-V1 loop; gp120-V2 loop; gp120-V3 loop; gp120-V4 loop; gp120-V5 loop and, gp41-NHR

(partial ectodomain). NHR = N-terminal heptad repeat. ROC = receiver operating characteristics; AUC = area

under the curve. AUC values between 0.8 and 1 were considered performance measures.

https://doi.org/10.1371/journal.pone.0189999.g010

Shannon entropy, measure for recent HIV-1 infections identifying

PLOS ONE | https://doi.org/10.1371/journal.pone.0189999 December 28, 2017 14 / 24

https://doi.org/10.1371/journal.pone.0189999.g009
https://doi.org/10.1371/journal.pone.0189999.g010
https://doi.org/10.1371/journal.pone.0189999


combinations for any of the 13 env segments analyzed showed a fair to poor discriminatory

power (Figs 9 and 10).

The env gp120 C2 and C3 sub regions as too long were previously segmented on 3 and 2

segments respectively to respect the objective of less than 100bp as sliding window for our

analyses. As showed in Table 3, the combining multiple segments didn’t increase the discrimi-

natory effect. For example, when combining gp120-C2 sub region including C2_1+C2_2

+C2_3 segments the area under the curve (AUC) of ROC of Shannon entropy for example

were: 0,790 CI95% [0,757–0,823] and less than this previous value for the 3 others measures.

This Combination predicts moderate discriminatory effects compared to C2_1 and C2_3

alone which adequately predicted HIV recency with respectively AUC = 0.806 and

AUC = 0.805. Combining env gp120 C3 (C3_1+C3_2 segments) or considering env
gp120-V1C5 also does not perform well either (AUC<0.8).

Considering only HIV-1 env sequences from B subtype specimens, which were the most

prevalent in Canada and most represented in our study population (Table 1), the AUC values

were slightly increased for two env segments, gp120 C2_3 (AUC = 0.810 for subtype B alone

compare to 0.805 for all subtypes) and gp120 V3 (AUC = 0.831 for subtype B compare 0.812

for all subtypes), as showed Fig 11 and Table 2.

The performance of sequence-based diversity measures and identifying the most predict-

able env segments were also evaluate for non-B subtypes. As showed in Table 3, the percent

complexity, percent diversity, Shannon entropy and number of haplotypes performs better for

gp120 C2_1 segment, respectively with an AUC = 0.805, 0.842, 0.844 and 0.826 of each mea-

sure. Also, the percent diversity (AUC = 0.821) and number of haplotypes (AUC = 0.849) per-

formed well for env gp120 C3_2 segment. Finally, the Percent diversity performed well for

gp120 C4 (AUC = 0,819) and gp120 V2 (AUC = 0.84) segments/sub regions. For non-B sub-

types, percent diversity seemed to perform well in several env segments analyzed (C2_1, C3_2,

C4 and V2). But, the lower sequences data, least than 30%, n = 55 (28 recent versus 29 chronic)

used in the current study limited the statistical conclusion as well as their performances.

Taking into consideration the Shannon entropy index (S) as the best sequence-based diver-

sity measure and env gp120-C2_1, gp120-C2-3 and gp120-V3 as the more predictive env sub

regions/segments, we identified the optimal cut-off values.

Indeed, for all HIV-1 subtypes, the best Shannon entropy index (S) cut-off values were as

follows: (S) = 0.054 for gp120-C2_1, (S) = 0.059 for gp120-C2_3 and (S) = 0.083 for gp120-V3

Fig 11. ROC curves comparing the predictive performance of different combinations of sequence-

based diversity measures of HIV gp120-C2-1, gp120-C2_3 and gp120-V3 segments for identifying HIV-

1 subtype B infection recency. Five combinations of sequence-based diversity measures were analyzed:

P1, percent complexity; P2, percent diversity; P3, number of haplotypes; P4, Shannon entropy; P5, Shannon

entropy+ percent diversity and P6, Number of haplotypes+ percent diversity. Three HIV-1 env segments were

considered: gp120-C2_1, gp120- C2_3 and gp120-V3 -. ROC = receiver operating characteristics;

AUC = area under the curve. AUC values between 0.8 and 1 were considered performance measures.

https://doi.org/10.1371/journal.pone.0189999.g011
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(Table 2). Using these cut-off values, the related sensitivity, which determines the true positive

rate (recent HIV-1 infected specimens correctly classified), versus specificity, which determines

the true negative rate (chronic HIV-1 infected specimens correctly classified), was 82% versus
69%, 90% versus 67% and 87% versus 66% for the env segments gp120-C2_1, gp120-C2_3 and

gp120-V3, respectively.

Moreover, if only sequences from subtype B specimens were considered (Table 2), the sen-

sitivity (recent HIV-1 infected individuals correctly classified) versus specificity (chronic HIV-

1 infected individuals correctly classified) of the Shannon entropy index (S) was, respectively

to 91% versus 66%, with a cut-off of (S) = 0.059 for env gp120 C2_3 and 90% versus 66%,

respectively, with a cut-off of (S) = 0.082 for gp120 V3.

Further analyses excluding p24 positive samples for recency sequences and including only

recent infection as determined by MAA and Western Blot positivity, showed that only the

Shannon entropy measure of the gp120-V3 segment presented good discriminatory power

(AUC = 0.801). This measurement presented 89% of sensitivity to identify recent specimens

and 66% of specificity for identifying chronic specimens at a cut-off of (S) = 0.0803 (Table 2).

On the other hand, when comparing only sequences obtained from p24 positive samples

(acute infection), the performance (AUC) and accuracy (sensitivity and specificity) slightly

increased for Shannon entropy index (S) measures for three env segments (gp120-V3,

gp120-C2-1 and gp120-C2-3) (Table 2). Indeed, the Shannon entropy AUC for gp120-V3 was

0.827, which represents a sensitivity of 93% and specificity of 60% at a cut-off value of (S) =

0.097 (Table 2). For gp120-C2_1, the AUC was 0.850, which represents a sensitivity of 93%

Table 3. Performance of 4 sequence based diversity measures for non-B HIV-1 subtypes by env segments using AUC au ROC analysis.

Env segment Diversity measure AUC 95% CI Optimal Cut-off TPR

(Recent)

TNR

(Chronic)

N: recent/chronic)

GP120 C2_1 Percent complexity 0,805 [0,693–0,918] 0,0004 75% 72% 28/29

Percent diversity 0,842 [0,743–0,941] 0,0231 100% 52% 28/29

Shannon entropy index 0,844 [0,741–0,946] 0,0895 96% 66% 28/29

Nb_haplotypes 0,826 [0,720–0,931] 8 96% 55% 28/29

GP120 C3_2 Percent complexity 0,759 [0,631–0,887] 0,0004 93% 55% 28/29

Percent diversity 0,821 [0,705–0,938] 0,0216 93% 72% 28/29

Shannon entropy index 0,795 [0,669–0,921] 0,0774 89% 72% 28/29

Nb_haplotypes 0,849 [0,740–0,959] 7 93% 72% 28/29

GP120-C3 Percent complexity 0,718 [0,623–0,812] 0,0002 38% 62% 28/29

Percent diversity 0,803 [0,720–0,886] 0,0222 88% 72% 28/29

Shannon entropy index 0,767 [0,677–0,857] 0,0776 86% 64% 28/29

Nb_haplotypes 0,812 [0,728–0,896] 7 95% 62% 28/29

GP120 C4 Percent complexity 0,698 |0,557–0,839] 0,0003 89% 55% 28/29

Percent diversity 0,819 [0,702–0,936] 0,0235 96% 66% 28/29

Shannon entropy index 0,752 [0,622–0,883] 0,1214 100% 48% 28/29

Nb_haplotypes 0,756 [0,625–0,887] 7 96% 55% 28/29

GP120 V2 Percent complexity 0,762 [0,621–0,903] 0,0012 79% 67% 28/29

Percent diversity 0,845 [0,732–0,959] 0,0174 92% 67% 28/29

Shannon entropy index 0,766 [0,622–0,909] 0,1338 92% 62% 28/29

Nb_haplotypes 0,761 [0,615–0,907] 8 92% 57% 28/29

TPR (true positive rate) = sensitivity: recent HIV-1+ specimens correctly classified. TNR (true negative rate) = specificity: chronic HIV-1+ specimens

correctly classified. The optimal cutoff value indicates the highest accuracy (proportion of patients correctly classified) represented the highest TPR

(recency) + TNR (chronic) or (Sensitivity+ Specificity).

https://doi.org/10.1371/journal.pone.0189999.t003
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and specificity of 66% at a cut-off of (S) = 0.060 (Table 2). Finally, for gp120-C2_3, the AUC

was 0.844, representing a sensitivity of 91% and specificity of 71% at a cut-off of (S) = 0.048 to

correctly identify HIV-1 recency as resumed in Table 2.

Discussion

In this study, we assessed the performance of 4 sequence-based diversity measures including

percent complexity, percent diversity, Shannon entropy and number of haplotypes used either

as independent markers or in combinations to predict HIV-1 infection recency. Our analyses

focused on 10 subdomains/sub-regions of the HIV-1 envelope gene between gp120-V1 and

gp120-C5 and the gp41-ectodomain. These sub-regions or domains are segmented into 13

fragments of 94 to 158 bp.

Because they are too long, the gp120-C2 and gp120-C3 sub-regions are fragmented into 3

and 2 segments, respectively. The choice of these env sub-regions was strictly guided by an

objective to include all of the gp120 variable regions [70]. Combining multiples segments of

them, gp120 C2 (C2_1+C2_2+C2_3) or gp120 C3 (C3_1+C3_2) did not increase discrimina-

tory power of recent HIV-1 infections from chronic ones based on sequences diversities.

We observed that the Shannon entropy measure, which considers the number of reads

and proportional representation of each read in individual specimens [42, 43], when calculated

for env gp120-V3, gp120-C2 segment 1 and gp120-C2 segment 3, can correctly distinguish

between recently infected and chronically infected individuals with good performance

(AUC�0.8). The fragment lengths of these env segments were previously described (i.e., 116

bp for V3, 100 bp for C2_1 and 94 bp for C2_3). These env segment sizes suggested that a

short fragment of the HIV-1 env gene can be useful for predicting HIV-1 recency. Combining

Shannon entropy with other measures, such as the percent diversity and/or percent complexity

and/or percent complexity within the env subdomains, did not markedly increase its predictive

value compared to Shannon entropy alone (Figs 9 and 10). This suggests that the single Shan-

non entropy index as measure performs better than combining with any others diversity mea-

sures. It is therefore suggested that the Shannon entropy index (S) within 3 env segments

(gp120-C2_1, gp120-C2_3 and gp120-V3) as well as HIV-1 subtype B, could be used in public

health programs to monitor newly acquired HIV-1 infections in multiple HIV-1 subtype circu-

lating areas.

The utility of viral sequence diversity measurements to determine HIV-1 recency has

already been demonstrated [39, 41, 46, 70]. Analysis of segmented regions of the HIV-1

genome to identify the most predictive genomic regions for infection recency has been previ-

ously described for gag [70]. In this previous study, Wu et al., 2015 used a longitudinal sub-

type C sequence and compared 5 gag fragments of 50 bp, 100 bp, 150 bp, 200 bp and 250 bp.

They observed that the most predictive regions for recency were those with higher mutation

rates, such as gag p17 and p2/p7/p1/p6, compared to more conserved regions, such as gag
p24 [49]. Furthermore, data used for the latter study were derived from first generation

sequencing, which probably underestimates viral diversity since minor variants need to rep-

resent more than 20% of the total population to be detected using this technique [45]. The

NGS approach used in our current study has been shown to be more sensitive and may offer

the possibility of detecting minor HIV-1 variants/quasi-species that are present in less than

1% of the viral population sampled[42, 43]. We have decided to screen the HIV-1 envelope

sequence diversity (the gp120 and gp41 regions) as this gene include the most variable

regions of the HIV genome.

It is therefore more representative of viral diversification over time as they undergo con-

stant selective pressure from the immune system [71, 72].
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Here, when using the median calculation and the frequency distribution curves, we showed

that recently infected individuals presented significantly less env sequence-based diversity than

chronically infected ones. Our data confirmed previous observations indicating that sequences

from recently infected populations are more homogeneous than those from chronically

infected populations[50]. These differences were clearly observed by the Shannon entropy,

percent diversity and number of haplotypes measures, while the percent complexity was not

clearly different between the two groups for 3 env segments (S2, S3 and S4 Tables). These

results confirm previous results by Cousins et al., 2012 [42], who analyzed mostly subtype D

env gp41 fragments, while our specimen collection contained predominantly subtype B and

evaluated 13 shorts segments of HIV-1 env gp120 and gp41 (from 94bp to 158bp). The analysis

of shorts segments of the env gene is interesting from a technical standpoint since amplifica-

tion and library preparation from shorts DNA fragments during sequencing is time-saving

(i.e., no fragmentation step required) and can be achieved at a lower cost on Illumina MiSeq

platforms.

The performance of the sequence-based diversity measure using the AUC of ROC analysis

in our current study globally supports previous investigations by Moyo et al., 2016 [73], How-

ever this study were conducted on the gag and env regions from SGA of HIV-1 subtype C

using the pairwise genetic distance (PwD) or percent diversity as measure of env gp120-V1C5

fragment. The authors determinates an AUC of 0.83 at 130 days of infection[73], which is con-

sidered to be good discriminatory power.

Comparatively to Moyo et al., 2016 approaches, the current study determines moderate dis-

criminatory power of env gp120-V1C5 with Shannon entropy index of (AUC = 0.765 [0.747–

0,784] and for Percent diversity (AUC = 0,704 [0,684–0,723]. Comparatively to our results,

sequences data used (HIV-1 C subtype compare to predominant B subtype) may probably

impact performance of sequences based diversity estimating. In the current study, HIV-1 C

subtype represented less than 4% (n = 9) of study population so that, we cannot make perfor-

mant statistical analyses and address objective comparison with Moyo et al., 2016 study.

However, our finding may contribute to knowledges with identification of very shorts predict-

able env segments of B and non-B subtypes populations. Also, we have identified a best

sequenced-based diversity measure (Shannon entropy) which performed well for accurate

identifying of HIV-1 recency. However, it would be subjective to address a comparison using

the same algorithm with similar segmented regions if we must consider the HIV-1 subtype on

these published data and compare accuracy of both approaches. Futures studies using the

same sequences data would be necessary.

In our current study, we found that only the Shannon entropy index presented good dis-

criminatory power for three env segments (gp120-C2-1, gp120-C2_3 and gp120-V3), while the

percent diversity measure presented fair or poor discrimination for a few env segments. These

differences could be linked to the fact that, in our study, shorts segments of the env gene were

analyzed and that our specimen collection was mostly composed of HIV-1 subtype B. Never-

theless, by 130 days of infection, the sensitivity (true recent infected individuals correctly clas-

sified) of Moyo et al., 2016 [73] study was 79.37% and established (specificity) 72.57% at PwD

cut-off of 0.005. This sensitivity (79.37%) was less than that found in our study for Shannon

entropy, which provided a sensitivity of 87% and specificity of 66% in gp120 V3, 82% versus
69% in gp120 C2_1 and 90% versus 67% in gp120 C2_3.

These differences indicate that the Shannon entropy index performs better for the identifi-

cation of HIV-1 recency regarding the highest proportion of recently HIV-1 infected individu-

als correctly identified comparatively to the chronically infected ones.

Yang et al.,2012 also used the PwD to identify recently HIV-1 subtype B and CRF07_BC

infected individuals using the env gp120-C2V5 region. In this previous study, authors found
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an AUC = 0.97 at a sensitivity of 90 to 95% versus specificity of 78.8% in population of (n = 160

for recent versus 264 chronic infected individuals) at a PwD cut-off value of 0.24 by 150–350

days of infection [74]. We observed the similar performance with true recent HIV-1 infected

individuals correctly classified (sensitivity) versus chronic ones (specificity) of 90% versus 66%

in gp120 V3 and 91% versus 66% in gp120_C2_3 for the Shannon entropy measure.

The HIV-1 recency power increased for acutely infected individuals0 samples (p24+ WB-)

compared to chronically infected individuals’ samples over that of recently infected individuals

< 136 days (WB+ and MAA determination) [24] compared to chronically infected individuals,

as shown in Table 2. This is consistent with env gene diversification (Fiebig stage) following

HIV-1 transmission, as shown by Keele et al., 2008 [50], and confirms the greater HIV-1 env
sequence homogeneity and diversity increasing in the acute to recent stage of infection and the

highest env sequence diversity (heterogeneity) in chronic/late stage of infection.

In summary, our current study shows that the Shannon entropy of HIV-1 env gp120-V3

and gp120 C2 segments 1 and 3 correctly predicts recent HIV-1 infections with performant

accuracy. Importantly, HIV-1 env gp120-V3 was shown to be the best predictor of HIV-1

recency for the B and non-B subtypes and percent diversity for non-B alones. Sequencing of

the V3 loop is often performed to determine HIV-1 co-receptor tropism [75] allowing combi-

nation with this method to obtain recency data.

Therefore, we suggest that targeted sequencing of short env segments can be useful for

determining HIV-1 recency with more sensitivity than sequencing the entire env gene and

may represent an option that minimizes both cost and time factors compared to full-length

HIV-1 envelope amplification and sequencing, which constitute a serious limitation for the

use of sequence-based diversity for HIV-1 recency identification.
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