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Abstract: In this paper, we present a novel muscle synergy extraction method based on multivariate
curve resolution–alternating least squares (MCR-ALS) to overcome the limitation of the nonnega-
tive matrix factorization (NMF) method for extracting non-sparse muscle synergy, and we study
its potential application for evaluating motor function of stroke survivors. Nonnegative matrix
factorization (NMF) is the most widely used method for muscle synergy extraction. However, NMF
is susceptible to components’ sparseness and usually provides inferior reliability, which significantly
limits the promotion of muscle synergy. In this study, MCR-ALS was employed to extract muscle
synergy from electromyography (EMG) data. Its performance was compared with two other matrix
factorization algorithms, NMF and self-modeling mixture analysis (SMMA). Simulated data sets
were utilized to explore the influences of the sparseness and noise on the extracted synergies. As a
result, the synergies estimated by MCR-ALS were the most similar to true synergies as compared
with SMMA and NMF. MCR-ALS was used to analyze the muscle synergy characteristics of upper
limb movements performed by healthy (n = 11) and stroke (n = 5) subjects. The repeatability and
intra-subject consistency were used to evaluate the performance of MCR-ALS. As a result, MCR-ALS
provided much higher repeatability and intra-subject consistency as compared with NMF, which
were important for the reliability of the motor function evaluation. The stroke subjects had lower
intra-subject consistency and seemingly had more synergies as compared with the healthy subjects.
Thus, MCR-ALS is a promising muscle synergy analysis method for motor function evaluation of
stroke patients.

Keywords: muscle synergy; MCR-ALS; sparseness; electromyography; motor function; stroke

1. Introduction

How the central nervous system (CNS) controls the musculoskeletal system to solve
the redundancy problem of degree of freedom (DOF) is an important research topic.
One strategy widely recognized by a significant number of scholars is that the CNS ac-
complishes a variety of behaviors through statistical regularities involving biomechanical
properties of the human body, and then synergistically applies these regularities to perform
different motor tasks [1–3]. These regularities are called “muscle synergies”. The limb
movements are accomplished by activating these synergies coordinately [3,4].

Although the physiological origin and meaning of muscle synergies are still de-
bated [5], it has been confirmed that motor task execution can be described by the coordi-
nation of a limited number of muscle synergies. A muscle synergy represents the relative
activation strengths of a group of muscles, simplifying the control of the musculoskeletal
system. Muscle synergy provides a new method for studying the motor control mechanism
during a movement [6]. Ivanenko et al. found five muscle synergies accounted for muscle
activity during human locomotion [7]. Scano et al. proved that a large variety of grasps can
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be produced by a limited subset of muscle synergies [8]. Aoi et al. developed a motor model
with 69 parameters based on muscle synergy, which produced both walking and running
of a human musculoskeletal model by changing only seven motor control parameters and
concluded a human could change walking and running speed through seven key motor
control parameters [9]. Pan et al. found that the similarity of muscle synergies of subacute
stroke survivors was significantly correlated with the Brunnstrom stage [10]. Cheung et al.
considered muscle synergy to be physiological markers of motor cortical damage, and
the muscle synergies of stroke survivors had three distinct patterns, i.e., preservation,
merging, and fractionation [11]. Thus, a growing number of studies have been focused on
the synergy characteristics of subjects with nervous system diseases, such as stroke [11–13],
spinal cord injury [14,15], cerebral palsy [16], and Parkinson’s disease [17]. The results
have shown that muscle synergy is a promising approach for motor function evaluation.

Various matrix decomposition algorithms have been applied to extract muscle synergy
from recorded and processed electromyographic (EMG) signals of dynamic motor tasks.
Nonnegative matrix factorization (NMF) [11–21], factor analysis (FA) [22,23], independent
component analysis (ICA) [24,25], and principal component analysis (PCA) [26,27] are
the four common synergy extraction algorithms. PCA produces the basis vectors (muscle
synergies) with the best variance description of EMG data through singular value decom-
position (SVD) [6]. Similar to PCA, FA extracts muscle synergy weights by calculating
the eigenvectors of the data’s covariance matrix; the eigenvectors with eigenvalues >1
are considered to be the muscle synergies. The synergies are determined by employing
singular value decomposition for analyzing the data’s covariance matrix. ICA makes the
data statistically independent by transforming it orthogonally. ICA is employed to analyze
the data with non-Gaussian variation and extract synergies that maximize the absolute
value of the fourth moment of the data. In contrast to the aforementioned methods, NMF
is the most widely used algorithm because of its non-negativity constraint and simple
principle [6,15–21,28]. However, NMF has some limitations. For example, it is based on
maximizing Gaussian likelihood, and easily falls into local optimum for identifying de-
pendent and non-sparse components. Thus, some modified methods have been proposed.
Several algorithms based on gamma and inverse Gaussian models have been used to
analyze EMG data in order to deal with the influence of signal noise on muscle synergy
extraction and have provided better reconstruction quality as compared with NMF [29,30].
The sparse NMF (SNMF) has been proposed to improve the performance of NMF for
identifying dependent components [31]. In addition, constrained Tucker decomposition
(consTD) has been employed to deal with the muscle synergy extraction problem from
EMG data of various biomechanically related tasks [32]. However, there are few studies
that have focused on non-sparse synergies extraction [33].

Some human muscles are biarticular and polyarticular muscles, which contribute to
more biomechanical subtasks [31]. As a result, many synergies present a high degree of
coactivation in certain movements with multi-joint or multi-degree of freedom. In addition,
the abnormal coactivations of some muscles may increase the non-sparseness of synergies
and activations for some disease patients, such as stroke [34]. It is well known that NMF
presents excellent performance for extracting sparse components [35,36]. However, the
performance of NMF may decrease in non-sparse synergy extraction, which significantly
restricts the application of muscle synergy for evaluating motor function of stroke patients.
To deal with the problem, a method associated with the characteristics of synergy mixture
system itself is a feasible solution for non-sparse synergies extraction.

Self-modeling mixture analysis (SMMA) is a common signal resolution algorithm
for a linear mixture system, and it can resolve component information by analyzing the
statistical characteristics of various signal variables. Thus, as compared with the randomly
initialized synergy matrix calculated by NMF, the synergy matrix produced by SMMA is
much more consistent with the real ones. In this study, a SMMA-based synergy extraction
approach called multivariate curve resolution–alternating least squares (MCR-ALS) was
proposed and its performance was compared with SMMA and NMF. We evaluated the
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feasibility of the proposed algorithm with simulation data, for which the properties of the
synergies and activations were known. The effects of the sparseness and noise intensity on
the extracted synergies were investigated. In addition, the proposed method was used to
analyze the muscle synergy of upper limb movements of stroke subjects; the intra-subject
consistency and the number of muscle synergies between stroke and healthy subjects were
compared and investigated.

2. Theory and Experiment
2.1. Muscle Synergy Pattern Model

According to the theoretical background of muscle synergy, EMG signals are con-
sidered to be the weighted summation of primitive functions reflecting the activation
time information of several muscle groups, and their synergies (muscle groups) reflect the
relative activation strengths of multiple muscles. Thus, muscle synergies can be extracted
through unmixing EMG data as the following bilinear model [11,37]:

D = CS + E (1)

where D is the m × n matrix which consists of a set of m preprocessed EMG signals and n
data points for each EMG signal, correspondingly; C is the m× r matrix of weight coefficient
describing the enrollment of muscle groups (muscle synergy); r represents the number of
muscle synergies; S is a r × n matrix of activations constituting the basic components or
primitive functions; and E is residual matrix with size of m × n. Every muscle synergy is a
time-invariant module reflecting relative activation strengths of multiple muscles, which is
activated by time-varying commands (activation) descending from CNS [11].

2.2. Simulated Data

A simulation study is a useful approach for synergy extraction algorithm assessment
as the properties of the synergies and activations are known. In this study, various simu-
lated data sets with different noise intensities were constructed to evaluate the accuracy
and robustness of the proposed synergy extraction algorithm. According to the muscle
synergy pattern model (Equation (1)), simulated data, Dsim, was generated according to
following equation:

Dsim = CsimSsim + Esim (2)

where Dsim is a 10 × 1000 matrix which consists of a set of 10 simulated EMG signals
(muscles or channels) and 1000 data points for each EMG signal, correspondingly; Csim is a
10 × 4 weight matrix containing 4 synergies; Ssim is a 4 × 1000 matrix of activation; and
Esim is the signal-dependent noise matrix with a size of 10 × 1000.

In past studies, researchers have proven that the noise in neural control signal increases
with an increase in the magnitude of signal [38]. Thus, in this study, the noise, whose
standard deviation (SD) is positive proportional to noiseless signal value, was added to
the EMG signal [39]. The scale factor a was used to change the noise intensities of EMG
signals; its value varied from 0.05 to 0.15. The signal-dependent noises with a = 0.05, 0.10,
0.15 (SNR = 26, 20, 16 dB) were added to noiseless signal to generate different simulated
data sets, according to Equation (2).

In this study, to evaluate the effect of the sparseness on the proposed synergy extraction
method, the synergies and activation profiles with six degrees of sparseness (0.1, 0.2, 0.3,
0.4, 0.5, 0.6) were used to create the simulated data. The synergies with various degrees of
sparseness were created randomly and their values were between [0, 1]. The activation
profiles with various degrees of sparseness were generated by linear combination of
Gaussian and Lorentz functions by control of the full width at half maximum. The degree
of sparseness of vector x (synergy or activation profile) was evaluated by Equation (3) [40],
which is:

sparseness(x) =

√
n− (∑|xi|)/

√
∑ x2

i√
n− 1

(3)
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where n is the dimension of x, and xi is the ith variable of x. In the following paragraphs, the
sparseness of synergies and activations represents the average sparseness of all synergies
and all activations in muscle synergy pattern model, respectively.

2.3. Experimental Data

Eleven healthy subjects (age range 25–37 years, mean age 26.7 years) and five stroke
subjects (Brunnstrom 3–5, upper limb Fugl-Meyer score of 22–60, arm Fugl-Meyer score
of 16–36, age range 52–79 years, mean age 67.8 years) volunteered to participate in this
study. The healthy subjects had no neurological disorders and limb surgeries in their
clinical histories. The stroke subjects had no limb surgeries in their clinical histories.
The subjects were asked not to drink alcohol and caffeine 24 h before the experiment.
The experiment was performed based on the Declaration of Helsinki and confirmed by the
Ethics Committee of Cixi Institute of Biomedical Engineering.

The EMG data used in this study were collected from upper limb movements based
on an upper limb rehabilitation robot. Subjects sat on a chair with their back straight and
perpendicular to the ground. The robot resistance was adjusted to a uniform and comfort-
able level for each subject. Each subject performed upper limb movements according to the
trajectory (semicircle) on the screen of the rehabilitation robot, shown in Figure 1. In the
experiment, subjects sat on the side of the upper limb rehabilitation robot and operated a
shot stick using their evaluated upper limb (dominant hand for healthy subject and affected
hand for patients) to accomplish the task repeatedly (six trials for each subject). To improve
the repeatability of the experiment, the motion range of the shot stick was limited by a
computer program that ensured it moved along a semicircle trajectory. In any trial, each
subject put his hand on the robot’s tray and grasped the shot stick with five fingers on the
starting position. The experimenter started the data acquisition and give the “go” signal.
The subjects did the movement with the shot stick after the “go” signal and stopped at the
ending position shown on the screen. The consumed time of the movement was about 2 s.
Data collection stopped automatically after 3 s.
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Figure 1. The upper limb movement experiment based on the rehabilitation robot.

In this study, the activities of seven muscles, including the anterior deltoid (DA),
posterior deltoid (DP), triceps brachii (TI), biceps brachii (BI), extensor carpi radialis (ECR),
flexor carpi radialis (FCR), and brachioradialis (BIO), were recorded through a 16-channel
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EMG system (Delsys Inc., Boston, MA, USA). Before placing the EMG sensors, excessive
hair was shaved from the skin and alcohol was applied to wipe the skin to remove oils and
surface residues. Each EMG sensor was placed on the muscle belly under the guidance of
a therapist. The raw EMG signals were recorded with a sampling frequency of 1926 Hz.
Figure 2 presents the raw EMG signals of seven muscles recorded during a trial of one
healthy subject. To attenuate DC offset and high-frequency noise, the raw EMG signals were
band-pass filtered between 40 and 400 Hz (3th order zero-lag Butterworth) [41]. The filtered
EMG signals were full-wave rectified and low-pass filtered at 5 Hz (3th order zero-lag
Butterworth) to calculate the envelopes of EMG signals [41,42]. The envelopes normalized
by the maximum of each envelope itself were used to extract muscle synergy [12].
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3. Methodology
3.1. NMF

NMF, which was first proposed by Lee and Seung [35,36], is usually used to reduce
data dimension. Because of its nonnegative constraint, NMF is also applied to analyze
medical [43] and space object [44] data.

NMF is the most widely used muscle synergy extraction method [15–21], which is
usually based on the multiplicative update rules [36]. After creation of the random initial
matrices (C and S), the iteration is to minimize the Frobenius norm of the residual matrix
(preprocessed EMG matrix D minus multiplication of the matrix S and C) illustrated by
Equation (4). The stop criterion is set based on the parameter Q, the percentage of change
in the lack of fit between two iterations (fl(S,C) and fl+1(S,C)), which is obtained through
Equation (5). The stop criterion is: (1) Q equal to 0.01% and (2) max number of iterations
equal to 1000. Equations (4) and (5) are as follows:

f (S, C) =
1
2
‖D− CS‖2

F (4)

Q = 100 ·
(

fl+1(S, C)− fl(S, C)
fl(S, C)

)
(5)

3.2. SMMA

SMMA, which is also called simple-to-use interactive self-modeling mixture analysis
(SIMPLISMA), is a matrix decomposition method for a linear mixture system. SMMA
is proposed based on pure variables, which contribute from one component [45]. Thus,
SMMA resolves the signal of mixtures by analyzing the characteristics of various variables
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of signal, and then extracts the values of the variables containing quantitative information to
resolve the linear mixture system. SMMA is usually used in a signal analysis of a chemical
mixture system [46]. According to Equation (1), muscle synergy is also a linear mixture
system and the EMG signals are considered to be weighted summation of time-variant
activation. The nonstationarity of the activation profile demonstrates that it is feasible to
find pure variables in EMG data. The pure variables, which contain the relative content
information of components (synergies), are used to resolve the components (activations).

3.3. MCR-ALS

MCR-ALS, which evolved from SMMA, is a popular matrix factorization algorithm [47,48].
For MCR-ALS, the initial synergy and activation matrices, containing relative content and
component information, respectively, are obtained from SMMA. In addition, alternating
least squares (ALS) is used to optimize the resolution according to Equations (6) and
(7) [49], and nonnegative constraint is imposed to ensure that the decomposition results
have physical significance. In the iterative process, if the elements of S and C are negative,
it is set to zero forcibly. The stop criterion of MCR-ALS is the same as NMF (Q equal to
0.01%, max number of iteration equal to 1000). Equations (6) and (7) are as follows:

C = (DST)(SST)
−1

(6)

S = (CTC)
−1

CT D (7)

3.4. Algorithm Evaluation

To compare the performances of the three algorithms, they were applied to analyze
the simulated data created by synergies and activations with different sparseness and
noise levels. The Pearson’s correlation coefficient between true and extracted synergies
was applied to assess the three muscle synergy extraction algorithms. The match between
extracted and true synergies was performed based on their similarity evaluated by the
Pearson’s correlation coefficient. We paired the true and extracted synergies with highest
similarity. If more than one extracted synergy had the greatest similarity to the same
true synergies, simultaneously, we achieved full math by studying the total correlation
of all synergy pairs. The match pattern with the max sum of correlation coefficient was
used as the final match result. The statistical results (performances on 25 simulated data
containing randomly created synergies and activations for each sparseness combination
and noise level) of the correlation coefficients of full matched synergies were used to assess
the accuracy and robustness of different synergy extraction methods.

In the experimental study, the repeatability of different algorithms was evaluated
by analyzing the variation of repeated estimated synergies (25 times) utilizing Pearson’s
correlation coefficient. The evaluation was based on the Pearson’s correlation coefficient
between matched synergies extracted from any two performances. Similar to the simulation
study, the first step was to match the synergies extracted from two calculations for the same
data set (trial). The pair of synergies with the highest correlation were matched together.
If two or more synergies had the maximum correlation coefficient with the same synergy, a
full match was realized by analyzing the overall correlation of all synergy pairs. The match
pattern with the max sum of correlation coefficient was considered to be the final match
result. The correlation coefficients of all possible combinations of full matched synergies
extracted from 25 repeated performances were used to assess the repeatability of the three
synergy extraction algorithms.

In this study, the intra-subject consistency of synergies across multiple trials of each
subject was applied to assess the robustness of the proposed synergy extraction algorithm.
The intra-subject consistency was calculated by analyzing Pearson’s correlation coefficient
between each pair of trials for each subject. For each pair of trials, the correlation coeffi-
cients of all possible combinations of full matched synergies from the two trial data sets,
respectively, were calculated. For each subject, the average of the correlation coefficients of
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all trial combinations was used to represent intra-subject consistency. A paired t-test was
used to analyze the difference in intra-subject consistency for various algorithms. One-way
ANOVA was performed to detect the difference in intra-subject consistencies between
healthy and stroke subjects.

3.5. Choose the Number of Synergies

In the analysis described above, we assumed that the correct number of synergies was
known before decomposition. However, in many situations, the number of synergies, r, is
unknown. In this study, we applied variance account for (VAF) to determine the number
of muscle synergies r [50–52]. VAF was calculated according to the following equation:

VAF = 1− (‖D−M‖2/‖D−mean(D)‖2) (8)

where M = CS, which represents the reconstruction matrix of synergy extraction algorithm;
the operator “mean” is to produce a matrix with the same size as D, whose columns are
made up of the mean of corresponding column in D. Here, r is defined as the minimum
when VAF exceeded 80% [11,13].

4. Results
4.1. Evaluation with Simulated Data

In order to evaluate the feasibilities of the three muscle synergy extraction algorithms,
we employed various simulated EMG datasets generated from components (synergies
and activation profiles) with different sparseness combinations. The similarity between
estimated and true components was used to assess various synergy extraction methods.
As a result, the performance of NMF was affected by both the sparseness of synergies
and the sparseness of activations. NMF became less accurate as the degree of sparseness
decreased. In contrast, SMMA and MCR-ALS were mainly affected by activation sparse-
ness, because the purities of pure variables were easily influenced by the non-sparseness of
activations. However, the influence of the non-sparseness of synergies on the two methods
was relatively small. Figure 3 presents the performances of NMF, SMMA, and MCR-ALS
versus synergy sparseness and activation sparseness under the circumstance of noise level
0.05. Obviously, the performance of NMF was different from SMMA and MCR-ALS.

To validate the robustness of each synergy extraction method, we analyzed their
performances under circumstances of different noise intensities. Figure 4 shows the average
correlation coefficients for the fully identified synergies compared across two settings
(sparseness, noise) for the three methods. From the figure, it can be seen that the noise was
an important influence factor for synergy extraction. The estimated synergies became less
accurate as the noise level increased. In the three methods, MCR-ALS provided the best
performance, especially when sparseness of synergy and activation was low. For example,
the average correlation coefficient of synergy estimated by MCR-ALS was 0.96 when
the synergy sparseness and noise level were 0.1 and 0.05, while the average correlation
coefficients of synergies estimated by SMMA and NMF were 0.92 and 0.83, respectively.
As the synergy sparseness increased, the performances of NMF and MCR-ALS became
close. Lacking iterative optimization restricted the performance of SMMA. In addition, the
non-negativity of its decomposing results was hard to be ensured. For the data containing
non-sparse components (synergy or activation), NMF easily fell into local optimum and its
result was non-unique, which lead to its poor performance. However, MCR-ALS could
supply accurate and unique decomposing results.
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4.2. Results of Motor Function Evaluation by Muscle Synergy

In the simulation study, SMMA provided unique decomposition as compared with
NMF, but it still could not present satisfactory performance. MCR-ALS, a developed
algorithm which evolved from SMMA, optimized the resolution through ALS iteration.
Thus, MCR-ALS was the most reliable and accurate synergy extraction. In this study, MCR-
ALS was also applied to analyze the muscle synergies of upper limb movements of stroke
subjects, to improve the performance of muscle synergy on motor function evaluation.

For each healthy subject, three muscle synergies were needed to ensure the reconstruc-
tion accuracy for the EMG data. For the conventional method (NMF), muscle synergies
were extracted with an average VAF value of 85.67 ± 5.64%. However, for the proposed
method (MCR-ALS), the muscle synergies were identified with an average VAF value of
86.32 ± 4.97%. The number of synergies of stroke subjects was different from healthy
subjects. Three muscle synergies were enough to reconstruct the EMG data accurately for
three stroke subjects, while for the other two stroke subjects, four muscle synergies were
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needed to realize accurate data reconstruction. Muscle synergies were extracted by NMF
with an average VAF value of 86.35 ± 5.44%. For MCR-ALS, the muscle synergies were
identified with an average VAF value of 86.47 ± 5.39%. Obviously, the two methods have
close reconstruction ability.
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To compare the repeatability of MCR-ALS and NMF, we analyzed 25 repeated de-
composition results for each trial dataset. As a result, the average repeatability of NMF
was 0.86 ± 0.11 and 0.74 ± 0.13 for all healthy and stroke subjects, respectively. Figure 5
is the boxplot of the correlation coefficients of muscle synergies extracted from a typical
trial EMG data of healthy subject. As seen in Figure 5, the average correlation coefficients
of three synergies were 0.92, 0.80, and 0.65, respectively, with box lengths of 0.08, 0.25,
and 0.52. Obviously, NMF presented inferior repeatability for the upper limb movement
data, and it usually fell into local optimum. However, MCR-ALS could extract relative
concentration information through pure variables in the initialization phase instead of
random initialization, thus, its repeatability was one. In other words, the initialized synergy
and activation matrix is unique.
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Figure 5. The boxplots of the correlation coefficients of muscle synergies extracted from a typical
trial data of healthy subject using NMF.

Figure 6 shows the muscle synergies extracted by NMF and MCR-ALS from one
healthy subject. As seen in the figure, the synergies produced by NMF had much larger
standard deviations as compared with the ones identified by MCR-ALS, especially for
Synergy 2 and Synergy 3. As shown in Figure 6, the synergies extracted by NMF and MCR-
ALS all had low sparseness, especially Synergy 2 and Synergy 3. Thus, the performance
of NMF might be affected by the non-sparseness of synergy. A similar conclusion can be
obtained through the synergy analysis of stroke subjects. As Figure 7 shows, the standard
deviations of the synergies extracted by MCR-ALS were much smaller than the ones
identified by NMF.
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Figure 7. The statistical chart of synergies extracted by MCR-ALS (a) and NMF (b) from a typical stroke subject.

To further evaluate the performance of the two methods, intra-subject consistency was
calculated. Figure 8 represents the statistical results of intra-subject consistency computed
to compare the standard approach (NMF) and the novel approach (MCR-ALS) for healthy
and stroke subjects. For the healthy subjects, there was a significant difference in intra-
subject consistency between the two methods (p < 0.001). The consistencies of MCR-
ALS and NMF were equal to 0.86 ± 0.04 and 0.69 ± 0.09, respectively. For the stroke
subjects, there was also a significant difference in intra-subject consistency between the
two methods (p = 0.01). The consistencies of MCR-ALS and NMF were equal to 0.56 ± 0.11
and 0.38 ± 0.15, respectively. Obviously, NMF had inferior consistency as compared with
MCR-ALS. The main reason may be that NMF could not obtain optimum in non-sparseness
component extraction. From the experimental study, MCR-ALS could provide more reliable
synergy identification as compared with NMF.
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Compared with healthy subjects, some chronic stroke subjects had more synergies,
which was consistent with those reported in the literature [11]. The two groups of subjects
had a significant difference in intra-subject consistency (F = 78.275, p < 0.001 for MCR-ALS
and F = 27.835, p < 0.001 for NMF). Stroke subjects had inferior synergy consistencies as
compared with healthy subjects (0.38 ± 0.15 vs. 0.69 ± 0.09 for NMF and 0.56 ± 0.11 vs.
0.86 ± 0.04 for MCR-ALS), which demonstrated that stroke patients had poorer motor
control ability as compared with healthy subject. Thus, the number of synergies and
intra-subject consistency are promising indexes used for motor function evaluation for
stroke patients.

5. Discussion

In the simulation study, NMF showed good performances for identifying sparse syn-
ergies. However, for non-sparse synergy extraction, NMF could not provide satisfactory
performance. The estimated synergies had a large error as compared with true synergies.
Many human muscles are biarticular and polyarticular, which induces the phenomenon of
coactivation and non-sparse synergies in many human movements with multiple degrees
of freedom. The experiment of this study is a great example, the synergies of upper limb
movements involving digital, wrist, elbow, and shoulder joints are non-sparse. In addition,
the abnormal coactivations of stroke patients’ muscles also affects the sparseness of syner-
gies. The analysis results of the experimental data showed that NMF easily fell into local
optimum in extracting non-sparse components.

From the results of the simulation study, SMMA was a feasible method for identifying
muscle synergy. In addition, its decomposing result was unique. However, the non-sparse
activations affected the purities of pure variables. In other words, it was hard to find
several data points completely contributed from one synergy. Thus, SMMA could not
provide satisfying resolution. However, MCR-ALS, as a developed algorithm, optimized
the purities of pure variables through ALS. As a result, MCR-ALS was the most reliable
synergy identification method, even though the EMG data contained non-sparse synergies
and non-sparse activations simultaneously.

Predicting the number of synergies is an important task for muscle synergy analysis.
We applied VAF to predict the number of synergy vectors ensuring enough reconstruction
accuracy of the matrix decomposition algorithm for EMG data. In the analysis of the EMG
study (healthy and stroke subjects), the VAF values of NMF and MCR-ALS were very
close. Thus, MCR-ALS also had enough learning ability for EMG data, ensuring a robust
prediction of the number of synergies.

The non-negativity is also a key index for the matrix decomposition algorithm.
The SMMA usually produces negative values resulting from the amplitude differences
between the pure variables and weight of synergies. Thus, non-negative constraint is
necessary for SMMA to ensure the physical significance of decomposition. However, the
relative relationship between pure variables and weight of synergies would remain if the
non-sparseness of activation profiles were slight. Thus, the synergies were still similar to
real ones. MCR-ALS evolved from SMMA, and its non-negative constraint ensures the
positive decomposing results. As compared with the pure mathematical method (NMF),
MCR-ALS and SMMA are strongly associated with system theory and the structure of the
data itself, thus, they have greater robustness.

For stroke patients, their synergies have a low degree of sparseness because of the
abnormal muscle activations and movements with multiple degrees of freedom. The poor
reliability of NMF severely restricts the application of muscle synergy to motor function
evaluation. MCR-ALS supplied more reliable muscle synergy information as compared
with NMF, contributing to the robust motor function evaluation. In addition, chronic stoke
subjects might have more synergies and inferior intra-subject consistency as compared
with healthy subjects. Therefore, the two parameters are two promising indexes used for
motor function evaluation of stroke survivors. In future study, we plan to analyze the
muscle synergies of more stroke subjects with the novel EMG analysis method.
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6. Conclusions

In this study, a novel muscle synergy extraction method called MCR-ALS was pro-
posed. Its performance was compared with two other matrix decomposition algorithms
(NMF and SMMA). The results showed the following: (1) The problem of non-unique
decomposition of NMF was resolved through pure variable extraction (SMMA and MCR-
ALS); (2) As a developed algorithm evolved from SMMA, MCR-ALS presented the greatest
reliability in synergy identification as compared with NMF and SMMA, especially for
the data containing non-sparse components. In addition, MCR-ALS was used to analyze
the muscle synergy characteristics of stroke subjects. Through comparative study, stoke
subjects have more synergies and inferior intra-subject consistency as compared with
healthy subjects. Therefore, MCR-ALS is a promising muscle synergy extraction method.
The results of this study are of great significance for promoting the application of muscle
synergy for evaluating motor function of stroke patients.
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