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Abstract
Motor complications are responsible for the large burden  
of disability and poor quality of life in Parkinson’s disease  
(PD). The pulsatile nature of stimulation with oral dopaminergic 
therapies due to relatively short pharmacokinetic profiles  
and dysfunctional gastrointestinal absorption have been 
attributed to the development of PD motor complications. In 
this review, we will provide an overview of the pharmacologic 
and surgical therapies currently available and under 

investigation for the treatment of motor fluctuations and 
dyskinesia.
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Introduction
Parkinson’s disease (PD) affects more than 6 million people 
worldwide with an increasing prevalence predicted to 
exceed 9 million by the year 2030.1,2 L-Dopa (3,4-dihydroxy-L-
phenylalanine) has revolutionized the treatment of PD since its 
introduction in the 1960s, and it remains the gold standard for 
symptomatic management of the cardinal motor symptoms 
throughout the course of disease.3,4 L-Dopa crosses the blood–
brain barrier, where it is converted to dopamine by the enzyme 
DOPA-decarboxylase. Reduction in the motor symptoms of 
PD is attributed to increasing dopamine concentrations in the 
central nervous system or stimulating dopamine receptors 
in the basal ganglia using dopamine agonists.5 However, the 
beneficial effects of dopaminergic agents will decline over 
time, resulting in an increasing frequency of rapid and, at times, 
unpredictable cycling between good therapeutic response  
(“on” phenomenon) and poorly controlled symptoms  
(“off” phenomenon) that are called motor fluctuations.6–8

The various manifestations of L-Dopa-associated motor 
complications include early “wearing off” of symptom 
control between doses, prolonged latency to therapeutic 
effect, unpredictable abrupt loss of benefit (sudden “on–off” 
phenomena), unexpected dose failures, and/or troublesome 
dyskinesias.9,10 Dyskinesias are involuntary movements, often 
choreiform, that occur either at “peak-dose” concurrent with 
maximal therapeutic effect or are “diphasic,” occurring at 

the beginning or end of dose when plasma L-Dopa is within 
subtherapeutic ranges.11

Up to 40% of PD patients experience motor fluctuations and 
more than one-third experience dyskinesias within 4–6 years 
of diagnosis.8 Risk factors include young age of onset, longer 
disease duration, and greater disease severity.8,12,13

Motor fluctuations were initially believed to reflect 
variable striatal L-Dopa bioavailability in the context of 
declining dopamine storage in nigrostriatal terminals14 and 
unpredictable oral L-Dopa absorption.15,16 However, the 
occurrence of fluctuations with dopamine agonists suggests 
that post-synaptic pharmacodynamic factors may also play 
a role.7,17 This is further supported by clinical observations 
of reduced dyskinesias and motor fluctuations with deep 
brain stimulation (DBS) and continuous infusion therapies,18 
suggesting that the pulsatile nature of dopaminergic 
stimulation from conventional oral therapies may alter the 
firing patterns within the neuronal networks of the basal 
ganglia.6,10

As PD progresses, motor complications become a major source 
of disability and reduced quality of life.9,19,20 Thus, treatment 
of these has been a major focus of therapeutic advancements 
in PD over the past decade. This review will serve as a guide to 
understand the newer pharmacologic and surgical therapies 
that are currently available and in the pipeline for development 
to treat PD motor complications. Discussion will be focused  
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Table 1. Pharmacokinetic profiles of levodopa therapies currently available in the US and Europe.

T½ (h) Cmax (ng/mL) Tmax (h)

DDI-LD immediate release
25–100 mg
Controls22,50,140–142 (n=75–77)
Mild and moderate PD143 (n=8)
Mild–advanced PD49 (n=10)

25–250 mg
Controls141 (n=14–16)
Mild PD144 (n=10)
Moderate PD144 (n=8)
Advanced PD144 (n=13)

1.53 [1.4–1.91]d

1.51 (SEM 0.07)
1.35 (CV 23.7)

–
–
–
–

1047 [850–1210]d

2080 (SEM 354)
1484 (CV 26)

1760±690
1490±80
1350±100
1560±100

0.94 [0.58–1.0]d

0.78 (SEM 0.22) 
1.00 [0.5–4] d 

1.02±0.80
1.23±0.34
1.25±0.25
1.14±0.29

CD-LD-controlled release
25–100 mg
Controls22 (n=23)
Mild PD145 (n=9)

50–200 mg
Mild PD145 (n=9)
Mild and moderate PD146 (n=13)
Moderate–advanced PD25 (n=17)

1.6±0.2
1.7±0.3

1.9±0.4
–
–

855±299
887±355

1282±454
263 (SEM 35.92)
1840±889

1.5 [1.0–2.0]d

1.3±0.6

1.8±0.9
2.82 (SEM 0.27) 
2.4±1.02 

DDI-LD-entacapone
25–100–200 mg
Controls22,50,140,141 (n=64–66)
Mild–moderate PD143 (n=8)

37.5–150–200 mg
Controls141 (n=14–16)
Mild–moderate PD146 (n=13)
Moderate–advanced PD25 (n=17)

1.81 [1.6–2.11]d

2.00 (0.12 SEM)

–
–
–

951.5 [720–1040]d

1490 (SEM 110)

1090±310
257.2 (SEM 27.52)
1926±760

1.22 [0.75–1.5]d

1.17 (SEM 0.24)

0.90±0.5
2.33 (0.09 SEM)
2.03±0.98

DDI-LD-opicapone
Controls50 (n=16)
25 mg
50 mg
75 mg

Mild–advanced PD49 (n=10)a

5 mg
15 mg
30 mg

2.47 (CV 33.7)
2.50 (CV 15.7)
2.39 (CV 23.3)

1.67 (CV 24.9)
1.78 (CV 31.2)
2.16 (CV 36.5)

1203 (CV 37.7)
1030 (CV 38.8)
1057 (CV 31.7)

1868 (CV 31.8)
1806 (CV 28.4)
2584 (CV 33.7)

1.00 [0.5–3.0]d

0.75 [0.5–3.0]d

1.50 [0.5–2.0]d

1.00 [0.5–2.0]d

0.75 [0.5–2.0]d

0.50 [0.5–3.0]d

CD-L-Dopa capsule
Controls
23.75–95 mg26 (n=28)
36.25–145 mg26 (n=28)
48.75–195 mg26 (n=28)
61.25–245 mg26 (n=28)
97.5–390 mg (n=22)22

1.5±0.3
1.4±0.2
1.5±0.6
1.5±0.3
1.9±0.7

317±90.3
491±125
630±187
763±156
1326±268

2.8 [0.5–5]d

2.8 [0.5–5]d

4.0 [0.5–5]d

3.5 [0.5–5]d

4.5 [0.5–8]d

AP-CD-LD
Controls147 (n=12)b

50–500 mg
5.15 1951 4.67

LCIG 16-hour infusion58

Advanced PD (n=18)e

mean CD 395±101 mg – 
LD 1580±403 mg daily – 4210±1360 2.85±2.31

(Continued)
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Table 1. (Continued)

This table summarizes the pharmacokinetic (PK) profiles of levodopa with adjuvant therapies and novel delivery mechanisms. 
Parkinson’s disease (PD) patients were categorized by either the duration of disease (DD) or Hoehn and Yahr scores (H&Y). 
Study populations were grouped as healthy controls, mild PD (DD: 0–5 years; H&Y I–II), moderate PD (DD: 6–10 years; H&Y III), 
and advanced PD (DD: >10 years; H&Y IV–V). Parameters are expressed as mean ± standard deviation except where indicated.
aafter 28 days of daily opicapone dosing to reach steady state; bno standard deviation available.
dMedian values between multiple studies are reported with mean ranges listed in brackets.
eNo details of the study population disease duration or H&Y stage were provided in this study. Subjects were labeled as 
advanced by the investigators.58

CD, carbidopa; CV, % coefficient variation; DDI, dopa decarboxylase inhibitor (carbidopa or benserazide); LCIG, levodopa 
carbidopa intestinal gel; LD, levodopa; SEM, standard error of mean.

on therapies that have completed phase II clinical trials in  
PD patients.

Levodopa: old becomes new
Carbidopa (CD) or benserazide is combined with L-Dopa to 
reduce its peripheral conversion to dopamine by inhibiting 
DOPA-decarboxylase, thereby improving L-Dopa bioavailability. 
Clinically, this reduces the side effects of L-Dopa-associated 
nausea and vomiting.21 Immediate-release (IR) L-Dopa is the 
most readily available formulation worldwide; however, its short-
acting pharmacokinetics results in unstable plasma L-Dopa 
concentrations.22 Peak plasma concentrations are reached 
within 1 hour of oral administration but drop to less than 10% 
by 5 hours in healthy adults.22 Another potential variable 
influencing L-Dopa bioavailability may be gastrointestinal 
hypomotility, a common nonmotor symptom of PD.16,23

Measures to overcome inconsistent L-Dopa bioavailability led 
to the early development of longer-acting formulations. Early 
formulations of controlled-release (CR) L-Dopa (Sinemet CR, 
Merck & Co, Whitehouse Station, NJ, USA) and a single tablet 
CD-L-Dopa combined with entacapone (CLE), a peripheral 
inhibitor of the catechol-O-methyltransferase (COMT) 
(marketed as Stalevo, Novartis Pharmaceuticals Corporation, 
East Hanover, NJ, USA), were developed to increase the 
duration of effect and peak plasma concentrations of L-Dopa, 
respectively. However, CLE only demonstrated a modest 
increase in L-Dopa half-life by 0.5–0.7 hours in PD patients,24 
and both CLE and L-Dopa CR showed a large degree of 
intersubject variability in pharmacokinetics.25 Development  
of better, more consistent, and reliable long-acting formulations 
of L-Dopa remains a priority for drug development (Table 1).

Carbidopa-levodopa capsule
CD-L-Dopa Capsule (Rytary, Impax Laboratories, Hayward, 
CA, USA) is a dual-release formulation of immediate- and 
extended-release CD-L-Dopa beads in a single capsule that 
was recently approved for use in the United States (US) and 
select countries. Similar to IR L-Dopa, CD-L-Dopa capsule 
achieved initial peak plasma L-Dopa concentration within  

1 hour; however, these concentrations were sustained for up 
to 4–5 hours in healthy volunteers.26 Furthermore, CD-L-Dopa 
capsule lasted 2.5 hours longer than the two other existing 
long-acting formulations (L-Dopa CR and CLE).22

CD-L-Dopa capsule provided greater on time without 
troublesome dyskinesias compared to IR L-Dopa reflective of 
a smoother pharmacokinetic profile (Figure 1).27 In a phase III 
clinical trial, an average of 3.6 doses of CD-L-Dopa capsule was 
used per day compared to 5 doses in the IR group.27 However, 
anecdotally, this medication may need to be prescribed more 
frequently to achieve stable “on” time in advanced PD. Common 
adverse effects were insomnia, nausea, dizziness, falls, and 
dyskinesia with similar incidence to the IR L-Dopa cohort.27

DM-1992
DM-1992 is a novel long-acting L-Dopa, currently under 
investigation.28 It consists of an IR L-Dopa layer and a novel 
expanding core of extended-release L-Dopa that is retained 
in the stomach for 8–9 hours, resulting in a more stable 
pharmacokinetic profile.29 One study crossing over PD 
patients from IR L-Dopa to DM-1992 demonstrated a reduction 
in “off” time by 1 hour.28 Worsening Parkinsonian gait and 
dizziness were common in the DM-1992 arm, but there were 
no significant differences in types of adverse effects seen 
compared to IR L-Dopa.28

AP-CL-LD
The Accordion Pill (AP-CD-LD; Intec Pharma, Inc, New York, NY, 
USA) is another novel slow-release preparation of L-Dopa that 
is currently under investigation. This medication comprises 
multiple layers of CD combined with both IR and CR L-Dopa 
that is retained in the stomach for 12–14 hours.30 In healthy 
controls and PD patients, AP-CD-LD provides less fluctuant 
plasma L-Dopa levels compared to IR L-Dopa.31,32 In phase II 
trials, there was significant clinician and patient-rated symptom 
improvement and greater non-troublesome “on” time compared 
to traditional oral L-Dopa therapy (IR or CR).32,33 Up to a 25% 
reduction in the total, daily L-Dopa dose was also reported.33 A 
phase III randomized trial comparing AP-CD-LD with IR L-Dopa 
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was recently completed; however, results have not been 
published.34

Levodopa adjuvant therapies
Another strategy to increase the peak plasma concentrations 
and duration of action of L-Dopa is by slowing its metabolism. 
Adjunctive medications such as COMT inhibitors and 
monoamine oxidase B (MAO-B) inhibitors can be used to 
prolong L-Dopa’s therapeutic effects by interfering with 
dopamine and L-Dopa metabolism, respectively.35,36

As previously discussed, COMT inhibitors prolong L-Dopa 
bioavailability and can delay the increase in dose frequency. 
Although it only provides an average of 0.8 hours increase in 
on time, entacapone is currently the most commonly used 
COMT inhibitor (Figure 1).37 Although entacapone only acts 
peripherally, tolcapone is another COMT inhibitor that acts 
both centrally and peripherally38 and improves “on” time by  
1.8 hours (Figure 1).39 Despite its superiority over entacapone, 
its use has been restricted in the US due to the adverse effects 
of fulminant hepatotoxicity.40–42

MAO-B inhibitors selectively decrease the metabolism 
of striatal dopamine without causing tyramine-induced 

hypertension response typical of MAO-A inhibitors.36 Selegiline 
and rasagiline are the two most commonly prescribed MAO-B 
inhibitors that are used as either mono- or adjunctive therapy 
to L-Dopa.43–48 In one study, utilizing rasagiline or entacapone 
as an adjunct to L-Dopa, comparable increases in “on” time 
without troublesome dyskinesias were observed at 0.85 hours 
(Figure 1).46 Thus, development for more potent therapies to 
augment L-Dopa metabolism is needed.

Opicapone
Opicapone is a third-generation, selective, peripherally 
acting, once-daily COMT inhibitor.49,50 It was approved for 
use in Europe in 2016 and is currently under investigation 
in the US. At the recommended dose of 50 mg daily of 
opicapone, L-Dopa bioavailability is significantly higher than 
that achieved by entacapone.50 Unfortunately, opicapone’s 
pharmacokinetic superiority was not mirrored in clinical trials. 
Two phase III studies demonstrated only modest increase in 
“on” time without troublesome dyskinesias when compared to  
placebo,51,52 and no significant difference when compared 
to entacapone (Figure 1).51 Opicapone was well tolerated 
with discontinuation primarily attributed to dopaminergic 
side effects of dyskinesias, hallucinations, and orthostatic 

Figure 1. Increase in daily “on” time without troublesome dyskinesia. This figure summarizes the data from 
randomized controlled trials, as it relates to improvement of “on” time without troublesome dyskinesias. 
Statistical analysis between investigational therapy and best medical therapy is designated by the 
following p-values: a: p<0.05; b: p<0.01; c: no p-value available. N.S. not significant.
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hypotension.52 Treatment emergent dyskinesias were 
reported as an adverse effect more frequently with 50 mg 
opicapone compared to entacapone.51 Other adverse effects 
included constipation and dry mouth.51,52

Safinamide
Safinamide is a highly selective, reversible MAO-B inhibitor53 
available in the US and select countries, with proposed 
antidyskinetic effects due to reduction in glutamate 
transmission.54 Safinamide was primarily studied as an 
adjunct to L-Dopa with only a slight increase in daily on time 
without troublesome dyskinesias, to a magnitude similar to 
rasagiline (Figure 1).46,55,56 Although there are no head-to-head 
studies directly comparing the three MAO-B inhibitors and 
entacapone, Binde and colleagues performed a meta-analysis 
of 27 published trials demonstrating that safinamide was 
inferior to both rasagiline and selegiline and had comparable 
efficacy to entacapone.57 Furthermore, the antidyskinetic 
effects observed in primate models54 were not replicated in 
human studies.56

Infusion therapies
The goal to achieve stable plasma concentrations of L-Dopa 
prompted the development of infusion therapies. Several 
therapies discussed in this section have been utilized in Europe 
for many years and have only recently been investigated and 
approved in the US.

Levodopa-carbidopa intestinal gel
Levodopa-carbidopa intestinal gel (LCIG) infusion provides 
continuous jejunal infusion. Although it has been used for  
15 years outside the US, it was approved in the US only in 2015. 
An external pump delivers L-Dopa continuously over 16 hours 
during the waking day via a percutaneous gastrojejunostomy 
tube (PEG-J). This provides more stable therapeutic plasma 
L-Dopa concentrations compared to oral IR preparations.58,59 
LCIG increased “on” time without troublesome dyskinesias by 
almost 2 hours (Figure 1) and patients utilized less rescue doses 
of L-Dopa compared to the IR L-Dopa cohort at 12 weeks in 
a phase III trial.60 Significant improvements in quality of life, 
activities of daily living, and non-motor symptoms have been 
reported.60 Additionally, more than one-third of patients were 
able to utilize LCIG as monotherapy.61

Despite these advantages, a barrier to widespread use is 
long-term device or procedure-related complications such as 
infection, tube dislocations, stoma complications, peritonitis, 
and pneumoperitoneum, which occurred in almost 70% of 
patients in an open-label prospective study.62 Of note, most 
gastrointestinal and procedural adverse events occurred 
within the first 2 weeks postoperatively.60 Finally, LCIG has 
an increased risk of polyneuropathy. Although the exact 
pathophysiology is unknown, vitamin B12 deficiency has 

been implicated, warranting regular monitoring and B12 
supplementation.63

Subcutaneous apomorphine infusion
Apomorphine is a dopamine agonist acting on postsynaptic 
dopamine receptors to improve the motor symptoms of PD. 
Subcutaneous apomorphine infusions have been used for 
more than a decade with good effect outside the US and is 
currently in clinical trials in the US.64,65 A randomized, double-
blind study of 16-hour daily infusion demonstrated similar 
improvements in “on” time to LCIG (Figure 1), allowing patients 
to reduce their daily levodopa equivalent medication by more 
than 300 mg.64 Skin nodules, nausea, and somnolence were the 
most commonly experienced adverse effects.64 Uncommon 
but serious treatment-related adverse effects included severe 
hypotension, nonhemolytic anemia, leucopenia, hallucinations, 
confusion, and infusion-site cellulitis.64 However, long-term 
apomorphine infusions may not be well tolerated.66 In a 
10-year observational study, two-thirds of patients ceased 
therapy after an average 17.9 months. Discontinuation was 
primarily attributed to neuropsychiatric complications such 
as hallucinations, impulse control disorder, and dopamine 
dysregulation.67

ND-0612
A subcutaneous CD-LD infusion is currently under investigation 
with promising results. Preliminary pharmacokinetic studies 
demonstrated stable plasma L-Dopa concentrations in 
healthy68 and PD subjects,69 with up to 2 hours reduction in 
“off” time compared to optimal oral therapy.68,69 Oral L-Dopa 
intake was reduced by an average of 80% with 3 of 16 subjects 
achieving monotherapy.69 A study comparing 24-hour versus 
14-hour daytime infusions found that running the infusion 
overnight led to significant improvements in sleep quality and 
early-morning motor symptoms.70 Similar to subcutaneous 
apomorphine, subcutaneous nodules occurred.68

Rapid-acting therapies
Rapid-acting medications serve as a bridge for symptom 
control to address unpredictable “off” periods, dose failures, and 
prolonged latency to oral L-Dopa effectiveness. Subcutaneous 
apomorphine can be administered as a single-dose injection 
that improves early-morning akinesia and “off” periods by 
95%.71,72 This medication is relatively fast acting with an onset 
of effect within 10–24 minutes.71–73 However, its use is limited 
by intolerable side effects of nausea, somnolence, dizziness, 
and orthostatic hypotension,71 with one-third of patients 
discontinuing this therapy by 12 months due to these.74 
Another rapid-acting therapy available outside the US is 
dispersible benserazide-L-Dopa. Its clinical efficacy is limited, as 
it appears to take almost 20 minutes longer than subcutaneous 
apomorphine to take effect.75
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Levodopa inhaled powder
L-Dopa inhaled powder (LDIP) (Inbrija, Accorda Therapeutics, 
Ardsley, NY, USA) is a dry powder formulation administered by 
a breath-actuated device recently approved in the US.76 Rapid 
absorption of L-Dopa through the pulmonary epithelium allows 
PD patients to achieve peak plasma L-Dopa concentration within 
15 minutes of inhalation.76 However, in clinical trials, significant 
improvements in motor symptoms only occurred at 30 minutes 
of using the highest studied dose of 84 mg.77 The most common 
side effect was a non-dose-dependent cough, occurring within 
the first month of treatment.77 Other respiratory side effects 
include upper respiratory tract infections, discolored sputum, 
and throat irritation; however, no short-term detrimental effects 
on lung function were noted in patients using up to 5 doses 
per day.77,78 Although infrequent but serious adverse effects 
of hypotension and atrial fibrillation occurred, LDIP was well 
tolerated in most patients.77

APL-130277
Sublingual apomorphine was first introduced in 1989 
with comparable symptomatic effects to subcutaneous 
administration.79 However, early sublingual preparations  
were impractical due to a prolonged dissolving time.79  
APL-130277 is a novel bilayer film that achieves a full on state 
within 15–30 minutes of administration with an average 
duration of 50 minutes.80,81 Similar to the subcutaneous 
formulation, common side effects were dizziness, somnolence, 
yawning, and nausea.80,82 Although orthostatic hypotension, 
dyskinesias, and hallucinations rarely developed,82 one-third 
of patients developed lip or oropharyngeal swelling and oral 
mucosal erythema, which lead to discontinuation.82

Dyskinesias
Dyskinesias are another source of significant disability and 
reduced quality of life.19 Up to 40% of patients treated with L-Dopa 
will develop dyskinesias within 5 years,8 and all PD patients 
are expected to develop dyskinesias by 20 years if treated with 
dopaminergic medications.83 Altered striatal glutamate receptor 
trafficking, secondary to nigrostriatal dopamine depletion and 
pulsatile exogenous L-Dopa stimulation, has been implicated in 
the development of dyskinesas.84 Amantadine, a non-competitive 
NMDA receptor inhibitor, has been the primary medication used 
to treat dyskinesias85–87; however, dose-dependent side effects 
of hallucinations, dry eye, dry mouth, constipation, and cognitive 
dysfunction limits use.86 Furthermore, the long-term effectiveness 
of dyskinesia suppression by amantadine has been inconsistent 
in randomized, double-blind studies, which warrants further drug 
development targeting this symptom of PD.88,89

Amantadine ER
Amantadine ER (Gocovri, Adams Pharmaceuticals, Inc, 
Emeryville, CA, USA) is an extended-release once-daily 

formulation that is currently available in the US and select 
countries. At the recommended dosage of 274 mg nightly, 
average daytime plasma amantadine concentrations are 
1.4–2.0-fold higher than IR and slowly reach peak plasma 
concentration by 12–16 hours.90 In a 12-week clinical trial, 
Amantadine ER achieved an 18% reduction in dyskinesias 
resulting in 2.8 hours of increased “on” time without troublesome 
dyskinesia compared to placebo.91 However, similar to IR 
amantadine, side effects of hallucinations, confusion, peripheral 
edema, constipation, dry mouth, and dizziness occurred, 
of which hallucinations were the most common reason for 
discontinuation.92,93

Istradefylline
Istradefylline is a selective adenosine A2A receptor antagonist 
approved for adjunctive treatment of motor fluctuations in PD 
in Japan. It was hoped that this therapy would control motor 
fluctuations without worsening dyskinesias, as it has no direct 
dopaminergic action, and it acts by modulating striatopallidal 
GABAergic output neurons.94 However, only a modest 0.7-hour 
reduction in daily “off” time was observed in two randomized 
clinical trials,95,96 while a third randomized placebo-controlled 
trial did not demonstrate statistically significant improvement 
over placebo.97 Although only mild to moderate in severity, 
dyskinesias were more prevalent in the therapy arms.95,96 
Despite these equivocal results in clinical trials, a post-
marketing surveillance study of 476 Japanese patients reported 
improvements in “off” time in approximately 40% of patients.98 
The most commonly reported adverse effects were dyskinesias 
and hallucinations.98

As the disease progresses, PD patients will frequently require 
adjustments of their medication regimen, often using 
multiple agents in combination. Maintenance of stable on 
time without troublesome dyskinesia will become more 
challenging over time, often limited by the development of 
intolerable side effects. Consideration of the mechanisms of 
action, pharmacokinetic profiles, and common adverse effects 
can guide the physician to adjust therapies to optimize PD 
symptom control. Selection of the appropriate agent(s) to 
address motor fluctuations should also include evaluation of 
the patient’s medical comorbidities and goals of care to avoid 
exacerbation of neuropsychiatric and cognitive complications.

Neurosurgical interventions
Deep brain stimulation
DBS is a surgically implanted device, which significantly 
reduces L-Dopa-associated motor complications by delivering 
continuous stimulation to deep structures of the brain through 
surgically implanted intracranial electrodes. It is indicated 
in PD patients who cannot achieve satisfactory control of 
L-Dopa responsive motor symptoms using medical therapy. 
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Motor fluctuations, dyskinesias, and classic PD tremor are the 
symptoms most responsive to DBS.99,100 Open-label studies 
comparing DBS to LCIG and subcutaneous apomorphine 
infusions have demonstrated superior control of dyskinesia 
and less procedure or device-related complications.18,66 DBS 
is a relatively low-risk procedure given the potential benefit. 
Common complications are associated with the surgical 
procedure and/or hardware and include wound infections 
or erosions, lead migration/malposition, lead or extension 
fractures and component malfunction.101 A 1.3% risk of 
symptomatic intracerebral hemorrhage was found across 
pooled data from three large case series conducted between 
1993 and 2010.101–103

The subthalamic nucleus (STN) and globus pallidus interna 
(GPi) are the most commonly targeted structures for 
PD.99 Based on comparable safety and efficacy in multiple 
randomized studies in advanced PD, there is no consensus 
on the preferred target for stimulation.104–109 The potential 
advantages of STN include an opportunity to reduce 
dopaminergic medications while utilizing relatively lower 
stimulation parameters, which prolongs battery life.105,107 
However, STN stimulation often amplifies dyskinesias 
during the initial phases of programming110 and has been 
associated with increased risk of cognitive and psychiatric 
complications.104,107 Conversely, GPi stimulation tends to have 
less negative impact on mood and cognitive processing107,109 
and greater reduction in dyskinesia.105,106,111 The disadvantage 
of GPi is that it often requires higher stimulation parameters to 
achieve comparable therapeutic response and rarely allows for 
reduction in dopaminergic therapies.105,107 Therefore, target 
selection is individualized to features of the PD phenotype, 
patient-specific goals for treatment, and careful consideration 
of comorbidities.

The exact mechanism of action for DBS in the treatment 
of PD motor fluctuations is unknown. Modulation of 
pathological neuronal firing patterns within the corticobasal 
ganglia networks is hypothesized to improve PD motor 
symptoms.112–114 Compared to best medical therapy, DBS 
improves “on” time without troublesome dyskinesias by a 
magnitude of 4.6–5 hours,115,116 with more than two-thirds of 
advanced PD patients achieving meaningful improvements in 
motor fluctuations with either STN or GPi DBS by 6 months.115 
Although the magnitude of benefit declines over time, these 
positive effects on PD motor symptoms and fluctuations have 
been reported to last greater than 10 years in several long-term 
studies.117–119 This is far beyond the clinical responses achieved 
by oral pharmacologic and infusion therapies.

Unfortunately, the beneficial effects of DBS begin to wane 
beyond 5 years.117 Although initially, patients’ stimulation 
requirements have been shown to increase as the disease 
progresses,118 there are limited studies reporting on motor 
outcomes beyond 10 years. Anecdotally patients continue to 
require incremental increases in stimulation in combination 

with adjustment of medications. Although dyskinesias often 
remain controlled with DBS, the cycling between “on” and “off” 
motor states and decline in motor function begin to recur 
with time. This has been attributed to disease progression and 
development of stimulation and L-Dopa resistant symptoms 
such as postural instability and non-motor symptoms.119,120 This  
warrants the additional utilization of longer-acting formulations 
or continuous infusions as discussed earlier to provide 
additional benefits for the treatment of motor complications in 
advanced PD patients with DBS.

There are limitations to the therapeutic effects of DBS.  
The beneficial effects of DBS are dependent on the accurate 
placement of electrodes within the targeted structure. 
Simulation of unintended neighboring regions induces 
side effects such as speech disturbance, gait impairment, 
paraesthesia, and diplopia that may limit therapy 
optimization.101 Novel mechanisms for stimulation delivery are 
being developed to improve the clinical benefit of DBS.

Advances in deep brain stimulation 
technology
Directional stimulation
Conventional DBS electrodes use cylindrical contacts to 
generate a spherical electrical field that activates a large 
region of brain tissue. Devices utilizing segmented electrodes, 
more electrode contacts, and independent current sources 
enable programmers to shape the electric field toward 
therapeutic regions and away from regions causing side 
effects (Figure 2).121,122 In this manner, a wider therapeutic 
window can be achieved compared to traditional DBS 
electrodes by reducing stimulation-related adverse effects 
that often limit programming.121,123,124

Adaptive/closed-loop DBS
The fluctuant nature of PD motor symptoms is challenging 
to treat, especially as the disease advances. To address this 
variability, adaptive DBS (aDBS) is being developed to provide 
more precise stimulation delivery when needed. This closed-loop  
system integrates real-time feedback, as it relates to the patient’s 
clinical state (“on” versus “off”).125 It is hypothesized to provide 
better control of motor fluctuations than conventional high-
frequency stimulation.125 By interpretation of biomarkers, 
individualized and variable stimulation will be provided during 
times of poor symptom control through the use of algorithmic 
models.112,125–127 Potential advantages of aDBS are minimization 
of stimulation-related side effects, reduction of long-term 
tolerance to stimulation, and prolongation of battery life.125,127,128

Several potential biomarker signals are being considered 
for aDBS. The most promising are local field potentials (LFP), 
which reflect synchronous neuronal network activity and are 
collected through the DBS electrode.127–129 Bradykinesia and 
rigidity in the “off” state have been correlated with excessive 
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in patients treated with continuous therapies including DBS, 
suggesting alternate non-dopaminergic mechanisms that 
require further investigation.

Development of disease-modifying therapies that either 
slow or arrest disease progression before the onset of motor 
complications will be the ultimate therapeutic strategy for the 
treatment of PD. In the last few years, several disease-modifying 
agents have entered into phase I and phase II clinical trials. The 
therapeutic targets being investigated include gene-specific 
enzymatic dysfunction such as glucocerebrosidase and LRRK 
2 kinase, alpha synuclein toxicity, mitochondrial dysfunction, 
and neuroinflammation.136,137 Infusion of pluripotent and 
human embryonic stem cells for targeted regeneration 
of dopaminergic neurons are also being studied in small 
populations.138

It is becoming apparent that a single panacea treatment of  
PD is unlikely and that past failures in disease-modifying 
studies may be attributed to the heterogeneous nature of 
PD.139 Thus, studies targeting specific sub-populations of 
PD for individualized treatment are needed.139 Although 
we eagerly await a breakthrough in disease modification, 
improved control of motor complications remains a priority 
for patient care.

synchronization of beta frequency oscillations within 
corticobasal ganglia networks.128–130 These oscillations are 
suppressed when a patient is treated with either L-Dopa or 
DBS.114,129,131,132 Preliminary studies have correlated suppression 
of beta frequency oscillations with reduced bradykinesia, 
rigidity, and freezing of gait in PD patients.132–135

Initial aDBS models have proved promising and warrant 
further investigation. A proof-of-concept study using LFP  
beta band activity coupled with adaptable stimulation 
showed a 27% greater mean improvement in motor 
symptoms using aDBS compared to conventional DBS in  
eight PD patients.126

Conclusions
In summary, there are several exciting developments for the 
treatment of PD motor complications. Treatment of PD is 
individualized, taking into consideration factors such as the 
nature of motor complications (fluctuations between “on” and 
“off” versus dyskinesias), comorbidities, and cost to patient when 
optimizing a patient’s motor symptom control. Strategies such 
as infusion therapies and DBS may be cost effective for the 
treatment of long-term PD motor complications. Nonetheless, 
there remains a significant portion of “off” time and dyskinesias 

Figure 2. Comparison of commercially available deep brain stimulation electrodes. This figure shows the four 
electrodes commercially available for implantation with representation of the electrical fields generated 
by utilizing the conventional cylindrical contacts compared to segmented contacts. All electrode 
contacts are 1.5 mm in width. St Jude’s Abbott utilizes 1.5 mm spacing between contacts, whereas Boston 
Scientific utilizes 0.5 mm spacing. Medtronic offers both 0.5 mm spacing (3389 electrode) and 1.5 mm 
spacing (3387 electrode), which is shown below.

Electrical stimulation �eld

Contact

Stimulated contact

Medtronic 3387
4 contact non-segmented

St. Jude’s Abbott
4 contact segmented

Boston Scienti�c
8 contact non-segmented

Boston Scienti�c
4 contact segmented
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