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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

was identified as the pathogen of the coronavirus disease 2019 
(COVID-19), and it has caused more than 1.45 million deaths 
worldwide by November 30, 2020.1 Patients infected with 
SARS-CoV-2 may exhibit symptoms such as shortness of dys-
pnea, high fever, and pneumonia, which are fatal for vulnera-
ble individuals.2 Coronavirus-infected inpatients are more like-
ly to develop acute respiratory failure, pulmonary embolism, or 
septic shock, resulting in death.3 Moreover, with the sharply in-
creasing number of infected people and limited assays current-
ly, the development of efficient, rapid, accurate, and sensitive 
SARS-CoV-2 sensing tools is urgent for public health in the 
world.4 

Molecular tests and serological tests have been implement-
ed for COVID-19 diagnosis to detect viral RNA and anti-SARS-
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CoV-2 immunoglobulins, respectively.5 For molecular diag-
nostic tests, the collection of upper nasopharyngeal swabs is 
recommended by the US Centers for Disease Control and Pre-
vention. So far, reverse transcription-quantitative PCR (RT-qP-
CR) has widely been used as the reference standard for the de-
tection of viral RNA in SARS-CoV-2.6-9 However, it requires 
well-trained personnel and advanced equipment, which limits 
the application of RT-qPCR, especially in resource-constrained 
developing countries.10-12 Metagenomic next-generation se-
quencing is another molecular test to identify SARS-CoV-2, but 
the sensitivity of this method is restricted by the influence of 
the human host background.13 On the other hand, the serology 
tests, including immunochromatographic analysis and en-
zyme-linked immunosorbent assay (ELISA), are not sufficient-
ly accurate in detecting SARS-CoV-2.4 In addition, asymptom-
atic patients are considered to play a major role in the spread of 
the virus.14 These factors increase the need for effective, cheap, 
and rapid alternative methods.4 

The clustered regularly interspaced short palindromic repeats 
(CRISPR)-CRISPR-associated proteins (Cas) system shows 
strong collateral activity against single-stranded RNA and DNA 
targets through molecular immune mechanisms, providing 
highly accurate methods of nucleic acid detection.15 The mecha-
nism of the detection system is the specific binding and cleav-
age activity of CRISPR-Cas. Once the primers for reverse tran-
scription loop-mediated isothermal amplification or reverse 
transcription recombinase polymerase amplification recog-
nize the specific regions of the SARS-CoV-2 genome, the tar-
geted nucleic acid is amplified at a constant temperature. The 
guide RNAs then target SARS-CoV-2 E, N, or Orf1ab amplicons 
with the base-pairing pattern at attomolar sensitivity, ensuring 
the amplified nucleotide cleaved by the Cas nuclease accu-
rately. The target nucleotide is finally identified on the detec-
tion platform with fluorescence tracking.16,17 Therefore, CRISPR 
is a more efficient and suitable point-of-care diagnostic meth-
od than RT-qPCR, considering its sequence-specific detection 
method and isothermal amplification approaches.18-20

In this study, we conducted a systematic review and meta-
analysis to assess the diagnostic accuracy of CRISPR in detect-
ing SARS-CoV-2 infection, evaluate the quality of available evi-
dence, and perform an in-depth analysis regarding the related 
research.

MATERIALS AND METHODS

Search strategy and source
This study was conducted according to the PRISMA guidelines.21 
We selected four databases, including PubMed, Embase, Co-
chrane Library, and Web of Science, and searched for data us-
ing “SARS-CoV-2” and “CRISPR” as keywords. All of the scientif-
ic papers were published before August 2021, without language 
restriction. All synonyms of the above-mentioned keywords 

were also included in the search formula for more comprehen-
sive literature.

Study screening and selection
The retrieved publications were independently selected by 
four researchers. Based on the predetermined inclusion and 
exclusion criteria, data were extracted by analyzing the titles, 
abstracts, and full texts of the studies. All disagreements were 
resolved through discussion and consultation.

Inclusion and exclusion criteria 
The publications that met all of the following criteria were in-
cluded based on preset conditions: 1) the investigators’ experi-
mental objectives included the role of CRISPR in the diagnosis 
of COVID-19 infection; 2) the study type was a diagnostic accu-
racy test, and the diagnostic accuracy was evaluated by compar-
ing the index to be tested with the standard reference method; 
and 3) the data provided by the study could identify true posi-
tive (TP), false positive (FP), true negative (TN), false negative 
(FN), or sensitivity and specificity.

Exclusion criteria were as follows: 1) studies that were ani-
mal experiments; 2) studies where the reference method was 
not mentioned; 3) letters, conference abstracts, reviews, edito-
rials, or erratum; and 4) duplicated publications or those with 
no description of the available data. 

Data extraction 
The EndNoteX9 software was used for file management and 
data extraction from articles. Excel standardized electronic data 
entry form was used to pool the required information, includ-
ing the author’s name, publishing year, study type, sample size, 
reference standard, and indicators. In addition, the diagnostic 
features of SARS-CoV-2 were extracted along with TP, FP, TN, 
and FN. We reviewed the extracted information, resolved all 
disagreements through negotiated discussion, and excluded 
duplicate data.

Quality assessment standard
Four investigators evaluated the quality of the included stud-
ies independently in accordance with the Quality Assessment 
of Diagnostic Accuracy Studies (QUADAS-2) guidelines,22 re-
garding four main steps: case selection, trial to be assessed, ref-
erence standard, and case process and progress. The assess-
ment of all four components was applied to analyze the risk of 
bias, while the assessment of the first three components was 
applied for the evaluation of clinical applicability. Issues with 
other iconic study designs were included in the risk of biased 
judgments, which were related to the potential for judicial bias. 
Responses of “Yes,” “No,” or “Indeterminate” corresponded to 
a risk of bias rating of “Low,” “High,” or “Indeterminate,” based 
on the questions included in each section.
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Data analysis 
We used the MetaDiSc 1.4 software (Ramony Cajal Hospital, 
Madrid, Spain) for statistical analysis following standard meth-
ods, and used the Stata 15.0 software (StataCorp LLC, College 
Station, TX, USA) to draw Deeks’ funnel plot and test funnel 
plot symmetry as well as publication bias. Spearman correla-
tion coefficient and Cochran-Q were performed to analyze the 
heterogeneity of the included data, and a fixed-effects model 
or random-effects model was selected based on the result val-
ue. The sensitivity, specificity, positive likelihood ratio (PLR), 
and negative likelihood ratio (NLR) were calculated and ana-
lyzed by drawing a forest plot using MetaDiSc 1.4. The effect 
value and its 95% confidence interval (CI) were shown in the 
forest plot. In addition, the area under the curve (AUC) was cal-
culated using the summary receiver operating characteristic 
(SROC) curve to obtain the specificity and sensitivity. Then, the 
total efficiency of CRISPR was assessed using diagnostic odds 
ratio (DOR) and AUC. The Review Manager 5.3 software (The 
Nordic Cochrane Centre, Copenhagen, Denmark) was used 
to evaluate the quality of the included studies.

RESULTS

Summary of the included studies
After searching through all four literature databases, we ob-
tained 547 related documents, from which 374 were selected 

after the removal of duplicated publications. A total of 156 
studies were removed for their uncorrelated titles or “CRISPR 
detection” not mentioned in their abstracts. We read through 
the text afterwards, and 188 studies were excluded for various 
reasons. Finally, 30 articles were selected with a total of 38 
groups of data (Fig. 1).6,10,16,17,23-48 The effect-indicator proposed 
in each literature was involved in the composition of the data 
extracted. Table 1 shows the characteristics of these studies in 
detail. 

Methodological quality evaluation 
The quality of the included studies was evaluated by analyzing 
the data in terms of case selection, index detection, reference 
standard, and case process and progress using Review Man-
ager 5.3. Fig. 2A summarizes the results of the QUADAS-2 as-
sessment, and Fig. 2B shows the independent quality assess-
ment of each study. The results indicated that for case selection, 
seven studies had a risk of bias due to the unclear case-control 
study design and the unknown inclusion of consecutive or ran-
domized case conditions. In the index test field, three studies 
were at higher risk since the interpretation of the index test 
results was made when the reference standard results were 
known. Both the reference standard field and the flow rate 
and time were considered to have a low risk of bias. 

Merged analysis results
Overall, the sensitivity of CRISPR in the diagnosis of COVID-19 

Identification of studies via databases and registers

PRISMA 2020 flow diagram for new systematic reviews which included searches of databases and registers only
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Records identified from databases (n=547):
   PubMed (n=246)
   Embase (n=205)
   Cochrane (n=11)
   Web of science (n=85)

Records removed before screening: 
   Duplicate records removed (n=173)
   Records marked as ineligible by automation tools (n=0)
   Records reomoved for other reasons (n=0)

Reports excluded (n=188): 
   Letter/review/conference abstract (n=144)
   Article in press (n=1)
   Lack of reference standard (n=15)
   Unable to extract data (n=28)

Records excluded by screening title/abstract (n=156)

Reports not retrieved (n=0)

Records screened (n=374)

Reports sought for retrieval (n=218)

Reports assessed for eligibility (n=218)

Studies included in review (n=30)
Reports of included studies (n=38)

Fig. 1. Flow diagram of study identification and inclusion.
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was 0.94 (95% CI 0.93–0.95, I2=52.8%) (Fig. 3A), and the speci-
ficity was 0.98 (95% CI 0.97–0.99, I2=65.0%) (Fig. 3B). As shown 
in the chart in Fig. 3C, the AUC was 0.9894. The PLR was 34.03 

(95% CI 20.81–55.66, I2=66.0%) (Fig. 4A), and the NLR was 0.08 
(95% CI 0.06–0.10, I2=14.0%) (Fig. 4B). The value of the pooled 
DOR was 575.74 (95% CI 382.36–866.95) (Fig. 4C). 

Table 1. Characteristics of Included Studies about CRISPR Detection of SARS-CoV-2

Author Year
Geographical 
distribution of 

virus

Patients 
(n)

Sample source
Type of 

cas enzyme
Gene
site

Readout
mode

TP FPFNTN

Patchsung, et al. (1)6 2020 Thailand 154 Nasopharyngeal swabs Cas13a N Lateral flow assays   71 0 10 73
Patchsung, et al. (2)6 2020 Thailand 154 Nasopharyngeal swabs Cas13a N Fluorescence reader   78 0 3 73
Huang, et al.10 2020 America   29 Nasal swabs Cas12a N Fluorescence reader   15 4 0 10
Wang, et al.23 2020 China   31 Nasal swabs Cas12a E Fluorescence reader   16 0 0 15
Joung, et al.24 2020 America 402 Nasal swabs Cas12b N Fluorescence reader 188 3 14 197
Broughton, et al. (a1)16 2020 America   82 Nasopharyngeal swabs Cas12 N\E Lateral flow assays     9 0 1 12
Broughton, et al. (a2)16 2020 America   82 Nasopharyngeal swabs Cas12 N\E Fluorescence reader   37 0 3 42
Broughton, et al. (b1)25 2020 America   21 Nasopharyngeal swabs Cas12 E Fluorescence reader   10 0 0 11
Broughton, et al. (b2)25 2020 America   21 Nasopharyngeal swabs Cas12 N Fluorescence reader     9 0 1 11

Chen, et al.17 2020 China   10 Respiratory swabs Cas12a N\E
Lateral flow assays\  
  Fluorescence reader

    7 0 0 3

Ding, et al.26 2020 America   28 Respiratory swabs Cas12a N Fluorescence reader     8 0 0 20
Ma, et al.27 2020 China   24 Nasopharyngeal swabs Cas12a E Fluorescence reader   13 0 0 11
Arizti-San, et al.28 2020 America   50 Nasopharyngeal swabs Cas13 N Fluorescence reader   27 0 3 20
Mayuramart, et al.29 2021 Thailand 164 Nasopharyngeal and/or throat swabs Cas12a S Fluorescence reader   51 0 2 111
Nimsamer, et al. (1)30 2021 Thailand 107 Nasopharyngeal and/or throat swab Cas12a N1 Fluorescence reader   41 0 3 63
Nimsamer, et al. (2)30 2021 Thailand 107 Nasopharyngeal and/or throat swab Cas12a N2 Fluorescence reader   42 6 2 57
Nimsamer, et al. (3)30 2021 Thailand 107 Nasopharyngeal and/or throat swab Cas12a E Fluorescence reader   43 10 1 53
Nimsamer, et al. (4)30 2021 Thailand 107 Nasopharyngeal and/or throat swab Cas12a S Fluorescence reader   42 0 2 63

Ning, et al. (1)31 2021 America 103 Nasal swabs Cas12a O
Fluorescence reader  
  (Smartphone)

  27 0 0 76

Ning, et al. (2)31 2021 America 103 Nasal swabs Cas12a O
Fluorescence reader 
  (Plate reader)

  27 1 0 75

Ooi, et al.32 2021 Singapore   75 Nasopharyngeal swabs Cas12a S Lateral flow assays   37 0 8 30
Rauch, et al.33 2021 America 218 Nasopharyngeal swabs Cas13 N Fluorescence reader   63 3 2 150
Samacoits, et al.34 2021 Thailand 115 Nasal swabs Cas12a N Fluorescence reader   45 5 7 58

Brandsma, et al.35 2021 Netherlands 378
Nasopharyngeal swabs, 
  bronchoalveolar lavage and sputum

Cas12 N Lateral flow assays 144 10 11 213

Chen, et al.36 2021 America   27 Nasopharyngeal swabs Cas12a N Fluorescence reader   11 0 0 16
Curti, et al.37 2021 Argentina 210 Nasopharyngeal swabs Cas12 N Fluorescence reader 105 1 0 104
Ding, et al.38 2021 America   32 Clinical swabs Cas12a N1 Fluorescence reader   12 0 0 20
Jiang, et al. (1)39 2021 China   41 Nasopharyngeal and throat swabs Cas12a N Colorimetric analysis   21 0 0 20
Jiang, et al. (2)39 2021 China   41 Nasopharyngeal and throat swabs Cas12a O Colorimetric analysis   21 0 0 20

Lee, et al.40 2021 Korea   20
Nasopharyngeal and oropharyngeal  
  swabs and sputum

Cas12a N Fluorescence reader   10 0 0 10

Sun, et al.41 2021 China   54 Pharyngeal swabs Cas12a O Fluorescence reader     6 0 0 48
Pang, et al.42 2020 Canada 100 Respiratory swabs Cas12a N\E Fluorescence reader   47 0 3 50
Liu, et al.43 2021 China   25 Nasal swabs Cas12a O\N Fluorescence reader   20 0 0 5
Li, et al.44 2021 China 649 Oropharyngeal and sputum swabs Cas13a N Lateral flow assays 243 3 25 378
Tian, et al.45 2021 China   40 Nasopharyngeal swabs Cas13a O\N Fluorescence reader   20 0 0 20
Wang, et al.46 2021 China   50 Respiratory swabs Cas12a S Fluorescence reader   26 0 0 24
Xiong, et al.47 2021 China   64 Nasopharyngeal swabs Cas9 E\O Lateral flow assays   34 0 1 29
Zhu, et al.48 2021 China 114 Respiratory swabs Cas12a O\N Lateral flow assays   37 0 0 77
CRISPR, clustered regularly interspaced short palindromic repeats; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; Cas, CRISPR-associated pro-
teins; FN, false negative; FP, false positive; TN, true negative; TP, true positive; N, nucleocapsid protein gene; E, envelope protein gene; S, spike protein gene; O, 
open reading frame 1 ab.
*The reference standard of the included studies was reverse transcription-quantitative PCR.
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Fig. 2. Quality evaluation results for each study included in the meta-analysis. (A) Risk of bias and applicability concerns summary. (B) Quality evalua-
tion of the included studies.
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Analysis of threshold effect
In the threshold effect analysis, the Spearman correlation co-
efficient was 0.024, and the p-value was 0.888 (p>0.05). More-

over, the SROC curve (Fig. 3C) did not have a “shoulder arm” 
distribution. Therefore, we concluded that there was no thresh-
old effect in the included studies. 

A

C

B

Fig. 3. Forest plots for CRISPR-based SARS-CoV-2 detection methods. (A) Forest plots for combined sensitivity. (B) Forest plots for combined specific-
ity. (C) The SROC of SARS-CoV-2 infections detected by CRISPR. CRISPR, clustered regularly interspaced short palindromic repeats; SARS-CoV-2, se-
vere acute respiratory syndrome coronavirus 2; CI, confidence interval; SROC, summary receiver operating characteristic; AUC, area under the 
curve; SE, standard error. 
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Heterogeneity analysis of non-threshold effect
A forest map was used to plot the ratio following a random pat-
tern. The heterogeneity in non-threshold effects was low (Fig. 

4C): Cochran-Q=38.80, p=0.3884 (p>0.05), inconsistency=4.6% 
(inconsistency<50%). 

A

C

B

Fig. 4. Forest plots for CRISPR-based SARS-CoV-2 detection methods. (A) Forest plots for combined positive likelihood ratio. (B) Forest plots for com-
bined negative likelihood ratio. (C) Forest plots for combined diagnostic OR. CRISPR, clustered regularly interspaced short palindromic repeats; SARS-
CoV-2, severe acute respiratory syndrome coronavirus 2; LR, likelihood ratio; df, degree of freedom; CI, confidence interval; OR, odds ratio.
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Publication bias
The Deeks’ funnel plot (Fig. 5) was made using the Stata 15.0 
software to identify publication bias in the included publications 
(p=0.457>0.1), and it showed no potential publication bias for 
the included studies.

DISCUSSION

Currently, RT-qPCR assays are the recommended molecular 
diagnostic tools to detect COVID-19 infection.7,8 However, they 
come with a high demand for equipment and skillful lab tech-
nicians.10 In contrast, the CRISPR-based nucleic acid detection 
platforms have the combined advantages of conventional RNA-
targeting technologies, and a fluorescence readout or a lateral-
flow readout can be used to analyze the results in an hour, with 
a setup time of less than 15 min.49 The simplicity of operation, 
remarkable specificity, and high efficiency make CRISPR-based 
diagnostics the new avenues for sensitive, robust, and rapid de-
tection of viral pathogens.

In this study, we performed a pooled analysis, and the re-
sults of the systematic review and meta-analysis indicated that 
CRISPR had an overall sensitivity of 0.94 (95% CI 0.93–0.95) 
and an overall specificity of 0.98 (95% CI 0.97–0.99) in detect-
ing SARS-CoV-2. The value of the pooled DOR was 575.74. The 
AUC was 0.9894 and was close to 1. Based on these results, we 
can infer that the diagnosis of COVID-19 by using CRISPR was 
highly accurate.

Several studies have evaluated the accuracy of immunochro-
matographic analysis and ELISA for SARS-CoV-2 detection.50 A 
test strip for the detection of SARS-CoV-2 IgG/IgM-combined 
antibody based on immunochromatography has been devel-
oped by Liao, et al.,51 with a sensitivity of 92.9% and a specificity 

of 98.7%. However, the antibody-positive rate in the first week 
of infection was only 77.3% and reached 100% on day 9. An-
other study reported by Beavis, et al.52 evaluated an ELISA assay 
to detect SARS-CoV-2 IgA and IgG antibodies. The sensitivity 
of IgA ELISA was 82.9% and the specificity was 88.4%, while 
the sensitivity of IgG ELISA was 67.1% and the specificity was 
97.7%. Although these assays are fast and easy to operate50,53 
compared to CRISPR, infection-generated antibodies are de-
tectable at later stages in the disease, which is not conducive to 
early disease screening.51,54 In addition, if the sample is heat-
inactivated, the effective concentration of the antibody would 
decrease and probably give false-negative results.55 Meanwhile, 
according to Beavis, et al.,52 ELISA assay tended to have a lower 
sensitivity and specificity compared to CRISPR. Therefore, 
CRISPR is a valid and appropriate instrument for detecting 
SARS-CoV-2.

Furthermore, to minimize the sources of heterogeneity, this 
study implemented strict criteria for the inclusion and exclu-
sion of the studies. In the threshold effect analysis, the Spear-
man correlation coefficient was found to be 0.024 (<0.6) and the 
p-value was 0.888 (p>0.05), which indicated the lack of thresh-
old effect in the included studies. However, I2 values of pooled 
sensitivity (52.8%), specificity (65.0%), PLR (66.0%), which ex-
ceeded 50%, suggested the presence of heterogeneity from 
non-threshold effects. Subgroup analysis was performed to 
investigate the heterogeneity caused by different types of Cas 
enzyme used, Cas12 and Cas13, but no statistically significant 
results were obtained. Instead, we found that gene targets and 
readout modes might be the possible sources of underlying 
heterogeneity.6,10,23 Moreover, the Deeks’ funnel plot (p=0.457 
>0.1) indicated that no publication bias was possibly subsistent.

The present systematic review and meta-analysis also had 
several limitations. First, we only extracted data from the liter-
ature published in the four select English databases, and ig-
nored some negative results without statistical significance or 
unpublished data. This may lead to defects in the comprehen-
siveness of the current study and more publication bias. Sec-
ond, the detection capability of the reference methods may 
not necessarily be more reliable than that of CRISPR. The refer-
ence methods could also provide false-positive results, thereby 
leading to underestimation of the specificity of the CRISPR 
method. Finally, there were no remarkable changes in subgroup 
analyses. This study can be improved with the accumulation 
of more clinical data in the future. With more COVID-19 cases 
being reported every day worldwide, there may be more stud-
ies supporting our theory and, at the same time, having im-
portant implications for the diagnosis of COVID-19. 

In summary, CRISPR has proven to be a rapid, sensitive, and 
specific method to detect SARS-CoV-2. It can provide reliable 
information for clinical laboratory tests and contribute to point-
of-care diagnostics where simplicity and cost-effectiveness 
are needed. This technology is expected to become the major 
auxiliary diagnostic method for COVID-19 in the near future. 
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Fig. 5. Deeks’ funnel plot asymmetry test to evaluate publication bias of 
CRISPR. CRISPR, clustered regularly interspaced short palindromic re-
peats; ESS, effective sample size.
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