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Abstract

The “cerebrospinal fluid (CSF) circulation theory” of CSF flowing unidirectionally and circulating through 
the ventricles and subarachnoid space in a downward or upward fashion has been widely recognized. 
In this review, observations of CSF motion using different magnetic resonance imaging (MRI) techniques 
are described, findings that are shared among these techniques are extracted, and CSF motion, as we cur-
rently understand it based on the results from the quantitative analysis of CSF motion, is discussed, along 
with a discussion of slower water molecule motion in the perivascular, paravascular, and brain paren-
chyma. Today, a shared consensus regarding CSF motion is being formed, as follows: CSF motion is not a 
circulatory flow, but a combination of various directions of flow in the ventricles and subarachnoid space, 
and the acceleration of CSF motion differs depending on the CSF space. It is now necessary to revise the 
currently held concept that CSF flows unidirectionally. Currently, water molecule motion in the order of 
centimeters per second can be detected with various MRI techniques. Thus, we need new MRI techniques 
with high-velocity sensitivity, such as in the order of 10 µm/s, to determine water molecule movement in 
the vessel wall, paravascular space, and brain parenchyma. In this paper, the authors review the previous 
and current concepts of CSF motion in the central nervous system using various MRI techniques.
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Introduction

According to the historical medical literature, 
cerebrospinal fluid (CSF) was first described by a 
Venetian physician, Massa, who depicted the pres-
ence of fluid within the ventricles.1,2) Later, Cotugno3) 
described the presence of a similar fluid also at the 

surface of the spinal cord. The term “CSF” that is 
used today was first coined by Magendie,4) and it 
has since been used by many researchers and clini-
cians to describe the fluid that is widely distributed 
throughout the subarachnoid space and ventricular 
system (CSF space) at the surfaces and within the 
brain and spinal cord.

Cerebrospinal fluid is constantly in motion, main-
taining communication among the brain, spinal 
cord, nervous system, and lymphatic and vascular 
systems.5–12) In so doing, CSF has physical significance 
(buffer and buoyancy effects against external forces; 
transmitting vascular pulsation; buffer function of 
excess brain pulsation), as well as physiological 
significance (heat produced by neural activity; draining 
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unnecessary substances from brain parenchyma; 
substance exchange among the brain parenchyma, 
spinal cord, and nervous system), thereby playing 
a crucial role in facilitating maintenance of nervous 
system function.13–21) Thus, for CSF to fully display 
these functions, it cannot stagnate as fluid in the CSF 
space and must always be moving. Until recently, the 
dynamics of CSF had been described as “CSF flow” 
or “CSF circulation.” Cathelin,22) a French physician, 
is considered to be the first person to use the term 
“CSF circulation”, and Cushing23) later called it the 
“third circulation,” distinguishing CSF circulation 
from the circulation of blood, lymph, and interstitial 
fluid (ISF). To visualize this CSF circulation, tracers 
such as air,24) oil,25) radioisotope,26) and/or contrast 
material27) were injected into the ventricles or the 
subarachnoid space to observe the bolus movement 
of the tracer over time. By following the movement 
of the tracer, a concept termed “CSF flow,” analogous 
to unidirectional river flow, emerged. Specifically 
in “CSF flow,” CSF in the ventricles seemingly 
descends in the caudal direction within the ventricles, 
ascends in the cephalic direction from the lower 
back area once it flows through the surface of the 
spinal cord, and mobilizes from the basal cistern 
to the Sylvian fissure laterally, ultimately reaching 
the convexity of the cerebrum.26) Conveniently, the 
arachnoid granulations and villi are present around 
the major venous sinuses in this convexity of the 
cerebrum, and Key and Retzius9) demonstrated 
that dye administered into the subarachnoid space 
accumulates at these arachnoid granulations and 
villi. Based on their observation, it was believed 
that CSF is absorbed at this site to return to the 
bloodstream and is secreted again from the choroid 
plexus, completing the CSF circulation. However, 
according to the traditional studies, Sweet et al.28) 
concluded that the choroid plexuses do not appear 
to be necessary for the exchange of water between 
blood and CSF by studies with heavy water in 
normal human subjects in 1950. Hassin29) proposed 
that CSF does not circulate, it acts as tissue fluid, 
it is not secreted by the choroid plexus, and it is 
not absorbed through the arachnoid granulation on 
pathological studies. Later, Milhorat30) emphasized 
that the removal of substances from the brain 
parenchyma through the lymphatic role of the CSF 
becomes truly important. As a result, the currently 
held theory of bulk flow in the CSF space of CSF 
from the production site of the choroid plexus to 
the site of absorption at the arachnoid granulations 
or villi has been criticized.

With the emergence of magnetic resonance imaging 
(MRI),31–37) findings that encourage a revision in the 
concept of “CSF flow” and “CSF circulation” have 

been discovered.38) Every MRI method understand-
ably has advantages and disadvantages based on its 
unique principle of imaging. However, it would be 
possible to determine the essence of CSF motion by 
taking findings that are shared among the imaging 
methods and aggregating them as the greatest shared 
factors. In this review, shared findings that were 
obtained through observing CSF motion in the 
CSF space using various types of MRI techniques 
are described, and the physiological significance of 
such findings is summarized.

Analysis of CSF Motion in  
the Ventricular System

CSF motion in the Sylvian aqueduct and 
foramen of Monro

Because of its luminal structure within the brain 
and because anatomically it is in the center of 
the cranium, many CSF motion studies focused 
on the Sylvian aqueduct. Feinberg et al.32) used 
velocity density imaging to identify the CSF velocity 
through the Sylvian aqueduct; this study showed 
bi-directional CSF motion at the Sylvian fissure. 
Presumably, this was the first study to use MRI tech-
niques to document CSF motion in the intracranial 
cavity. On phase contrast (PC) imaging, volumetric, 
almost sinusoidal, CSF motion through the Sylvian 
aqueduct during one cardiac cycle was shown by 
Bradley et al.39) They also stated that CSF motion 
in the systolic phase was toward the caudal direc-
tion, and during diastole, CSF motion was in the 
cephalic direction.39,40) Following this research, many 
investigators published similar research results 
using PC,41–47) time-resolved three-dimensional 
phase contrast (3DPC),48–51) echo-planar imaging 
(EPI),52) and time-spatial labeling inversion pulse 
(Time-SLIP).53,54) Investigation of dynamic improved 
motion-sensitized driven-equilibrium steady-state free 
precession (dynamic iMSDE SSFP) showed turbu-
lent CSF motion that surged up from the Sylvian 
aqueduct to the third ventricle.37) Currently, real-
time imaging of cardiac and respiratory components 
of CSF velocity using simultaneous multi-slice PC 
EPI shows inspiration phase CSF directed superi-
orly into the ventricles and the foramen magnum, 
and it is reversed in the expiration phase, giving 
bi-directional respiratory motion.55)

Changing the viewpoint to the foramen of Monro, 
there has been less investigation of the foramen 
of Monro than of the Sylvian aqueduct. However, 
when we review the investigations of the foramen of 
Monro, they reached the same conclusion that CSF 
shows bi-directional motion, and cardiac-related CSF 
motion was observed.42,48) Surprisingly, Time-SLIP 
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and dynamic iMSDE SSFP demonstrated blow-up 
CSF motion from the third ventricle through the 
foramen of Monro.37,54) To summarize the results, at 
the foramen of Monro and the Sylvian aqueduct, 
which connect each ventricular system, CSF shows 
bi-directional motion. Figures 1–3 show typical CSF 
motion in volunteers with different MRI sequences.

CSF motion in the ventricles
When understanding CSF motion in the ventricles, 

it is easy to understand the physical perspective, not 
only directional CSF motion and velocity imaging 
in the ventricles, but also by grasping the accelera-
tion of the CSF in the ventricles. There have been 
few studies focusing on the quantitative analysis 
of physical variables.50,56) In Fig. 4, representative 
previous results show the acceleration in various parts 
of the intracranial cavities.56) Quantitative analysis of 
CSF acceleration in the ventricular system showed 
that CSF acceleration was greater in the third and 
fourth ventricles than in the lateral ventricle. Imaging 
analysis using 3DPC, Time-SLIP, and dynamic iMSDE 
SSFP showed increased CSF velocity, and marked 
turbulent motion in the third and fourth ventricles 
was noted by several researchers.37,42,49,54,57,58) Thus, 
both imaging and quantitative evaluations resulted 
in the same conclusion that the third and fourth 
ventricles are in a hyperdynamic state. The third 
ventricle is anatomically located at the center of 
CSF movement in the ventricular system; it is small 
and has an important function in CSF motion in 
the ventricular system, and it is caught between the 
two thalami. O’Connell59) proposed that capillary 
flow into the brain parenchyma during the systolic 
phase causes expansion of the brain parenchyma. 
Thus, squeezing of both sides of the thalami at the 
third ventricle was thought to be the driving force 
of CSF pulsation; presumably this squeezing leads 
to acceleration of CSF motion in the third ventricle, 
and, for this reason, the third ventricle acts as a 
CSF pump. Another approach to CSF motion using 
MRI described by Sunohara et al.60,61) determined the 
correlation between the velocity waveforms, as well 
as the delay time, and found that the CSF motion 
of the ventral surface of the brainstem is correlated 
with that of the third and fourth ventricles. It may 
be possible to surmise from these findings that the 
origin of the CSF motion in the third ventricle is 
pulsation of the arteries. However, the velocity propa-
gation of the pulsation is extremely fast compared 
with the lateral ventricle, and different results are 
also obtained depending on the location of refer-
ence, indicating the need for additional studies. CSF 
motions of the fourth ventricle and ventral surface 
of the brainstem are also highly correlated,60–62) likely 

due to the CSF communication between the fourth 
ventricle and the subarachnoid space around the 
brainstem that is directly connected through the 
foramen of Magendie and the foramen of Luschka.

Quantitative analysis of CSF motion shown in Fig. 4 
demonstrated a gentle CSF acceleration at the trigone 
compared with other ventricles,56) consistent with 
results from 3DPC imaging evaluations.48,56) Focusing 
on the ventricular system, although it has been 
classically described that CSF pulsation originates 
from the choroid plexus,63) it has been reported that 
the choroid plexus of the trigone at the very least 
does not undergo a large enough volumetric change 
to become a driving force of CSF.48,56) This finding 
is accepted by clinicians, because this pulsation in 
the choroid plexus has also been questioned when 
observed under neuroendoscopic examination.64) On 
the other hand, CSF motion in the lateral ventricles, 
far from the basal cistern, has a poor correlation 
with the CSF motion in the ventral surface of the 
brainstem,60,62) and, in particular, the CSF motion in 
the trigone of the lateral ventricles, farthest away 
from the basal cistern, has a lower correlation 
with the CSF motion in the ventral surface of the 
brainstem.61) Figures 1–3 show typical CSF motion 
in volunteers with different MRI sequences.

CSF motion in the subarachnoid space
Cerebrospinal fluid motion in the subarachnoid 

space of the ventral surface of the brainstem is 
quite vigorous on 3DPC, Time-SLIP, and dynamic 
iMSDE SSFP.37,48,50,54,65) Because a bony structure (the 
clivus) is present at the front of the subarachnoid 
space on the ventral surface of the brainstem, 
and the vertebro-basilar artery is traveling in the 
subarachnoid space on the ventral surface of the 
brainstem over a long distance, which extends along 
the perpendicular direction inside the subarachnoid 
space, and is surrounded by CSF, the anatomical 
structure is set up such that the heartbeat easily 
propagates through arteries to the subarachnoid 
space.48) On the upper cervical spine, the venous 
plexus of the epidural space pulsates in response 
to intrathoracic pressure changes, and this vigorous 
CSF motion related to respiration may be spread in 
the ventral surface of the brainstem and propagate in 
the upward direction, thereby causing CSF motion 
to become active, with both arterial and respira-
tory elements complementing each other. These 
results are consistent with those of other studies 
that have used EPI and showed that respiration 
and cardiac pulsation both affect CSF movement 
at the cervical level.66,67)

Within the Sylvian fissure, vigorous CSF motion 
in the proximal Sylvian fissure decreased laterally, 
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Fig. 1 Images of cerebrospinal fluid (CSF) velocity with 3DPC in a healthy volunteer. CSF velocity in each 
imaging plane is represented by the vector length and direction, while the velocity orthogonal to the imaging 
plane is shown by color coding. The vectors and color scales are as displayed. Sites with irregular motion show 
long vectors that point in various directions with colors that also change. In addition, blood flow-derived velocity 
components (non-CSF components) arising from inside the blood vessels were subtracted and removed from the 
images. Rotational motion within the anterior horn as a vector (a), and the antero-posterior direction as changes 
on a color scale (b). A motion that ascends toward the lateral and the third ventricle (b and d) and conversely 
descends toward the third and fourth ventricle (a and c). Irregular motions are evident in the third ventricle 
based on rotational motion expressed as long vectors and the large change in color display that represents motion 
orthogonal to the imaging plane (a–d). In the fourth ventricle, augmented motion is observed (e and f). A gentle 
motion is observed in the trigone (i). A strong motion is shown to strengthen toward the subarachnoid space of 
the upper cervical spine (e and f). An active CSF motion proximal to the Sylvian fissure that attenuates as it 
transmits laterally (g), although motion is gradually attenuated toward the distal Sylvian fissure. An augmented 
motion in a limited area near the vascular structure (g). A suppressed motion seen in convexity (h).
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and anatomically, arachnoid trabeculae exist in a 
complex manner along with the vascular system.68,69) 
It is postulated that, due to these structures, CSF 
motion becomes buffered as it moves from the center 
toward the distal part of the cranial cavity.37,48) At 
the areas distal to the Sylvian fissure, which is part 
of the subarachnoid space, and at the convexity of 
the cerebrum, slow CSF motion is predominantly 
observed; however, it has been reported that CSF 
motion increases, although in a limited manner, 
around the vascular structure within this area.56) 
It is evident from this finding that there is irregu-
larity in the movement of CSF around the vascular 
structure within the subarachnoid space.

At the convexity of the cerebrum far from the basal 
cistern, CSF appeared to be stagnant on Time-SLIP,70) 
and minimal CSF motion was observed on dynamic 
iMSDE SSFP and 3DPC.37,48,50,56) With Time-SLIP, it 
is possible to observe CSF motion for 1–6 s after 
applying a radio frequency pulse to the region of 
interest,54) and it appeared that CSF was stagnant at 

Fig. 2 Cerebrospinal fluid (CSF) motion in a healthy individual visualized using dynamic improved motion-
sensitized driven-equilibrium steady-state free precession (dynamic iMSDE SSFP). In dynamic iMSDE SSFP, the 
dark regions on the grayscale images indicate vigorous CSF motion. The image contrast is achieved by the signal 
attenuation induced by irregular motions in each site compared with the surrounding site where CSF moves 
relatively mildly. With dynamic iMSDE SSFP, irregular motion is observed at the anterior horn, but not at the 
posterior half of the lateral ventricles (a and b). A motion that sprayed upward from the third ventricle to the 
anterior horn is visualized (a and b). Augmented motion at the Sylvian aqueduct is observed (b). Turbulent 
motions are evident in the third and fourth ventricles (b and c). Increased turbulent motion around the brainstem 
is observed (c and d). A turbulent motion proximal to the Sylvian fissure that attenuates as it transmits laterally 
(e). Although this augmented motion gradually attenuates toward the distal part of the Sylvian fissure, it also 
shows limited turbulence near the vascular structure (e). However, motion that attenuates toward the convexity of 
the cerebrum is not subsequently affected by additional driving forces and is visualized to maintain a suppressed 
movement (e). Depressed turbulent motion in the convexity is observed (a). Suppressed motion is observed in the 
trigone (f and g).The axial image shown in (f) confirms irregular motion propagated from the foramen of Monro 
at the anterior horn, but not at the posterior half of the lateral ventricles.

a

e

b

f g

c d

the convexity of the cerebrum during these 1–6 s. 
3DPC showed decreased velocity and acceleration 
of CSF at the convexity of the cerebrum.48,50,56) When 
the shared findings of the 3DPC, dynamic iMSDE 
SSFP, and Time-SLIP methods were extracted, the 
movement of CSF appeared to be quite suppressed 
at the convexity of the cerebrum. These findings, 
specifically that CSF motion was attenuated as it 
passed through the basal cistern and transmitted to 
the convexity of the cerebrum, are consistent with 
results demonstrated in many other articles.37,48,50,54,56) 
Figures 1–3 show typical CSF motion in volunteers 
with different MRI sequences. The quantitative anal-
ysis and imaging analysis of CSF motion described 
above showed the mutual findings listed in Table 1.

Representative typical MRI studies to describe 
CSF motion

Every MRI method understandably has advantages 
and disadvantages based on its unique principle of 
imaging. However, it would be possible to determine 
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Fig. 3 Cerebrospinal fluid (CSF) motion in a healthy individual visualized using time-spatial labeling inversion 
pulse (Time-SLIP). Time-SLIP enables observation of the movement of labeled CSF, shown in white on the image 
slab, in the first 1–6 s after starting the imaging. Conversely, unlabeled CSF flowing into the specified slab is visu-
alized in black. Motion of labeled (white band) CSF to the third ventricle at the anterior horn and conversely to 
the anterior horn at the third ventricle is observed (a and b). CSF motion that ascends toward the third ventricle 
(d) and conversely descends toward the fourth ventricle (c). Irregular motions (black unlabeled turbulent wake 
in the white labeled area) are evident in the third ventricle (c circle). Motion in both caudal and cephalic 
directions in the fourth ventricle and the ventral surface of the brainstem (e and f). An image showing (g) lateral 
movement in the Sylvian fissure (arrow), but no movement is observed in the convexity of the cerebrum (circle). 
A sagittal image visualizes CSF that appears to be stagnant, with no movement at all (h circle). Labeling around 
the choroid plexus does not show marked CSF movement (i and j).
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the essence of CSF motion by taking findings that 
are mutual between each imaging method and 
aggregating them as the greatest common factors. In 
this review, the shared findings that were obtained 
through observing CSF motion in the CSF space 
using typical MRI techniques are described, and 
the physiological significance of such findings 
is described. The characteristics of each imaging 
technique discussed in this review are presented 
in Table 2.

Cardiac- or respiratory-related CSF motion
Recent studies that examined CSF motion linked 

to the changes in intrathoracic pressure from 
respiration were reviewed. Time-SLIP, dynamic 
iMSDE SSFP, and EPI visualize CSF motion that 
contains both cardiac pulsatile and respiratory 

elements because the images are taken during free 
breathing; however, it is not feasible to separate 
cardiac pulse- and respiratory-related CSF motion 
for visualization or to conduct a quantitative evalu-
ation of CSF motion.52,54,66,67,71) On the other hand, 
3DPC takes images with the peripheral arterial pulse 
and ECG or chest wall movements as a trigger33,72) 
while visualizing CSF motion that contains both 
cardiac pulsatile and respiratory elements; however, 
there is also a risk that the part of the respiratory 
aspect that is longer than the cardiac cycle is not 
taken into account.70,71) Measurement of respiratory 
fluctuation-induced distance of CSF movement was 
therefore attempted, where quantitative analysis of 
the distance of CSF moving in the cephalic and 
caudal directions was performed.71) Additionally, Kao 
et al.73) and Chen et al.55) used an EPI velocity phase 
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Fig. 4 Quantitative value of CSF acceleration in the 
ventricular system and subarachnoid space of healthy 
volunteers. Healthy volunteers (age range 28–73 years, 
male = 6, female = 6). Acceleration of CSF is shown 
as the rate of velocity change per unit time. From a 
fluid mechanics perspective, sites with small volumes, 
such as the subarachnoid space at the ventral surface 
of the brainstem, are considered to have increased 
fluid velocity compared with sites with large volumes, 
such as the trigone; however, because acceleration is 
less affected than velocity by the volume of the site 
in which the fluid is present, it is excellent for fluid 
mechanics analysis that compares sites with different 
volumes. Circles indicate outliers. Reprinted from 
Takizawa et al.56) (Fig. 4). The quantitative value indi-
cating augmented acceleration in the anterior horn is 
increased compared with that of the trigone. High CSF 
acceleration in the third and fourth ventricles. CSF 
motion demonstrates a gentle CSF acceleration at the 
trigone compared with other ventricles, consistent with 
results from other imaging (Figs. 1–3) evaluations. CSF 
acceleration corroborates the finding that CSF motion 
in the subarachnoid space from the ventral surface of 
the brainstem is elevated, whereas acceleration at the 
convexity of the cerebrum is suppressed.

contrast technique to perform frequency analysis of 
CSF motion associated with heartbeat and respira-
tory fluctuations. Furthermore, frequency analyses 
of CSF motion have recently been attempted by 
some researchers, visualizing CSF motion during 
free breathing or controlled breathing with the 
PC method and analyzing the results with various 
methods.62,74,75) These researchers recently published 
their success in separating cardiac pulsatile and 
respiratory components of CSF motion.62,75) A 
frequency analysis, albeit not evaluated quantita-
tively, concluded that the respiratory element is 
more dominant than the cardiac pulsatile element 
in CSF motion.76) On the other hand, some have 

concluded that CSF motion is greatly impacted by 
cardiac pulsation, and that the large movements of 
CSF are affected by respiratory elements; in other 
words, cardiac pulsation affects the basic pulsation of 

Table 2 Characteristics of each imaging technique 
presented in this review

Time-
SLIP

Directly observes the 
signal intensity change 
due to transference 
of water protons 
from certain slab-like 
regions, in which 
the proton spins are 
excited sometime 
before (about 1–6 s).

Dynamic 
iMSDE 
SSFP

Detects and visualizes 
irregular movement 
of water protons as 
signal attenuation 
induced by phase 
dispersion in each 
voxel.

3DPC Quantifies and 
visualizes time-
resolved CSF 
velocity in 3D space, 
and thus enables 
characterization of 
CSF motion in a 
quantitative manner.

Time-SLIP: time-spatial labeling inversion pulse, Dynamic 
iMSDE SSFP: dynamic improved motion-sensitized driven-
equilibrium steady-state free precession, 3DPC: time-
resolved three-dimensional phase contrast.

Table 1 Shared findings of CSF movement in the cranial 
cavity

In general Moves, not a circulatory flow.

Moves, unstable very complex motion.

Moves, repeats acceleration and 
deceleration, not only a simple dispersion.

Related to cardiac gate, respiratory cycle, 
and daily human activities.

Subarachnoid 
space

Augmented at ventral surface of the 
brainstem.

Strengthened at the center of the cranial 
cavity, weakened toward the distal part.

Suppressed in the convexity.

Ventricular 
system

Augmented in the third and fourth 
ventricles.

Suppressed in the trigone.

CSF: cerebrospinal fluid.
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injected tracer into the basal ganglia, and the tracer 
distributed in the brain parenchyma, but the tracer 
was also simultaneously present in the laminin 
in the basement membranes of capillaries and in 
the basement membranes in the tunica media of 
arteries.91) Additionally, amyloid beta has almost the 
same distribution as tracers that are draining from 
the brain parenchyma along basement membranes 
in the walls of capillaries and arteries, not around 
the venous channels.91,96) Mestre et al.97) performed 
a quantitative analysis of CSF perivascular flow 
in live mice. Their research showed that the CSF 
moves into the brain parenchyma through the 
pariarterial (perivascular space around the artery) 
area and drains from the brain parenchyma through 
the same vessel wall route. The radioactive tracer 
appears in the intracranial arteries and disappears 
at the wall of the carotid artery in the neck,93) and 
this phenomenon strongly suggests that ISF is elimi-
nated in the artery wall to drain into the cervical 
lymphatic system,92) completing the perivascular 
ISF drainage system.

Many studies have shown the radioactive tracer 
activity recognized at the cervical lymph node after 
injection of tracer into the brain parenchyma.98–100) 
The discovery of lymphatic structure in the dura 
mater provides new insights into how ISF and CSF 
reach the cervical lymphatic system6,85) other than the 
perineural space. However, the black box between 
the brain and lymphatic structure in the dura mater 
is still far from being completely understood. We 
are still missing the connecting bridge between 
the CSF spaces and/or brain parenchyma and the 
meningeal lymphatic system,87) which cleans up the 
unnecessary substances and heat produced by neural 
activity. The term glymphatic system has appeared as 
a bridge between water clearance and the lymphatic 
system and has attracted a great deal of attention 
by many researchers. The glymphatic system was 
proposed by Iliff et al. This concept was the basis 
for in vivo two-proton imaging of fluorescent tracers.8) 
The glymphatic system shows that CSF moves into 
the brain parenchyma along paravascular spaces 
that surround penetrating arteries (Virchow–Robin 
space);101,102) CSF entering from the CSF space into 
brain parenchyma pass through aquaporin-4 (AQP4), 
which are water-selective channels that regulate 
osmotically driven water transport through the cell 
membrane that is present on the astrocyte endfeet 
and ependymal cells; mixed CSF and ISF moves 
by the mechanism of convective solute transport 
in the brain parenchyma; and parenchymal ISF is 
eliminated by the paravenous (perivascular space 
around the vein) drainage pathway.7,103,104) An early 
study by Rennels et al.105) reported that apparent 

CSF, and respiration affects the large pulsations.62,75) 
Traditional pressure wave research by Hamit et 
al.77) has shown that arterial blood pressure is an 
important factor in maintaining the static pressure 
of the CSF. However, strong dynamic changes in 
the pressure of the CSF are affected mainly through 
venous channels.77) Wszedybyl-Winklewska et al.78) 
showed that increased inspiratory resistance is 
associated with large swings in the heart-generated 
dynamic relationship between blood pressure and 
subarachnoid oscillations in healthy subjects. In 
particular, if CSF motion reaches a far distance 
due to respiratory fluctuations, it would indicate 
that such movements greatly impact substance 
mobilization, and this would be an essential study 
that gives significance to the relationship between 
respiration and CSF motion.78) All these studies 
concern the frequency analysis of CSF motion that 
started around 2015, and future developments and 
progress are anticipated.

Approach to CSF motion
There are two approaches to study CSF that mobilizes 

in the cranium and spinal canal: 1) understanding 
physiological CSF motion in healthy individuals, 
and 2) pathological elucidation of a condition that 
induces CSF motion abnormalities. In this review, 
findings that were shared among the different types 
of imaging methods were extracted, and the physi-
ological aspects of CSF motion in healthy individuals 
are described. For the pathological elucidation of 
various types of disorders, a more sophisticated 
analysis has become feasible today by combining 
multiple imaging techniques, based on their specific 
characteristics, as described above.

Future direction: need detection of slower water 
molecule motion

The main sources of ISF are blood and CSF.10) 
With respect to the pathway of CSF flow into and 
out of the brain parenchyma, many researchers have 
been focusing on perivascular movement,10,11,79,80) 
paravascular movement,7,10,81–84) and dural lymphatic 
drainage.84–89) The most significant exchange between 
vessels and brain parenchyma happens at the capil-
lary level.10) ISF re-enters the basement membrane 
at the capillary level, and the ISF is eliminated 
along the tunica media and tunica adventitia of the 
major cerebral arteries.90–93) Mathematical models 
indicate perivascular transport of ISF by the reflec-
tion (reverse direction to the flow of blood; reverse 
direction to the major pulse wave) motion that 
follows each vascular pulsation.90) Research from 
the group of Carare and Weller91,94,95) has suggested 
an alternative route along the vasculature. They 
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convective tracer influx may be facilitated by trans-
mission of the pulsations of the cerebral arteries 
to the microvasculature, and that fluid circulation 
through the central nervous system occurs through 
paravascular pathways. Bedussi et al.81) showed 
that the paravascular space extends from the CSF 
space into the brain parenchyma and provides the 
possibility for unnecessary substance removal that 
could be facilitated by a mixing action generated 
by pressure pulsation in the CSF space. Ohashi  
et al.106) showed strong contrast enhancement around 
the vein of Labbe after intravenous administration 
of gadolinium, and, at the same time, Naganawa 
et al.107) showed that intravenously administered 
gadolinium leaks from the cortical veins into the 
surrounding subarachnoid space. Today, many 
researchers are trying to identify the routes by which 
CSF enters into and drains from brain parenchyma, 
but the theory of the glymphatic system is not yet 
established.

Smith et al.,108) writing against the glymphatic 
system, showed that AQP4 deletion does not impair 
transfer of solutes from CSF into the brain paren-
chyma; movement of fluorescence of different sizes 
through the brain parenchyma is consistent with 
their diffusion coefficients; and local movement 
of solute in the brain parenchyma is not impaired 
immediately after cardiorespiratory arrest. These 
results do not support the glymphatic clearance 
mechanism that transfer of water molecules from CSF 
to ISF requires AQP4-dependent convection in the 
brain parenchyma.108) Thus, the precise mechanism 
of drainage from where interstitial fluid mixes with 
CSF remains controversial.109) The water molecule 
movement of the brain parenchyma is also unresolved. 
A computational model by Asgari et al.110) showed 
that arterial pulsation may lead to fast paravascular 
water molecule transport by dispersion, and that 
glymphatic water molecule transport does not require 
bulk flow. Faghih and Sharp109) showed that the 
glymphatic circulation driven by steady pressure is 
implausible, given current estimates of anatomical 
and fluid dynamics. Jin et al.111) discussed, using 
their mathematical model, that significant convective 
transport requires a sustained pressure difference 
of several mmHg between the para-arterial and 
paravenous fluid, and it is not affected by pulsatile 
pressure fluctuations; diffusion (without convection) 
in the extracellular space is adequate to account for 
experimental transport studies in brain parenchyma. 
Therefore, their modeling results do not support a 
physiologically important role for local parenchymal 
convective flow in solute transport through brain 
extracellular space.111) A traditional anatomical 
study showed that the final route of mixed ICF 

and CSF from brain parenchyma though the para-
venous space is not obviously developed compared 
with the para-arterial space, which was seen in a 
classical pathological study in human spacemen.112) 
Recently, Abbott et al.113) presented an excellent 
review, a comprehensive re-evaluation of the previ-
ously proposed glymphatic concepts in favor of a 
new system that better considers basic cerebrovas-
cular physiology and fluid transport considerations. 
Currently, research on the glymphatic system versus 
the perivascular system remains a major debate. The 
discovery of the glymphatic system was done under 
non-physiological conditions such as tracer injected 
into the cisterna magna and ventricular infusion, 
and two-proton imaging detected a limited surface 
of the cortex through two small cranial windows. In 
the studies of slow water molecule motion, tracer 
studies were mostly used. It should be noted that 
the injection of tracers into the cranium is very 
sensitive to pressure and volume disturbances, and 
excess injection speed and/or volume of the tracers 
may lead to non-physiological conditions in the 
cranium.10) Thus, a method for monitoring water 
movement in the brain other than tracer studies 
is required. Therefore, use of MRI is desired to 
identify the slow water movement in the central 
nervous system as a non-tracer study.

In the present review, the detection of water 
protons by MRI in the order of centimeters per 
second was presented. Thus, imaging techniques 
with higher velocity sensitivity, such as several 
tens of micrometers per second are needed. They 
include diffusion tensor imaging analysis along 
the perivascular space,114) brain surface motion 
imaging,115) double diffusion encoding oscillatory 
gradient spin technique,116) microscopic diffusional 
kurtosis imaging with symmetrized double diffusion 
encoding EPI,117) q-space imaging,84,118,119) and ultra-
fast magnetic resonance encephalography.120) Such 
techniques will greatly improve our knowledge in 
the near future.

Conclusion

The classical concepts of “CSF flow” and “CSF 
circulation” should be amended. Furthermore, the 
expression “CSF motion” is appropriate from a 
physics perspective when evaluating the various 
directionalities and dynamics of CSF in the space 
where it exists. Moreover, CSF repeats acceleration 
and deceleration not only through simple dispersion 
of water, but also through pressure gradients and 
rotation, resulting in very complex motions with 
the addition of movements associated with activi-
ties of daily living. Furthermore, it is postulated 
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that CSF mixes with newly produced CSF and is 
absorbed near the production site at times or after it 
is transported far from the production site through 
respiratory fluctuation or human movements, thereby 
maintaining homeostasis of the central nervous 
system. As described above, CSF constantly main-
tains its movement, acting as a mediator of draining 
metabolites and metabolic heat generated by neural 
activities. When CSF is stagnant, the CSF space 
simply becomes a “garbage sink” and increases the 
concentration of CSF protein, which restricts CSF 
motion in the CSF space.

In future, detection of slower water molecule 
motion in the perivascular and/or paravascular 
and brain parenchyma spaces are needed. Much 
more work remains using imaging techniques with 
higher velocity sensitivity, such as several tens of 
micrometers per second.

The conclusion of this review is an aggregation 
of the greatest shared factors obtained through 
various MRI techniques that ascertain the move-
ment of protons of water molecules in the order 
of centimeters per second regarding CSF motion 
in the CSF space, providing an understanding of 
CSF motion at the present time (2018) that can be 
accepted by many researchers.
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