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Abstract

Introduction:Many research studies have well investigated Alzheimer’s disease (AD)

detection and progression. However, the continuous-time survival prediction of AD

is not yet fully explored to support medical practitioners with predictive analytics. In

this study, we develop a survival analysis approach to examine interactions between

patients’ inherent temporal andmedical patterns and predict the probability of the AD

next stage progression during a time period. The likelihood of reaching the following

AD stage is unique to a patient, helping the medical practitioner analyze the patient’s

condition and provide personalized treatment recommendations ahead of time.

Methodologies:We simulate the disease progression based on patient profiles using

non-linear survival methods—non-linear Cox proportional hazardmodel (Cox-PH) and

neural multi-task logistic regression (N-MTLR). In addition, we evaluate the concor-

dance index (C-index) and Integrated Brier Score (IBS) to describe the evolution to the

next stage of AD. For personalized forecasting of disease, we also developed deep neu-

ral networkmodels using the dataset provided by theNational Alzheimer’s Coordinat-

ing Center with their multiple-visit details between 2005 and 2017.

Results: The experiment results show that our N-MTLR based survival models outper-

form the CoxPH models, the best of which gives Concordance-Index of 0.79 and IBS

of 0.09.We obtained 50 critical features out of 92 by applying recursive feature elimi-

nation and random forest techniques on the clinical data; the top ones include normal

cognitionandbehavior, criteria fordementia, community affairs, etc.Our studydemon-

strates that selecting critical features can improve the effectiveness of probabilities at

each time interval.

Conclusions: The proposed deep learning-based survival method and model can be

used by medical practitioners to predict the patients’ AD shift efficiently and recom-

mend personalized treatment to mitigate or postpone the effects of AD. More gener-

ally, our proposed survival analysis approach for predicting disease stage shift can be

used for other progressive diseases such as cancer, Huntington’s disease, and sclero-

derma, just tomention a few, using the corresponding clinical data.
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1 INTRODUCTION

Alzheimer’s disease (AD) is an irreversible, progressive disorder that

causes health problems with thinking, behavior, and memory. In the

United States, there are> 5million cases.1 Patients with ADmay show

different symptoms, progress at different rates through disease stages,

and respond differently toward therapy provided by health profession-

als. The approach of understanding disease treatment and prevention,

considering the patient’s individuality, is the primary goal of precision

medicine.2

The majority of the applications leveraging machine learning and

statistical inference techniques use historical datasets from patients’

records to examine the disease progression and provide reliable pre-

dictive models to deal with patient heterogeneity, that is, natural

response variation between patients toward the same disease.3,4

Data collected from clinical studies present numerous challenges

to building effective and reliable machine learning and deep learning

models to predict the probability of progression to the next stage of

AD. These challenges include, but are not limited to, handling hetero-

geneous datawithmultiple types and levels, having imbalanced data or

a relatively smaller number of observations, and many missing obser-

vations caused by human ormeasurement errors.5 Fromamedical per-

spective, the main challenge is to build predictive models that are reli-

able and explainable with high-quality data to support medical care

decisions.

From preventive medicine clinical practice, the ability to accurately

predict the next stage of progression of AD for a patient over a given

period could help physicians make more informed clinical decisions

on treatment strategies.6 Several studies have extended traditional

Cox proportional hazards models with machine learning approaches

for time-to-event prediction in breast cancer,7 heart disease,8 and

tuberculosis.9 However, few to no similar research using survival anal-

ysis has been conducted on AD clinical data. With any clinical trial

patient data, there are several challenges to overcome, including:

∙ Aggregating, cleaning, and transforming clinical trial data is manual

and ladenwith completeness, quality, and inconsistency issues.

∙ Heterogeneity between patients’ medical records, that is, different

patientswith the samediseasemay responddifferently andprogress

at different rates.

∙ Limited data points of patients with an adequate number of visits

resulting in low confidence in the model and increase in the chance

of Type II errors.

∙ Change in AD progression might be seen in some patient visits, it

does not imply that the patient has developed the progression level

during the time around that visit. It could be possible that the patient

did not visit the clinic despite having (or having a higher level of)

dementia and found out about it in the subsequent visits. These sce-

narios make it challenging to accurately determine the survival time

for a patient.

This article develops survival analysis models to examine interac-

tions between a patient’s temporal and medical inherent patterns and

predict the probability of AD’s next stage progression during a time

period. Our proposed survival models aim at estimating the probabil-

ity of moving to the next stage of progression over a given period. We

also propose a survival analysis workflow to explore and preprocess

the dataset to handle patients’ heterogeneity and their multifactorial

progression, that is, AD stage shift.

The benefits of our contributions can be summarized as follows:

∙ Personalized treatment (determine effective treatment) based on

the patient’s history.

∙ Better decision-making support.

∙ Model interpretability.

◦ Selecting important features.

◦ Evaluationmetrics: C-index and IBS.

◦ Neural networks interpretation.

∙ Generalized deep learning-based survival analysis.

The paper is organized as follows: In Section 2, we provide all the

related works that have been conducted in this domain. In Section 3,

we showcase our implementation approach. In Section 4, we present

our results, and Section 5 concludes the paper.

2 RELATED WORKS

A range of disease progression models has been developed for AD

treatment and forecasting in the last two decades. Many AD risk

prediction models have used predefined sociodemographics, physical

activity, health risk factors, and cognitive profiles.10–12 Wang et al.13

presented a study on predicting AD progression in the patient’s next

visit to the hospital modeled using the National Alzheimer’s Coor-

dinating Center (NACC) patient dataset, containing 5432 patients

studied between 2005 and 2017. The predictive model is based on

the long short-term memory (LSTM) networks and captured 99.06%

accuracy with the temporal component. Park et al.14 predicted AD

future incidence using random forest, support vector machines, and

logistic regression on health data obtained from the Korean National

Health Insurance Service containing 4894 unique clinical features.

Additionally, they extracted critical clinical features. Ito et al.15 stud-

ied the effect of covariates such as age, apolipoprotein E ɛ4 geno-

type, sex, family history of AD, and years of education on AD
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progression based on the longitudinal ADAS-Cog (Alzheimer’s Dis-

ease Assessment Scale-Cognitive subscale) scores from 817 patients.

The disease progression rate in patients with mild to moderate

AD was estimated at ≈5.5 points/year based on their study. While

these studies use various machine learning approaches to predict

AD’s progression, they fail to provide concrete insights about the

duration to reach the next stage. That is the motivation for our

work.

Medical researchers use survival models to determine the impor-

tance of prognostic factors in outcomes like death or predicting the

next stage of cancer and then advise patients about their treat-

ment options. Kaplan-Meier16 and Cox proportional hazard mod-

els (CoxPH) 17 are the two traditional approaches used in patient

survival analysis. CoxPH determines the risk score for each of the

patient’s covariates and then calculate the overall risk by their lin-

ear combination. Many studies have conducted experiments to com-

pute the survivability of progressive disease patients. For example,

Huh et al.18 conducted a survival analysis on National Health Insur-

ance Service Senior Cohort database (2002 to 2013) comparing the

survival of subjects in AD and non-AD groups using the CoxPH model.

The results showed that the overall mortality risk is higher in the AD

group. Abadi et al.19 implemented the CoxPH regression model and

stratified Cox model based on the proportional hazard assumption20

using a breast cancer dataset. They concluded that for patients with

Stage I and Stage II breast cancer, radiotherapy and chemotherapy

have the highest hazard, whereas for patients with Stage III and IV

breast cancer, the surgery produces the most heightened hazard.

Adamu et al.21 estimated the survival time of cancer using the Kaplan-

Meier method. Ahmad et al.8 used the CoxPH model to evaluate

heart disease’s death rate and estimate the significant contributing

features.

Katzman et al.22 used deep neural learning to improve the tradi-

tional CoxPH models. They developed the DeepSurv model, a CoxPH

neural network for modeling interactions between patients’ covari-

ates and treatment effectiveness. The efficiency of their survivalmodel

is evaluated using a concordance index (C-index) introduced by Har-

rell et al.23 and the Integrated Brier Score (IBS).24 The DeepSurv

model also showed that a deep neural network could surpass classi-

cal Cox models in terms of the C-index studied on various datasets,

includingMolecular Taxonomy of Breast Cancer International Consor-

tium (METABRIC) andWorcesterHeart Attack Study (WHAS). Fotso25

examined WHAS and Weibull survival time dataset, where their pro-

posed Neural Multi-Task Logistic Regression (N-MTLR) model outper-

forms the traditional CoxPHmodel by providing a higher concordance

index.

The application of these models provided new insights into the esti-

mated time of survival and survivability prediction. However, these

models failed to provide the distribution of survivability over time.

There is limited to no work done in evaluating the AD stage shift of

patients and survival time estimationwhile considering the risk factors

and survivability.

HIGHLIGHTS

∙ Develop an end-to-end framework to predict the stage-

shift duration of Alzheimer’s disease patients.

∙ Use deep learning-based non-linear survival models using

patients’ historical records.

∙ The model performance is significantly enhanced using

advanced feature selectionmethods.

∙ Medical practitioners can leverage our approach to for-

mulate a personalized recommendation to patients.

RESEARCH INCONTEXT

1. Systematic Review: The authors reviewed the litera-

ture using traditional (e.g., PubMed) sources and meeting

abstracts and presentations. There have been limited to

no studies conducted for time-to-event (stage-shift dura-

tion) prediction on Alzheimer’s disease clinical data.

2. Interpretation: Our approach produced individual

patient trajectories for the next stage-shift duration

along with the risk involved in terms of probability.

3. Future Directions:Our proposedmethodology considers

the patients to be similar,which canbe enhanced in future

work by identifying similarities among patients and clus-

tering them together. Additionally, amore complexmodel

can be built using state-of-the-art deep learning architec-

ture to achieve increased precision in predicting stage-

shift duration.

3 METHODOLOGY

We leverage survival modeling techniques to build a survival analysis

approach to examine interactions between a patient’s inherent tempo-

ral and medical patterns and predict the probability of progression to

the next AD stage during a time period.We define the event of interest

as the “patient’s progression into the next stage of AD.” The approach

aims to determine the probability of a patient progressing into the next

AD progression stage after any given period T.

Our end-to-end survival analysis approach combines survivability of

progressive disease (estimated time of survival) and risk factors while

shifting to the next stage. Our approach provides insights into preven-

tive medicine and medical-grade decision supports and comprises of

data analytics workflow and deep learning-based survival model. Fig-

ure 1 shows an end-to-end data analytic approach, including various

steps such as data collection and analysis, data preprocessing, miss-

ing value imputation, and independent features scaled to speed up the
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F IGURE 1 Overview of the end-to-end survival analysis workflow. CoxPH, Cox proportional hazard; IBS, Integrated Brier Score; NACC,
National Alzheimer’s Coordinating Center; N-MTLR, neural multi-task logistic regression

algorithmic calculations. Further, we used random forest and recursive

feature selection to obtain the essential features, and patient funnel-

ing to acquire the target patients. The target patients are the subjects

of our study, and we built various survival models, including non-linear

CoxPH and N-MTLR, to compare and discover the probability of pro-

gression to next AD stage.

3.1 Data collection and preprocessing

The dataset is provided by the NACC and includes 123,417 records

of > 36,000 patients with their multiple-visit details between 2005

and 2017 with a total of 92 features in the dataset. Features are

divided into several categories, such as: subject demographics, co-

participant demographics, medications, subject’s health history, phys-

ical parameters, Parkinson’s Disease Rating, Neuropsychiatric Ques-

tionnaire. To build the predictive models, we consider 71 categori-

cal features and eight continuous features. Thirteen variables in the

dataset were the raw columns for which the derived logical columns

were already present. For example, with age as one of the variables,

we also had birth month, birth year, etc. The collected data underwent

several data preprocessing steps, including missing value imputation

and feature selection. Themissing values (Figure 5) were imputedwith

the mean for continuous data columns and mode for categorical data

columns. The relevant features are selected using feature importance

score (Figure 6).

3.2 Patient funnel

For the survival analysis, we considered the patients with more than

two visits to the study center. Therefore, ≈50% of the unique patients

are in the scope of 36,327 unique patients. The selection of these

patients was carried out to make the missing value imputation logical.

It also helped remove outliers that could be present due to the lower

TABLE 1 Alzheimer’s disease (AD) progression stage for patients
withmore than two visits

Stages Patients

1_AD (0) 8444

2_AD (0.5) 6609

3_AD (1) 2465

4_AD (2) 600

5_AD (3) 222

number of visits of the patients. Figure 2 shows the number of visits

per unique patient.

For the patients with more than two visits, the number of patients

with initial stages of AD disease is shown in Table 1.

Examining the AD dataset, we observe 1521 patients who have

shown a downfall in the AD stage from the initial visit. For example, a

patient in Stage 2 on initial visit to the study center who on the subse-

quent visit decreased a stage instead of an increase are not considered

in the scope of our study. Additionally, a few patients were initially in

Stage 2, but the stage went down after one or many visits. And for a

few patients, the health conditions went bad, and their disease’s stage

got deteriorated than the initial visit. Such patients are considered in

the study to build our survival and disease progressionmodels.

We introduce the “duration” feature, which is calculated based on

the difference between the initial visit and the most recent visit, hav-

ing the maximum stage shift compared to the patient’s initial stage.

For example, if a patient’s initial visit was reported with Stage 1_AD on

April 23, 2007, then thepatient hadother subsequent visitswith stages

either less than or equal to the initial stage and has a visit on April 23,

2010 that shows that thepatient has Stage3_AD (more significant than

the initial visit), the duration would be 3 years or 36 months. After the

April 23, 2010 visit, if the patient visits again and shows a decrease in

stage, that is, less than three, the duration would still be considered 36
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F IGURE 2 Visit counts per patient

TABLE 2 Patient count based on event

Event indicator # Unique patients Flag

Right-censored 8571 0

Event 8248 1

TABLE 3 Event indicator

x1 x2 . . . xn

Duration

(month)

Event indicator

(Boolean)

2 4 . . . 4 40 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 3 . . . 2 80 0

months until the most recent maximum stage shift, which was on April

23, 2010.

All patients who show the same stage throughout their visits are

considered right-censored; otherwise, the visits are considered events.

For the analysis, the features that the data shows during the most

recent visit with maximum stage shift (in case of events) or during the

most recent visit (in case of censored) are considered for analysis. After

filtering anddata transformation,wehave16,819uniquepatients,with

the event indicator shown in Table 2.

Hence, 92%of patients withmore than two visits are considered for

survival analysis. The input data to the model is in the schema, Table 3,

where xi, i ∈ {1,2, … , n} represents the n features of the patients, the

duration is the duration in months, and the event flag is to represent

the event indicator.

3.3 Modeling and evaluation

We built multiple models using both neural CoxPH and N-MTLR with

different hyper-parameters. Their results and performance are then

evaluated. The C-index and IBS to compare these models are also dis-

cussed and interpreted.

Thedataset is, respectively, divided into training, validation, and test

sets with the distribution of 64%, 16%, and 20%. We distinguish two

scenarios. In the first scenario, the dataset contains the full set of fea-

tures (79 features), whereas the second scenario is limited to the top

50 features based on their importance. The models and their parame-

ters are provided in Table 4. The model name follows the convention:

{Model Type}_{Number of Hidden Layers}_{Number of Features Used}.

Because right-censored data are present in the dataset, the perfor-

mance metrics used in standard machine learning must be adapted to

the survival analysismodels. Therefore,wewill be using two traditional

evaluation criteria, namely, C-index and IBS. The concordance index

or C-index is a generalization of the area under the receiver operat-

ing characteristic (ROC) curve (AUC) that can take censored data into

account.24 For example, patient i is given a risk score by our survival

riskmodel 𝜂i. If our riskmodel is correct, therewill be higher risk scores

for shorter time-to-next-stage patients. Abridging to two patients this

intuition: the patientwith the higher risk scorewill have a shorter time-

to-disease.27

The top eight results of the model after hyperparameter tuning and

considering the top 50 features based on the feature importance are

presented in Table 5.

Based on Table 5, we observe that the CoxPH_4_50 and

NMTLR_4_50 models give the best result. This is when the top 50

features are considered with multiple hidden layers and hyperparam-

eter tuning. However, the difference between the other models is
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TABLE 4 Model hyper-parameters

Parameters CoxPH N-MTLR

CoxPH_1_79 CoxPH_1_50 CoxPH_4_79 CoxPH_4_50 NMTLR_1_79 NMTLR_1_50 NMTLR_4_79 NMTLR_4_50

Hidden layers One layer Four layers One layer Four layers

Neurons in each

layer

[32] [64,128,64,64] 26[32] [64,128,64,64]

Activation

function

ReLU in hidden layer(s)

Loss function CoxPH loss N-MTLR loss

Optimizer Adaptivemoments estimation optimizer

Epochs 100with early stopping

Dropout in each

layer

10% [20%, 20%, 20%, 20%] 10% [20%, 20%, 20%, 20%]

Learning rate Calculated usingOne Cycle Policy26 method

Batch size 64

Abbreviations: CoxPH, Cox proportional hazard; N-MTLR, Neural multi-task logistic regression

TABLE 5 Performancemetrics of (a) Cox proportional hazardmodels (CoxPH)models (b) neural multi-task logistic regression (NMTLR)models

Model C-index IBS score Model C-index IBS score

CoxPH_1_79 0.7647 0.3131 NMTLR_1_79 0.7781 0.1066

CoxPH_1_50 0.7757 0.1008 NMTLR_1_50 0.7762 0.1021

CoxPH_4_79 0.7751 0.3079 NMTLR_4_79 0.7821 0.1086

CoxPH_4_50 0.7843 0.1001 NMTLR_4_50 0.7985 0.0952

(a) (b)

Abbbreviations: IBS, Integrated Brier Score.

not significant. We infer that N-MTLR performs better than CoxPH

because during themodel training phase, it came out to be ≈25%more

efficient than CoxPH, in terms of time taken on the same machine and

it overcomes the following key limitations of the CoxPH.

∙ CoxPH relies on the proportional hazard assumption, which spec-

ifies that the hazard function of two individuals must be constant

over time.

∙ The exact formula of the model that can handle ties is not computa-

tionally efficient. It is often rewritten using approximations, such as

Efron’s or Breslow’s approximations, to fit themodel in a reasonable

time.

∙ The fact that thehazard function’s time component remains unspec-

ified makes the CoxPH model ill-suited for actual survival function

predictions.

∙ N-MTLR seems much more robust than CoxPH as IBS scores are

consistent.

Figures 3 and 4 show the training and validation loss and the pre-

diction of the first 10 patients in the test set. The prediction on the

first 10 patients shows that their average time to progress into the next

stage lies between 120 and 140months. However, a couple of patients

whose survival probability stays close to 100% implies that they are

highly unlikely to move into the next stage of AD based on their base-

line patient data.

4 RESULTS

The work presented in this paper will play a crucial role in helping

themedical practitioner to recommend thepatient’s specific treatment

based on their historical data. We simulated the disease progression

based on patient profiles using non-linear survival methods and eval-

uated using C-index and IBR. Before modeling, we conducted feature

analysis and selection based on two techniques–random forest classi-

fier and recursive feature elimination.Whilemodeling,we createdmul-

tiple models with and without considering the top features. Addition-

ally, hyperparameter optimization was ensured to control the learning

process for the best result.

Our proposed model, NMTLR_4_50, can predict the probability

of a patient moving into the next stage with a concordance index of

0.79. This model considers the top 50 features; it produces a more

interpretable model with a reduced computational cost. Additionally,

it helps eliminate the highly correlated features or the features with

limited to no information. Features such as normal cognition and

behavior, criteria for dementia, community affairs, etc., were given
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F IGURE 3 Model evaluation and performance on first 10 patients using all features. CoxPH, Cox proportional hazard; NMTLR, neural
multi-task logistic regression
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F IGURE 4 Model evaluation and performance on first 10 patients using top 50 features. CoxPH, Cox proportional hazard; NMTLR, neural
multi-task logistic regression
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F IGURE 5 Missing data distribution

F IGURE 6 Top 50 features



10 of 11 SHARMA ET AL.

higher weight during the feature selection phase. Many practitioners

logically consider these features to detect the AD stage during the trial

visits by the patients.

Overall, our model would benefit themedical community, especially

the practitioner working closely with AD patients. Practitioners can

also extend the model to other progressive diseases such as cancer,

Huntington’s disease, and scleroderma. One of the critical reasons sus-

pected of AD clinical trials’ repeated failure is the inability to recognize

AD patients at early stages. As a part of a successful trial, our model

will help forecast the duration of the next AD shift, which the medical

practitioners will use to provide personalized treatments to delay AD’s

effect. The AD trajectory over time for patients incorporated the het-

erogeneity among patients. As AD is classified as a chronic disease, the

risk involved with patients present in higher stages remains higher.

5 CONCLUSION

The ability of our deep learning-based survival and disease progression

models to leverage short-term data to obtain long-term probabilistic

trajectories for predicting the shift in AD stage over timewould be crit-

ical in creating a significant impact on themedical research community.

The model will be useful for many tasks in precision medicine and clin-

ical trial patient disease inference. The medical researcher and practi-

tioner canuse themodel to simulatedifferent scenarios andcan recom-

mend a better estimate to the patients in terms of check-ups, financial

concerns, and so on, and provide the requiredmedication to reduce the

calculated risk.

We have assumed all the patients to be similar in our approach;

hence, in future work, the models can be enhanced by clustering sim-

ilar patients to provide personalized prediction results more precisely.

In addition, a more complex model can be built using state-of-the-art

deep neural network architecture.
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