
RESEARCH ARTICLE

Improved stratification of ALS clinical trials using predicted
survival
James D. Berry1,2, Albert A. Taylor3, Danielle Beaulieu3, Lisa Meng4, Amy Bian4, Jinsy Andrews4,5,
Mike Keymer3, David L. Ennist3 & Bernard Ravina1

1Voyager Therapeutics, Inc., Cambridge, Massachusetts
2Department of Neurology, Massachusetts General Hospital, Neurological Clinical Research Institute, Boston, Massachusetts
3Origent Data Sciences, Inc., Vienna, Virginia
4Cytokinetics, Inc, South San Francisco, California
5Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York

Correspondence

David L. Ennist, Origent Data Sciences, Inc.,

8245 Boone Boulevard, Suite 600, Vienna,

VA 22182. Tel: +1 703 794 3041 ext 310;

Fax: +1 (703) 794-3041; E-mail:

dennist@origent.com

Funding Information

This analysis was partially funded by Voyager

Therapeutics, Inc. The external validation was

funded by a grant awarded to David L.

Ennist from the Amyotrophic Lateral Sclerosis

Association (grant 17-LGCA-333). We would

like to thank all the participants in the

numerous ALS clinical trials contained in

PRO-ACT and the BENEFIT-ALS trial.

Received: 12 January 2018; Accepted: 5

February 2018

Annals of Clinical and Translational

Neurology 2018; 5(4): 474–485

doi: 10.1002/acn3.550

The Pooled Resource Open-Access ALS

Clinical Trials Consortium

Data used in the preparation of this article

were obtained from the Pooled Resource

Open-Access ALS Clinical Trials (PRO-ACT)

Database. As such, the following

organizations within the PRO-ACT

Consortium contributed to the design and

implementation of the PRO-ACT Database

and/or provided data, but did not participate

in the analysis of the data or the writing of

this report: (i) Neurological Clinical Research

Institute, MGH; (ii) Northeast ALS

Consortium; (iii) Novartis (iv) Prize4Life;(v)

Regeneron Pharmaceuticals, Inc.;(vi) Sanofi;

(vii) Teva Pharmaceutical Industries, Ltd.

Abstract

Introduction: In small trials, randomization can fail, leading to differences in

patient characteristics across treatment arms, a risk that can be reduced by

stratifying using key confounders. In ALS trials, riluzole use (RU) and bulbar

onset (BO) have been used for stratification. We hypothesized that randomiza-

tion could be improved by using a multifactorial prognostic score of predicted

survival as a single stratifier. Methods: We defined a randomization failure as a

significant difference between treatment arms on a characteristic. We compared

randomization failure rates when stratifying for RU and BO (“traditional strati-

fication”) to failure rates when stratifying for predicted survival using a predic-

tive algorithm. We simulated virtual trials using the PRO-ACT database

without application of a treatment effect to assess balance between cohorts. We

performed 100 randomizations using each stratification method – traditional

and algorithmic. We applied these stratification schemes to a randomization

simulation with a treatment effect using survival as the endpoint and evaluated

sample size and power. Results: Stratification by predicted survival met with

fewer failures than traditional stratification. Stratifying predicted survival into

tertiles performed best. Stratification by predicted survival was validated with

an external dataset, the placebo arm from the BENEFIT-ALS trial. Importantly,

we demonstrated a substantial decrease in sample size required to reach statisti-

cal power. Conclusions: Stratifying randomization based on predicted survival

using a machine learning algorithm is more likely to maintain balance between

trial arms than traditional stratification methods. The methodology described

here can translate to smaller, more efficient clinical trials for numerous neuro-

logical diseases.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative

disease affecting primarily motor neurons, causing pro-

gressive weakness and ultimately death. Until recently,

riluzole had been the only FDA-approved medication for

disease modification,1–3 and though many symptomatic

therapies exist, there is an urgent need for disease-modi-

fying ALS therapeutic development. Given the relative

rarity of ALS, the ALS clinical trial landscape is domi-

nated by small Phase 2 trials. Large Phase 3 trials are less

common, and even these are generally small (n = 500–
1000) relative to trials in common medical diseases.

These relatively diminutive ALS trials pose numerous

well-trodden statistical challenges – one ubiquitous risk to

the validity of trial results is the risk of confounding due

to imbalances in baseline characteristics between treat-

ment arms. Successful randomization – even distribution

of baseline characteristics between study arms – reduces

or eliminates the threat of confounding.4–6 Stratified ran-

domization is designed to reduce the likelihood of imbal-

anced trial arms by evenly separating a trial sample

between treatment arms based on prespecified prognostic

variables. While stratified randomization is an effective

means of reducing imbalances within the chosen vari-

ables, the methodology is not designed to reduce imbal-

ance among other variables, prognostic or otherwise.4 In

ALS, two commonly used baseline characteristics for

stratification are riluzole use (RU) and bulbar onset (BO)

(e.g., 7–9). While imbalances in other baseline character-

istics could lead to confounding, stratification on numer-

ous variables is cumbersome, at best, and can be counter-

productive.10

We hypothesized that stratified randomization in ALS

trials could be improved by using predicted survival as a

single stratifier. In theory, the algorithmic stratification

method should help maintain balance among all prognos-

tic variables used in the training of the predictive model.

We further hypothesized that we could optimize stratifi-

cation using predicted survival by comparing two or three

balanced quantiles as strata. We aimed to compare ran-

domization failure rates (defined as statistically significant

differences between trial arms on baseline characteristics)

stratified by RU and BO (“traditional stratification”) to

randomization stratified by log-likelihood predicted sur-

vival in simulated trials using the Pooled Resource Open-

Access ALS Clinical Trials Database (PRO-ACT)

database.11–13 Additionally, we hypothesized that pre-

dicted survival strata defined a priori using PRO-ACT

and applied to a virtual trial from an external dataset

would result in a lower rate of randomization imbalance

than traditional randomization. We used the placebo arm

of the BENEFIT-ALS trial of tirasemtiv (not included in

PRO-ACT, 14, ClinicalTrials.gov identifier NCT01709149,

completed in March 2014) as the external validation data-

set. Finally, we provide evidence that adequate statistical

power for a clinical trial can be achieved with a smaller

sample size by applying this stratified randomization

scheme in a power simulation using survival as the

simulated endpoint.

Materials and Methods

Training data

Data used in training the predictive model described in

this report were obtained from the PRO-ACT database in

January 2016. At the time, PRO-ACT contained greater

than 10,700 fully de-identified unique longitudinal clinical

patient records from 23 late stage (Phase II and III)

industry and academic ALS clinical trials.15 The database

of over 10 million data points includes demographic, lab-

oratory and medical data, survival and family histories.

Survival prediction model: gradient
boosting machine model

All records (n = 4482, including 1450 deaths) that

included a baseline forced vital capacity (FVC) and either

the original ALSFRS scale16 or the revised ALSFRS

(ALSFRS-R, 17) were used for predicted survival model

training and internal validation. A Cox proportional haz-

ards model was used as the loss function to train a gradi-

ent boosting machine (GBM) learning model.18,19 The

prediction term (output of the algorithm) was a log-like-

lihood coefficient. This coefficient, the log-likelihood of

survival, denotes predicted survival and was used to rank-

order patients for stratification. The tuning parameters

for the GBM model were empirically derived via an inter-

nal cross-validation strategy and include the following key

parameters: Number of trees = 500, Interaction

Depth = 6, and Shrinkage = 0.01. The predicted survival

model included the following variables: baseline total

ALSFRS-R and calculated ALSFRS-R slope (calculated by

assuming the patient was symptom free the day prior to

reported disease onset), ALSFRS-R subscores, time since

disease onset (defined by weakness), time since diagnosis,

baseline FVC, baseline weight, age, bulbar/limb onset,

study arm, gender, and riluzole use. To simulate screening

for a clinical trial, the model was trained using data from

the initial baseline visit only. Data cleaning procedures

included examining all features for consistent standard

units within the database and imputation of missing val-

ues using the sample mean value for continuous variables

or the most frequent value for categorical variables. The

48-point ALSFRS-R and 40 point ALSFRS scales were
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harmonized to 48 points by tripling the single respiratory

score of the ALSFRS scale. A relatively simple approach

to data imputation was chosen to both simplify the pro-

cedure of data cleaning and to align with previous meth-

ods for generating actionable models.11

Model performance was assessed using receiver operat-

ing characteristic (ROC) curves to evaluate the true versus

false positive rate of predicted versus observed survival at

12 months. The ROC-based evaluation was repeated for

the entire sample using a tenfold cross-validation

approach consisting of mutually exclusive independent

samples to generate an average ROC curve with standard

deviations. A representative population was selected and

divided into three strata based on predicted survival ter-

tiles. The Kaplan–Meier curves for each of these strata

were plotted and the predicted survival curve for each

group was overlaid to evaluate both the calibration and

discrimination characteristics of the model.

Generation of pools from eligible records
(Fig. 1)

The 4482 eligible records were first randomly assigned to

one of ten nonoverlapping pools of approximately 448

records. For each pool, records from the nine other pools

were used to train the survival prediction model. The

model was then used to predict survival for every member

of the pool. Once predictions for all eligible records from

the ten pools were made, the 4482 records were rank-

ordered by predicted survival (expressed as log-likelihood)

and used to estimate the cutoffs for the quantiles to apply

to subsequent stratifications.

Next, virtual trial populations of various sizes were

derived from the ten n = 448 record pools. Each of the

448-patient pools was randomly subdivided into 2, 4, 7,

or 10 nonoverlapping trial populations per pool, each of

which contained approximately 224, 112, 64, or 44

patient records, respectively. To simulate the probability

of imbalance seen in small trial populations, we did not

use bootstrapping or data resampling with replacement.

Each trial population was subsequently subjected to

numerous iterative in silico randomizations using the two

stratification schemes.

Generation of randomization schedules

One hundred independent randomization schedules were

developed and used to perform iterative randomizations

on each virtual trial. With 100 randomizations per virtual

trial, a total of one, two, four, seven, or ten thousand ran-

domizations, were performed for trial sizes of 448, 224,

112, 64, or 44, respectively.

Application of stratification schemes

Traditional strata were defined using riluzole use (yes/no)

and bulbar versus limb onset. Predicted survival strata were

defined using the rank-ordered log-likelihood of predicted

Figure 1. Experimental approach to testing trial randomization schemes.
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survival to divide the population into quantiles. The most

effective quantile was identified by comparing the perfor-

mance of four quantiles: (1) ≤20th, >20 to <90th, and

≥90th percentiles; (2) ≤25th, >25 to <75th, and ≥75th per-

centiles; (3) ≤33rd, >33 to <66th, and ≥66th percentiles;

and (4) ≤50th and >50th percentile. Idealized representa-

tions of the distribution of patients based on randomiza-

tions performed using either traditional or algorithmic

randomizations are depicted in Tables 1 and 2.

Comparison of the stratification schemes

Randomization imbalance was defined as statistically sig-

nificant differences (P < 0.05) between the two trial arms

on any given subject characteristic. We used the t-test for

continuous variables and the chi-square test for categori-

cal values. The objective of the imbalance testing was to

understand which variable(s) drives the observed

improvement in statistical power. Because strata choice

may have been that driving variable, we chose not to

correct for strata in the imbalance testing. Since baseline

parameters and demographics are key to evaluating the

effectiveness of randomization in trials, we focused first

on these characteristics, including FVC, ALSFRS-R, time

since symptom onset, time since diagnosis, age, weight

and gender. In addition, we calculated randomization

imbalances of the stratification variables themselves (log-

likelihood, riluzole use, and bulbar onset).

We also took advantage of the fact that this is a retro-

spective analysis with known outcomes. In these virtual

trials, successful randomization should produce balanced

outcomes between trial arms. We focused on outcome

parameters frequently used as primary endpoints in ALS

clinical trials, including change in FVC, slope of percent

predicted FVC, time-to-death, slope of ALSFRS-R, and

change in ALSFRS-R.

Randomizations were normalized as imbalances per

thousand simulations, so that comparisons could readily

be made across the different trial sizes simulated. The

four quantiles for the predicted survival stratification

(Table 2) were compared to each other and to traditional

stratification (Table 1) using rates of randomization

imbalance. The quantile demonstrating the lowest rate of

randomization error was then compared in more detail to

the traditional stratification method.

External validation

External validation of predicted survival stratification was

performed by training a predictive model on the full

PRO-ACT survival dataset and applying it to the placebo

arm patients (n = 279) from the BENEFIT-ALS clinical

trial.14 In this dataset, we applied 1000 unique random-

ization schedules and evaluated the rate of randomization

imbalance using traditional stratification (RU and BO)

and predicted survival. We performed the same compar-

isons described above to evaluate the rate of randomiza-

tion imbalances using each technique.

Trial size and power simulation

To investigate whether the improved balance achieved by

predicted survival stratification would translate to

improved statistical power of a trial, we simulated a treat-

ment effect and controlled for strata in our analysis.

Briefly, subsets of patients were randomly sampled from

PRO-ACT at a range of sample sizes. For each iteration,

an independently generated prediction was assigned to

every patient. The subset of patients was then split into a

treatment and control arms using three different random-

ization strategies; purely random assignment, stratified

block randomization using riluzole use and bulbar onset,

and stratified block randomization using predicted

Table 1. Traditional stratification.

Treatment arm Placebo arm

Riluzole use No riluzole Riluzole use No riluzole

Bulbar onset 24 16 24 16

Limb onset 46 14 46 14

A theoretical, idealized traditional stratification of a 200-subject study

using riluzole use and bulbar onset as stratifiers, assuming 80% rilu-

zole use and 30% bulbar onset in the study population.

Table 2. Predicted Survival Stratification

Treatment arm Placebo arm

Predicted survival percentile Predicted survival percentile

≤20th >20th to <90th ≥90th ≤20th >20th to <90th ≥90th

20 70 10 20 70 10

treatment arm Placebo arm

Predicted survival percentile Predicted survival percentile

≤25th >25th to <75th ≥75th ≤25th >25th to <75th ≥75th

25 50 25 25 50 25

Treatment arm Placebo arm

Predicted survival percentile Predicted survival percentile

≤33rd >33rd to <66th ≥66th ≤33rd >33rd to <66th ≥66th

33 34 33 33 34 33

Treatment arm Placebo arm

Predicted survival percentile Predicted survival percentile

≤50th >50th ≤50th >50th

50 50 50 50

A theoretical, idealized traditional stratification scheme of a 200-sub-

ject study using predicted survival as a single stratifier and dividing

strata at different percentiles.
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survival risk based on predetermined tertiles. We applied

a simulated treatment benefit of a 2.5 months of survival.

We tested the difference in survival rate using a regression

analysis controlling for strata. Power was defined as the

proportion of 100 simulated trials in which a regression

test controlling for strata was able to detect the applied

2.5-month survival benefit in the simulated treatment

group

Computational methods

All computations were performed using the R statistical

computing system (version 3.1.0;20) and the R base pack-

ages and add-on packages gbm,21 plyr,22 and ggplot2.23

Data used in developing the models are available to regis-

tered PRO-ACT users.15

Results

Model performance

Figure 2 shows the performance of the GBM survival

model used to predicted survival for stratification. To

evaluate model discrimination, predicted scores were used

to split a sample population into low, average, and high

mortality risk groups; the degree of separation among the

three resulting K-M curves was visually evaluated

(Fig. 2A, black curves). Model calibration was further

tested by overlaying the predicted survival curves for each

of the three corresponding risk groups (Fig. 2A, colored

lines). The degree of overlap of the predicted and actual

survival curves and the clear separation of the three sur-

vival curves suggest good calibration and discrimination

of the predictive model. Additionally, the survival predic-

tion model demonstrates relatively high accuracy, as

assessed by receiver operating characteristic curve

(AUC = 0.766, Fig. 2B). This accuracy ensures appropri-

ate rank ordering of the sample population.

Comparison of randomization methods
(internal dataset–PRO-ACT)

Trial sizes ranging from approximately 44–448 patient

records were randomly generated from the 4482 eligible

records from PRO-ACT and in silico randomizations were

conducted as described in Figure 1. As expected, neither

traditional nor predicted survival stratification demon-

strated randomization imbalances on the variable(s) used

to generate the strata (Fig. 3, Algorithm – log predicted

survival and Traditional – riluzole use and bulbar onset).

We also considered the ability of the stratification schemes

to randomize the stratification variable(s) of the opposing

scheme. The traditional method failed to randomize the

variable of predicted survival an average of 49 times per

1000 randomizations. In contrast, the predicted survival

method using tertiles had a lower imbalance rate, failing to

randomize riluzole use and bulbar onset 33 and 25 times,

respectively, per 1000 randomizations (Fig. 3).

Regardless of the quantile used, the predicted survival

randomization method demonstrated generally lower

Figure 2. Model performance evaluated on a validation dataset. (A) Survival model accuracy was evaluated on the ability of the predictions to

accurately stratify into low, medium, and high mortality risk groups, as well as by evaluating the degree of agreement between the predicted survival

curves of each of these three groups (red, green, and blue curves) and the observed Kaplan–Meier curves (black stepwise curves). (B) A global

evaluation of model performance is performed by plotting the average ROC curve across all folds of the internal tenfold cross-validation (2B).
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imbalance rates than the traditional stratification method

(Fig. 4 and Figures S1A–D). Averaging across all quantiles

and randomization of both baseline features and out-

comes, stratification by predicted survival had an average

of 23.7% fewer randomization imbalances than the tradi-

tional randomization method (Fig. 4). Outcome measures

had an average of 14.3% fewer imbalances while baseline

features had 39.2% fewer imbalances.

Predicted survival stratification performed best when

divided into tertiles (≤33rd, >33rd to <66th, ≥66th per-

centiles) that showed an average 27% reduction in imbal-

ance relative to traditional stratification (Fig. 4). Tertile-

based stratification was selected for in-depth analysis

using an expanded feature set, and a wider range of trial

sizes. Relative to the traditional randomization method,

for the full panel of baseline features analyzed, analysis of

virtual trials from 44 to 448 patients demonstrates an

average of 22.3% reduction (range = �16 to 49%) in ran-

domization imbalances (Fig. 5), and an 18.2% reduction

(range = 11–39%) in outcome measure randomization

imbalances (Fig. 6).

In addition to successfully stratifying the variables

used in the randomization (i.e., BO and RU), the tradi-

tional method also successfully stratified diagnosis delta

and gender at the baseline time point (4.0% and 3.3%

imbalance rates, respectively, Fig. 5) and the survival

outcome (2.5% imbalance rate, Fig. 6). Interestingly,

diagnosis delta was the one variable that was successfully

randomized by the traditional method but not by the

algorithm.

Figure 3. Arm balance failures of variables used to define strata per 1000 Simulations. Traditional stratification compared to stratification on

tertile log-likelihood percentiles.
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Validation using an external dataset

We used predicted survival tertiles (i.e., ≤33rd, >33rd to

<66th, ≥66th percentiles), defined from the distribution

of predicted scores in the PRO-ACT database, to predict

survival and create strata using data from the BENEFIT-

ALS trial placebo arm. The resulting strata consisted of

groups of 69, 118, and 92 patients; a distribution that

represented the ≤25th, 26th to 67th, and ≥67th percentiles

of the BENEFIT-ALS dataset. The strata sizes indicate that

the internal and external datasets have a similar distribu-

tion – within one percent for the higher strata and within

8% for the lower strata. Comparison of the predicted sur-

vival stratification to traditional stratification replicated

the randomization failure analysis results from the inter-

nal (PRO-ACT) validation (Fig. 7A), baseline features

(Fig. 7B) and outcome features (Fig. 7C). As we found in

the internal validation (Fig. 3), the stratification variables

showed no imbalance, and the predicted survival stratifi-

cation reduced the imbalance rate of BO and RU more

than the traditional method reduced the imbalance of

predicted survival. Furthermore, the survival prediction

stratification reduced imbalance rates for the BENEFIT-

ALS randomization an average of 26.2% for baseline fea-

tures (compared to 22.3% for the PRO-ACT data, Fig. 5)

and 13.3% for outcome features (compared to 18.2% for

the PRO-ACT data, Fig. 6).

BENEFIT-ALS captured 4 months of longitudinal data,

during which there were no mortality events. The lack of

mortality data prevented the comparison of randomiza-

tion methods for the survival outcome. However, all

other outcome measures evaluated showed a reduction in

Figure 4. Summary of trial arm balance failure reductions by algorithmic compared to traditional stratification. Two arms of in silico trials were

randomized by algorithmic or traditional (riluzole use/bulbar onset) methods as indicated in Figure 1. The indicated quantiles were used for

algorithmic randomization.

Figure 5. Balance analysis of baseline features. Traditional stratification compared to stratification on tertile log-likelihood of survival percentiles

for trial sizes ranging from 44 to 448 patients.
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Figure 6. Balance analysis of outcomes. Traditional stratification compared to stratification on tertile log-likelihood of survival percentiles for trial

sizes ranging from 44 to 448 patients.

Figure 7. External validation of stratified randomization. A randomization simulation was performed on 279 placebo arm patients from an external,

independent clinical trial using both traditional stratified randomization and algorithmic randomization. Predictions were generated using a GBM

model trained on PRO-ACT patient data, and stratified according to the log-likelihood values corresponding to the tertiles evaluated from PRO-ACT.

A. Arm balance failures of variables used to define strata per 1000 simulations. B. Balance analysis of baseline features per 1000 simulations.

C. Balance analysis of outcomes per 1000 simulations.
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randomization failures relative to traditional stratification,

ranging from 4% to 22% (Fig. 7).

Power simulation to demonstrate reduced
sample size requirements for survival

We applied a simulated treatment effect of a 2.5-month sur-

vival benefit in a trial using survival as the primary endpoint.

We simulated trials of varying sample sizes and repeated each

randomization 100 times, comparing unstratified randomiza-

tion, the traditional stratified block randomization scheme

(RU and BO), and the predicted survival stratification

scheme. Power was defined as the proportion of 100 trials in

which a regression test controlling for strata was able to

detect the 2.5-month extension of survival in the simulated

treatment group (Fig. 8). The unstratified randomization

crossed the 80% power threshold with a sample size above

500 patients. The traditional stratified randomization pro-

vided 80% power with approximately 470 patients. The pre-

dicted survival stratification provided 80% power with

roughly 400 patients, a sample size reduction of approxi-

mately 20% relative to unstratified randomization and 15%

relative to traditional stratification.

Discussion

Randomization in trials is an attempt to balance baseline

characteristics across treatment arms. While this generally

works well, imbalances between treatment arms can occur

due to chance. Stratification helps evenly distribute key

baseline characteristics, further reducing the chances of

randomization failure on these key variables. Investigators

choose stratification variables that are most closely tied to

the primary outcome of the trial, because balance is most

critical for these variables. An important limitation is that

only a few variables can be used as stratification variables

– more than two stratification variables create too many

strata and threaten the feasibility of the randomization

scheme and paradoxically increase the chances of creating

an imbalance of a key confounder. This limits the benefit

of stratification in a multifactorial disease like ALS.

The output of our survival prediction algorithm for ALS

is a single variable, log-likelihood of survival. Log-likeli-

hood of survival is the predicted survival for a given

patient. It is based on numerous baseline characteristics

and predicts categories of short, medium, or long survival.

We hypothesized that stratification based on predicted

survival from our model might reduce randomization fail-

ures in small ALS trials and could even improve the statis-

tical power (or reduce sample size) of ALS trials.

Using data from the PRO-ACT database, we conducted

virtual trials and demonstrate that using predicted survival

as a single stratifying variable reduces randomization

imbalances relative to a more traditional stratification

scheme using two variables – riluzole use and bulbar onset.

Using an unstratified randomization, by chance alone,

we expect an imbalance rate of 5% for a given baseline

characteristic (i.e., P < 0.05) across simulated trials. In

our virtual trials, traditional stratification (RU and BO)

did not substantively reduce this expected rate of imbal-

ance. In contrast, the stratification scheme based on pre-

dicted survival demonstrated imbalance rates lower than

5% for such variables as riluzole use and bulbar onset,

indicating that stratification using predicted survival from

our algorithm improves randomization balance. In fact,

the predicted survival stratification was more effective on

all but two characteristics (onset delta and diagnosis

delta), a powerful endorsement of its benefits.

Stratification can improve balance in baseline charac-

teristics across randomization groups. We demonstrate

that stratification based on predicted survival from our

algorithm improves the balance of baseline characteristics

more than traditional methods of stratification. Even

more importantly, we found that both traditional and

predicted survival stratification methods reduced imbal-

ance of outcome measures in the virtual trials compared

to unstratified randomization. Critically, the predicted

survival stratification was more effective than the tradi-

tional stratification in balancing survival and demon-

strated a trend toward improving the balance of other

important outcome variables – including FVC, FVC slope,

ALSFRS-R, and ALSFRS-R slope. This observation pro-

vides direct evidence that our predicted survival correlates

more strongly with ALS outcome measures than the tra-

ditional stratification variables, riluzole use and bulbar

onset. Interestingly, the fact that the model performed

better at balancing survival than functional decline may

suggest that different factors predict functional decline

than those that predict survival.

The additional reduction in imbalance gained by strati-

fication using predicted survival translates to higher statis-

tical power, or smaller sample size in ALS clinical trials.

To optimize this effect, we explored different strata defi-

nitions for predicted survival. Because the output of our

survival prediction model is the log-likelihood of survival,

a continuous variable, strata could be defined using any

number of cutoffs. Our hypothesis that relatively equal

strata sizes would be most effective was supported – the

predicted survival stratification was most effective using

tertiles (≤33rd, >33rd to <66th, ≥66th percentiles).

Our external validation using data from the placebo

arm of the BENEFIT-ALS trial demonstrates the general-

izability of our approach – we can derive the algorithm

for predicted survival using PRO-ACT data and apply it

to a predicted survival stratification scheme in a different,

unrelated, contemporary trial.
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Prospective ALS trials using predicted survival for strat-

ification will require a priori specification of cutoffs for

each stratum. If there is a deviation in the trial demo-

graphics, relative to the PRO-ACT data used to determine

strata cutoff, some variability in the size of each strata

can be expected. For example, if a trial enrolls a higher

percentage of slow progressors, the stratum containing

long-survivors will be larger than expected. In fact, in our

Figure 8. Plot of power versus sample size for a simulated treatment effect of extension of survival by 2.5 months. A series of simulations to

evaluate the ability to detect a treatment effect of a 2.5-month survival extension across a range of sample sizes. Samples of patients were

selected from PRO-ACT and were stratified and assigned to either a treatment or control arm using either a completely random assignment

(green line) stratified by riluzole use and bulbar onset (red line) or by prognostic predicted survival (blue line), and an artificial treatment effect

was applied. A simulated treatment effect was applied, and statistics were performed to establish the rate of detection of said treatment effect

across a range of sample sizes.
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modeling, when the thresholds were applied to the BENE-

FIT-ALS data, the strata containing the patients with the

lowest likelihood of survival captured only 26% of the

sample, rather than the intended 33%. It is unsurprising

that an a priori selection of tertile cutoffs resulted in suc-

cessful reductions in imbalance in the external dataset,

even though the number of trial participants in each

observed stratum was not exactly equal.

Our final simulation is, perhaps, most important – we

simulate a treatment effect and demonstrate that the

treatment effect can be detected using fewer patients sim-

ply by implementing a stratification scheme based on pre-

dicted survival. Alternately, stratification using predicted

outcomes can be used to increase the power of a clinical

trial.

Our modeling demonstrates a robust improvement in

randomization balance using predicted survival as a single

stratifier, and defining strata using tertile cutoffs. We

show a substantial reduction in the sample size needed to

see a simulated treatment effect in virtual ALS trials. And,

we demonstrate generalizability of the technique by using

an external dataset for validation of our methods. These

methods are ready for adoption in prospective ALS trials

and could be adapted for use in other neurodegenerative

diseases, including Alzheimer’s, Parkinson’s and Hunting-

ton’s.
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