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We perform an extensive study of the performance of different classification approaches on twenty-five datasets (fourteen image
datasets and eleven UCI data mining datasets). The aim is to find General-Purpose (GP) heterogeneous ensembles (requiring
little to no parameter tuning) that perform competitively across multiple datasets. The state-of-the-art classifiers examined in this
study include the support vector machine, Gaussian process classifiers, random subspace of adaboost, random subspace of rotation
boosting, and deep learning classifiers. We demonstrate that a heterogeneous ensemble based on the simple fusion by sum rule
of different classifiers performs consistently well across all twenty-five datasets. The most important result of our investigation is
demonstrating that some very recent approaches, including the heterogeneous ensemble we propose in this paper, are capable of
outperforming an SVM classifier (implemented with LibSVM), even when both kernel selection and SVM parameters are carefully
tuned for each dataset.

1. Introduction

The present trend in machine learning is focused on building
optimal classification systems for very specific, well-defined
problems.Another research focus, however, would be towork
on building General-Purpose (GP) systems that are capable
of handling a broader range of problems as well as multiple
data types. Ideally, GP systems would work well out of the
box, requiring little to no parameter tuning but would still
perform competitively against less flexible systems that have
been optimized for very specific problems and datasets. One
promising avenue of exploration is to build ensembles that are
composed of diverse classifiers that merge their hypotheses
[1], thereby resulting in a better approximation of a true
hypothesis [2].

Many ensemble construction techniques are available.
One approach is to perturb the information that is given
to the base classifiers. The basic assumption behind this
approach is that each of the base classifiers makes errors that
are independent of each other, but as part of an ensemble
they offer stronger classificatory power. To build an ensemble
using this approach, 𝐾 training sets are first created, and 𝐾

classifiers are then trained on each of the 𝐾 training sets.
The results of the 𝐾 classifiers are combined using some
decision rule such asmajority voting, sum rule,max rule,min
rule, product rule, median rule, and Borda count. Different
types of perturbations methods have been developed to max-
imize the classifier diversity in an ensemble. These methods
focus on perturbing the training patterns, the feature sets,
the classifiers, or some combination of these perturbation
methods.

In pattern perturbation, 𝐾 new training sets are created
(commonly following an iterative approach) by perturbing
the original training set, and a different classifier is trained
on each new set. Some well-known pattern perturbation
techniques include Bagging [3], Arcing [4], Class Switching
[5], and Decorate [6]. In Bagging [3], new training sets
are subsets of the original training data. In Arcing [4],
each new training set is created based on the misclassified
patterns in the previous iteration. In Class Switching [5], new
training sets are created by randomly changing the labels of a
subset of the original training data. Decorate [6] creates new
training sets by adding artificial patterns misclassified by the
combined decision of the ensemble.
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Feature perturbation techniques manipulate a set of orig-
inal features into new training sets composed of perturbed
features. Some important examples of feature perturbation
include random subspace (RS) [7] and Input Decimated
Ensemble [8]. In RS [7], 𝐾 new training sets are randomly
generated from subsets of the feature set. In Input Decimated
Ensemble [8], new training sets are generated using the
principal component analysis (PCA) transform, where PCA
is calculated on the training patterns belonging to each
particular class. The ensemble size is thus bounded by the
number of classes. This limitation can be avoided, however,
as shown in [9], if PCA is performed on training patterns that
have been partitioned into clusters.

New ensembles can also be composed by mixing the
two perturbation methods discussed above. For example,
RandomForest [10] uses a bagging ensemble of decision trees,
where a random selection of features is used to split a given
node.

Finally, in classifier perturbation, each classifier of the
same type (homogeneous ensembles) can be given differ-
ent parameter values, or different classifiers (heterogeneous
ensembles) can be combined and trained on the same
training set. Classifier perturbation methods for building
ensembles have been the least studied in the literature,
but recently several studies have focused on this type of
ensemble [11]. Moreover, several papers have investigated
building GP heterogeneous ensembles [12, 13]. In [12], an
ensemble combining theRS approachwith an ensemble using
an editing approach to reduce outliers was compared with
other state-of-the-art methods across sixteen benchmark
datasets representing very different problems (numerous
medical problems, image problems, a vowel dataset, a credit
dataset, etc.). Although none of the ensembles investigated
in [12] worked consistently well across all sixteen datasets,
one GP ensemble worked well across all the image datasets.
Moreover, in some cases, the GP ensemble performed better
than an SVMwhose parameters had been optimally tuned on
a specific dataset.

GP ensembles that exploit information available in dif-
ferent feature extraction methods and representations of the
data have also been explored. In [13], for instance, the goal
was to search for a GP ensemble for protein classification that
combined an optimal set of different protein representations
and descriptors and that performed well across fourteen
protein classification datasets representing different protein
classification tasks. It was discovered in [13] that large
descriptors work better when a large training set is available
(due to the curse of dimensionality). Although no ensemble
was discovered that provided the best performance across all
fourteen datasets, it was shown that it is always possible to
find a more limited GP ensemble that performed well across
each type of dataset.

In this work the focus is on testing different classifiers
and their combinations across twenty-five datasets (fourteen
image datasets and eleven UCI data mining datasets). In
the image datasets, two state-of-the-art texture descriptors
are utilized: Local Ternary Patterns [14] and Local Phase
Quantization [15]. As the majority of machine learning
papers published in the literature are based on the LibSVM

implementation of SVM, the aim of this work is to com-
pare the performance of the LibSVM library with several
recently proposed classifiers (Gaussian process classifiers, RS
of AdaBoost, RS of rotation boosting, and deep learning)
and to show that a heterogeneous GP ensemble of classifiers
works well across the different datasets. For all the classifiers
compared in this study, we use well-known toolboxes that
have been extensively tested and that are freely available.
Moreover, to make results reproducible and to gain a wider
diffusion of this type of research, theMATLAB code/interface
for building the GP heterogeneous ensembles proposed in
this work is provided.We hope this tool will also prove useful
for practitioners.

The most interesting result obtained from our experi-
ments is that the best GP ensemble proposed in this paper
outperforms each stand-alone classifier without any ad hoc
tuning on the dataset: the same fusion rule is used for all
twenty-five datasets tested in this work. As a result, we
are confident that the proposed GP ensemble can easily
be extended to other problems and should prove useful to
researchers who want a reliable classifier that works well
without tuning it. It should be noted, however, that there
is a cost associated with using heterogeneous ensembles:
increased computational time.

The remainder of this paper is organized as follows. In
Section 2, the different classifiers explored in this paper are
briefly described. In Section 3, the feature descriptors are
outlined. In Section 4, we provide an overview of the twenty-
five datasets. In Section 5, we present the experimental
results along with our best GP heterogeneous ensembles. We
conclude in Section 6 with a few reflections and remarks
on some issues involved in developing GP ensembles and
list some future directions of research. The MATLAB code
for all the classifiers used in the proposed ensembles are
available at https://www.dei.unipd.it/node/2357. Moreover,
for the purpose of reproducing and comparing results, the
split training/testing sets are also available at the above
website.

2. Classifiers

Since the aim of this study is to find a heterogeneous
multiclassifier system that works well with a large number of
datasets, we examined the fusion by sum rule of several state-
of-the-art classifiers: the Support Vector Machine (SVM),
Gaussian process classifier (GPC), RS of AdaBoost (RS AB),
RS of rotation boosting (RS RB), and deep learning (DL).The
sum rule [2] simply sums the matching scores (normalized
to mean 0 and standard deviation 1) provided by each of the
different classifier systems. Each of the classifiers examined in
this study is described briefly below.

2.1. Support Vector Machine (SVM). SVM [16] is a binary
classifier and is used as the core classifiers in several of
our ensembles. An SVM performs classification by cutting
the 𝑛-dimensional space (𝑛 being the number of features)
into two regions associated with two distinct classes, often
referred to as the positive class and the negative class. The
regions are separated by an 𝑛-dimensional hyperplane that
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has the largest possible distance 𝑑 from the training vectors
of the two classes. Three kernels are tested in our exper-
iments: linear, radial basis function, and polynomial. For
each kernel, a dataset driven fine-tuning of parameters is
performed. SVM is implemented using LibSVM, available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.

In addition to SVM implemented with LibSVM, we
test an RS ensemble with SVM as the classifier (using fifty
different subspaces that include 50% of the original features).
This ensemble is called RS SVM.

2.2. The Gaussian Process Classifier (GPC). GPC [17] is a
probabilistic approach for learning in kernel machines. It
considers two procedures for approximating inference for
binary classification: (1) Laplace’s approximation, which is
based on an expansion around the mode of the poste-
rior, and (2) the Expectation Propagation algorithm, which
is based on matching moments approximations to the
marginals of the posterior. GPC is implemented using the
MATLAB code available at http://www.gaussianprocess.org/
gpml/code/matlab/doc/index.html.

2.3. Random Subspace of AdaBoost (RS AB). RS AB [18] is a
supervised learning algorithm that boosts the classification
performance of a simple binary classifier by combining a
collection of weak classifiers. The output of the weak learners
is combined into a weighted sum that represents the final
output of the boosted classifier. In this work, we combine
AdaBoost with the RS method [7] for building ensembles.
This results in a pseudorandom selection of subsets of
components in the feature vector that are then used for
training the different classifiers of the ensemble. We use RS
to construct fifty different subspaces that include 50% of the
original features. A different AdaBoost.M2 [18] is trained
on each subspace. AdaBoost.M2 gives the weak learner (a
neural network in our studies) more expressive power. The
50 classifiers are combined by sum rule.

2.4. Random Subspace of Rotation Boosting (RS RB). RS RB
is the random subspace version of rotation boosting (RB).
RB [19] is an ensemble of decision trees based on randomly
splitting the feature set into subsets. In each subset a feature
transform is applied (PCA without feature reduction in the
original version of RB). Instead of PCA, the feature transform
used in this study is Neighborhood Preserving Embedding
(NPE) as in [9]. NPE is described in Section 3.3.

2.5. Deep Learning (DL). Deep learning is a recent and one
of the best-performing approaches to Artificial Intelligence,
a field that was revolutionized when it was first proposed
in 2006 [20]. The main feature of deep learning is its
layered structure: there are several layers of processing nodes
between its input and output, with every layer adding a
certain level of abstraction to the overall representation. For
example, image interpretation is a task that can be performed
through several steps: at a lower level, small image patches
are considered, leading to features like edges and texture.
Such low-level descriptors can be combined together to
build a more complex representation: at the second level,

for example, features like larger image patches and contours
can be considered. Moving toward upper levels, the elements
considered by the network are of increased complexity and
are extracted from larger areas in the image (i.e., larger sets of
input data).

Another major feature of deep learning networks is that
they are able to exploit unlabeled data, a crucial feature
when dealing with huge sets of data. Deep learning has been
widely used in computer vision and image understanding
applications, including object recognition in 3D (RGB-D)
data [21] and face detection and verification [22].

In this work, we test the deep learning approach based on
the Feedforward Backpropagation Neural Network (FBNN)
[23] with a sigmoid activation function. We train FBNN for
10000 epochs with minibatches of size 25. Three versions of
DL are tested DL1, DL2, andDL3. Each has an input layer that
is the size of the input feature vector and an output layer that is
the size of the number of classes. DL1 has a hidden layer of size
100. DL2 has two hidden layers each of size 100, and DL3 has
two hidden layers each of size 500. DL is implemented using
the MATLAB code available at http://it.mathworks.com/
matlabcentral/fileexchange/38310-deep-learning-toolbox.

3. Feature Extraction

In Sections 3.1 and 3.2, we briefly describe the texture features
used with the fourteen image datasets. Many methods are
available for extracting features from texture. Two of the best-
performing methods are Local Ternary Patterns (LTP) and
Local Phase Quantization (LPQ). In Section 3.3, we describe
the NPE descriptor that is used as a transform in RS RB.

3.1. Local Ternary Patterns (LTP). LTP [14] is an extension of
the canonical Local Binary Pattern (LBP) operator designed
to bemore discriminant and less sensitive to noise in uniform
regions.The LBP operator [24] is computed at each pixel 𝐼

𝑐
of

an image by considering the differences between grey-level
values of a small circular neighborhood (with radius𝑅pixels):

LBP (𝑃, 𝑅) =

𝑃−1

∑

𝑖=0

𝑠 (𝐼
𝑝
− 𝐼
𝑐
) 2
𝑖

, (1)

where 𝑃 is the number of pixels in the circular neighborhood
𝐼
𝑝
and 𝑠(𝑥) is a threshold function such that

𝑠 (𝑥) = {

1, 𝑥 ≥ 0

0, 𝑥 < 0.

(2)

In the LTP, the threshold function 𝑠(𝑥) is substituted by a
ternary coding function that makes the operator more robust
to noise.

The ternary coding 𝑡(𝑥) is defined as

𝑡 (𝑥) =

{{{

{{{

{

1, 𝑥 ≥ 𝜏

0, |𝑥| ≤ 𝜏

−1, 𝑥 ≤ −𝜏,

(3)

where 𝜏 is a threshold fixed to 3 in this work.
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The ternary code obtained by the 𝑡(𝑥) function is split
into two binary codes by considering its positive and negative
components, according to the following binary function
𝑏V(𝑡(𝑥)):

𝑏V (𝑡 (𝑥)) =

{

{

{

1 𝑡 (𝑥) = V

0 otherwise
V ∈ {−1, 1} . (4)

Thus, the LTPV operator for V ∈ {−1, 1} is

LTPV (𝑃, 𝑅) =

𝑃−1

∑

𝑝=0

𝑏V (𝑡 (𝐼𝑝 − 𝐼
𝑐
)) 2
𝑛

. (5)

The resulting binary codes are used to create two his-
tograms of LTP values.

In this work two values of 𝑅 and 𝑃 are used: (𝑅 = 1; 𝑃 =

16) and (𝑅 = 2, 𝑃 = 16); hence, we have four codes (two sets
of parameters, with a positive and a negative code for each of
them).

3.2. Local Phase Quantization (LPQ). LPQ is a texture
descriptor [15] based on the blur invariance of the Fourier
Transform Phase. For each pixel position x of the image𝑓(x),
the 2D short-term Fourier transform (STFT) is computed
over a rectangular neighborhood of size 𝐿×𝐿, and four com-
plex coefficients, corresponding to the 2D frequencies, are
considered and quantized to construct the final descriptor:
𝑢
1

= [𝑎, 0]
𝑇, 𝑢
2

= [0, 𝑎]
𝑇, 𝑢
3

= [𝑎, 𝑎]
𝑇, and 𝑢

4
= [𝑎, −𝑎]

𝑇,
where 𝑎 is a scalar frequency parameter.

The four complex coefficients [𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
] need to be

decorrelated before quantization to become statistically inde-
pendent and maximally preserve the information. Assuming
a Gaussian distribution and a fixed correlation coefficient
between adjacent pixel values 𝜌, a whitening transform
can be obtained from the singular value decomposition of
the covariance matrix of the transform coefficient vector.
After decorrelation, the vector 𝐺

𝑐
∈ R8 that contains the

decorrelated STFT coefficients for the pixel 𝐼
𝑐
is quantized

using a scalar quantizer 𝑠(𝑥) (already defined in (2)). Then
the final LPQ code is represented as an integer between 0 and
255 using the binary coding:

LPQ (𝐿) =

8

∑

𝑖=1

𝑠 (𝐺
𝑐
) 2
𝑖−1

. (6)

Finally, a histogram of these integer values is composed
and used as a feature vector. In this work, we tested LPQusing
two sizes for the local window 𝐿 (3 and 5), bothwithGaussian
derivative quadrature filter pairs for local frequency estima-
tion. LPQ is implemented using the MATLAB code available
at http://www.cse.oulu.fi/CMV/Downloads/LPQMatlab.

3.3. Neighborhood Preserving Embedding (NPE). First, pro-
posed in [25], the NPE transformation is a global approach
that preserves the local neighborhood structure on the data
manifold. PCA, in contrast, preserves the global Euclidean
structure. Thus, NPE is less sensitive to outliers than PCA.

As described in Section 2, we use NPE as the transform for
dimensionality reduction in RB.

Given a set of points 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
∈ 𝑅
𝑛, the idea behind

NPE is to find a transformation matrix A that maps these
points into another set 𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑚
∈ 𝑅
𝑑, where 𝑑 ≪ 𝑛. In

this way, 𝑦
𝑖
= 𝐴
𝑇

𝑥
𝑖
represents 𝑥

𝑖
in a space with significantly

less dimensions.
NPE begins by building a weight matrix to describe the

relationships between data points: each point is described
as a weighted combination of its neighbors. An optimal
embedding is sought such that the neighborhood structure
is preserved in the reduced space.

The algorithm can be formalized in three steps:

(1) Build an adjacency graph: define a graph G with 𝑚

nodes. The 𝑖th node represents the point 𝑥
𝑖
. There is

an edge between 𝑖 and 𝑗 if and only if 𝑥
𝑗
is one of the

𝐾 nearest neighbors of 𝑥
𝑖
.

(2) Compute weights: in this step weights on edges are
calculated. W is the weight matrix and 𝑤

𝑖𝑗
is the

weight of the edge from node 𝑖 to node 𝑗. The
matrix can be computed by minimizing the objective
function:

min
𝑚

∑

𝑖



𝑥
𝑖
−

𝑚

∑

𝑗

𝑤
𝑖𝑗
𝑥
𝑗



2

Subject to:
𝑚

∑

𝑗

𝑤
𝑖𝑗

= 1, 𝑗 = 1, 2, . . . , 𝑚.

(7)

(3) Compute the projection: in this step the linear projec-
tion is computed. The following eigenvector problem
is solved: 𝑋𝑀𝑋

𝑇a = 𝜆𝑋𝑋
𝑇a; 𝑀 = (𝐼 − 𝑊)



(𝐼 − 𝑊).
The local manifold structure is then preserved using
the following transformation matrix A that maps 𝑥

𝑖

to 𝑦
𝑖
:

𝑦
𝑖
= A𝑇𝑥

𝑖
, where A = (a

0
, a
1
, . . . , a

𝑑−1
) . (8)

4. Datasets

To assess their generalizability, the approaches proposed in
this paper were tested across twenty-five datasets: fourteen
image classification datasets and eleven UCI data mining
datasets.

4.1. Image Classification Datasets. The following fourteen
image classification datasets that represent very different
computer vision problems were selected to evaluate the
generalizability of our approach:

(i) PS: this Pap Smear dataset [26] contains 917 images
representing cells that are used in the diagnosis of
cervical cancer.

(ii) VI: this dataset, reported in [27], contains images
of viruses. A split training/testing set is provided by
the authors and is used in this paper. The masks for
subtracting image backgrounds were not utilized.
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Table 1: Descriptive summary of the image datasets.

Dataset Number of classes Number of samples Sample size URL for download
PS 2 917 Various http://labs.fme.aegean.gr/decision/downloads
VI 15 1500 41 × 41 http://www.cb.uu.se/∼gustaf/virustexture/
CH 5 327 512 × 382 http://ome.grc.nia.nih.gov/iicbu2008/hela/index.html#cho
SM 2 2868 100 × 100 http://staff.ustc.edu.cn/∼yfn/vsd.html
HI 4 2828 Various Upon request to Loris Nanni [nanni@dei.unipd.it]
BR 2 584 Various Upon request to Geraldo Braz Junior [ge.braz@gmail.com]
PR 2 349 Various Upon request to Loris Nanni [nanni@dei.unipd.it]
HE 10 862 512 × 382 http://ome.grc.nia.nih.gov/iicbu2008/hela/index.html
LO 10 502 768 × 512 http://locate.imb.uq.edu.au/downloads.shtml
TR 11 553 768 × 512 http://locate.imb.uq.edu.au/downloads.shtml
PI 13 903 Various http://imagelab.ing.unimo.it/files/bible dataset.zip
RN 10 200 1024 × 1024 http://ome.grc.nia.nih.gov/iicbu2008/rnai/index.html
PA 13 2338 Various http://www.cat.uab.cat/∼joost/painting91.html
LE 20 1200 128 × 128 Upon request to bruno@ifsc.usp.br

(iii) CH: this dataset, reported in [28], contains fluores-
cent microscopy images taken from Chinese hamster
ovary cells that belong to five different classes.

(iv) SM: this dataset, reported in [29], contains images
extracted from video-based smoke detection surveil-
lance systems. The same division of the dataset into
training/testing sets, reported in [29], is used in this
paper.

(v) HI: this dataset, reported in [30], contains images
extracted from four fundamental tissues.

(vi) BR: this dataset, reported in [31], contains 273 malig-
nant and 311 benign breast cancer images.

(vii) PR: this is a dataset containing 118 DNA-binding
proteins and 231 non-DNA-binding proteins. Texture
descriptors are extracted from the 2D distance matrix
that represents each protein. This matrix is obtained
from the 3D tertiary structure of a given protein
considering only atoms that belong to the protein
backbone (see [32] for details).

(viii) HE: the 2D HeLa dataset [28] contains single cell
images divided into 10 staining classes that were taken
from fluorescence microscope acquisitions on HeLa
cells.

(ix) LO: the locate endogenous mouse subcellular
organelles dataset [33] contains 502 images unevenly
distributed among 10 classes of endogenous proteins
or features of specific organelles.

(x) TR: the locate transfected mouse subcellular
organelles dataset [33] contains 553 images unevenly
distributed in 11 classes of fluorescence-tagged or
epitope-tagged proteins transiently expressed in
specific organelles.

(xi) PI: this dataset, reported in [34], contains pictures
extracted from digitalized pages of the Holy Bible of
Borso d’Este, duke of Ferrara, Italy, from 1450AD to
1471 AD. PI is composed of 13 classes, characterized

by a clear semantic meaning and significant search
relevance.

(xii) RN: this is a dataset containing 200 fluorescence
microscopy images evenly distributed among 10
classes of fly cells subjected to a set of gene knock-
downs using RNAi. The cells were stained with DAPI
to visualize their nuclei.

(xiii) PA: this dataset, reported in [35], contains 2338
paintings by 50 painters, representative of 13 different
painting styles: abstract expressionism, baroque, con-
structivism, cubism, impressionism, neoclassical, pop
art, postimpressionism, realism, renaissance, roman-
ticism, surrealism, and symbolism. A split train-
ing/testing set is provided by the authors [35] and is
used in this paper.

(xiv) LE: this dataset contains images of 20 species of
Brazilian flora [36]. A total of 400 samples, divided
into 20 classes (20 samples per class), were collected.
Three windows were extracted from each sample. A
constraint to the fivefold cross-validation technique
was added that required that all windows extracted
from a given leaf belong either to the training set or
to the testing set, not both.

A descriptive summary of each dataset, along with the
URL where each dataset can be downloaded, is reported in
Table 1. If a dataset contains RGB images, these were con-
verted to grey-level images before the feature extraction step.
The testing protocol used with these datasets is the fivefold
cross-validation method, with the exception of three dataset,
SM, VI, and PA, where the protocols and testing/training sets
defined by the datasets were used (these protocols, which are
briefly described above, were obtained from the creators of
each of these datasets).

4.2. UCI Data Mining Datasets. We report results obtained
using eleven datasets from the UCI repository [37]. In Table 2
we list each dataset used in this study and describe each
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Table 2: UCI datasets and their features: number of attributes (#A), number of samples (#S), and number of classes (#C).

Dataset Acronym #A #S #C Brief description
BREAST BR 9 699 2 For breast tumor diagnosis

HEART HE 13 303 2 For detecting heart disease; the “goal” field refers to the presence of heart disease in
the patient

PIMA PI 8 768 2 For forecasting the onset of diabetes mellitus
Spam SP 57 4601 2 For classifying E-mail as spam or nonspam

SONAR SO 60 208 2 For discriminating between sonar signals bounced off a metal cylinder and those
bounced off a rough cylindrical rock

IONOSPHERE IO 34 351 2 For classifying radar returns from the ionosphere
Liver LI 7 345 2 For classifying liver disorders that might arise from excessive alcohol consumption

Haberman HA 3 306 2 A dataset that contains cases on the survival of patients who had undergone surgery
for breast cancer

Vote VO 16 435 2 For classifying Republican versus Democrat US representatives (this dataset
includes votes for each member of the US House of Representatives on 16 key votes)

Australian AU 14 690 2 For credit card applications

Transfusion TR 5 748 2 This study adopted the donor database of Blood Transfusion Service Center; the
aim is to predict whether a person donated blood in March, 2007

of them according to the number of attributes (#A), the
number of samples (#S), and the number of classes (#C)
that each contains. The testing protocol is the fivefold cross-
validationmethod. All features in these datasets were linearly
normalized between 0 and 1 before classification, using only
the training data for normalizing the test data. In all the tests
the testing set is completely blind.

5. Results and Discussion

The performance indicator used in all experiments is the
area under the ROC curve (AUC) because it provides a
better overview of classification results [38]. In the multi-
class problem, AUC is calculated using the one-versus-all
approach, where a given class is considered “positive” and all
other classes are considered “negative.” The average AUC is
reported in all tables.

In order to better compare the ensembles, we also con-
sider their average AUC (Av) and the average rank (RA)
obtained in all datasets. RA should be minimized: if a
classifier obtains the perfect classification in all the datasets,
its RA is 1. The last row labelled Av in all the tables included
in this section reports the average AUC performance on all
the datasets. To statistically validate these experiments, the
Wilcoxon Signed-Rank test [39] was used for all methods.

For the purpose of reproducing and comparing results,
the split training/testing sets used for each dataset are
available at the website listed at the end of the Introduction.
For the image datasets, we also provide both the LTP and LPQ
features that were extracted from each dataset for this study.

5.1. Experimental Results in Image Classification. The first
set of experiments are aimed at comparing the performance
of the proposed approaches with the stand-alone methods
described in Section 2. Tables 3 and 4 report the results
obtained by the state-of-the-art classifiers, trained with LTP

and LPQ, respectively, and the following heterogeneous
ensembles based on the sum rule:

(i) S D: (DL1 + DL2 + DL3)/3.
(ii) E1: GPC + RS AB.
(iii) E2: GPC + RS AB + RS RB.
(iv) E3: GPC + RS AB + RS RB + RS-SVM.
(v) E4: GPC + RS AB + RS RB + RS-SVM + S D.

A + B is the sum rule applied to classifier A and classifier
B, after classifier scores have been normalized to mean 0 and
standard deviation 1.

In Table 5, we compare the classifier performances given
in Tables 3 and 4 using theWilcoxon Signed-Rank test.Three
symbols are used in Table 5:

(i) “𝐿” indicates that the method in the given row
exhibits a lower performance (with 𝑝 value < 0.10)
than the method listed in the corresponding column
(i.e., the classifier in that row is the “loser” compared
with the column classifier).

(ii) “ND” indicates that there is no statistically significant
difference between the performances of the twometh-
ods.

(iii) “𝑊” indicates that the method in the given row
exhibits a higher performance, with 𝑝 value < 0.10,
than the method listed in the corresponding column
(i.e., the classifier in that row is the “winner” com-
pared with the column classifier).

Analyzing the results reported in Table 5, we observe
some very interesting results:

(i) Both SVM and RS-SVM fail to outperform any of the
other state-of-the-art approaches.

(ii) E2, E3, and E4 outperform all the other approaches.
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Table 3: Performance (AUC) obtained in different image datasets using LTP as texture descriptor.

LTP Datasets (AUC) Av RA
PS VI CH SM HI BR PR HE LO TR PI RN PA LE

SVM 0.9144 0.9349 1.000 0.9975 0.9156 0.9692 0.8968 0.9814 0.9949 0.9926 0.9286 0.9696 0.8903 0.9792 0.9546 7.0
RS-
SVM 0.9071 0.9352 1.000 0.9976 0.9195 0.9763 0.9030 0.9826 0.9950 0.9924 0.9316 0.9713 0.8944 0.9807 0.9562 5.9

GPC 0.9086 0.9131 0.9997 0.9971 0.9198 0.9789 0.8865 0.9816 0.9964 0.9930 0.9090 0.9769 0.8968 0.9752 0.9523 8.1
RS AB 0.9121 0.9254 0.9998 0.9974 0.8924 0.9810 0.9079 0.9813 0.9965 0.9953 0.9242 0.9771 0.8959 0.9738 0.9543 7.0
RS RB 0.9110 0.9293 0.9999 0.9953 0.9136 0.9739 0.8886 0.9806 0.9969 0.9955 0.9178 0.9900 0.8940 0.9738 0.9543 7.6
DL1 0.8927 0.9173 0.9999 0.9952 0.9072 0.9811 0.8486 0.9801 0.9962 0.9965 0.9147 0.9837 0.8865 0.9811 0.9486 8.7
DL2 0.8965 0.9220 0.9998 0.9956 0.8945 0.9815 0.8780 0.9806 0.9956 0.9959 0.9061 0.9878 0.8869 0.7900 0.9365 9.4
DL3 0.7802 0.9239 0.9999 0.9963 0.9082 0.9815 0.8779 0.9812 0.9958 0.9962 0.9014 0.9916 0.8895 0.9525 0.9412 8.5
S D 0.8985 0.9244 1.000 0.9958 0.9143 0.9835 0.8783 0.9818 0.9958 0.9966 0.9151 0.9916 0.8960 0.9806 0.9537 6.0
E1 0.9130 0.9196 0.9997 0.9974 0.9162 0.9812 0.8999 0.9816 0.9962 0.9945 0.9191 0.9798 0.8983 0.9748 0.9551 7.2
E2 0.9165 0.9337 0.9998 0.9973 0.9184 0.9809 0.9007 0.9837 0.9969 0.9960 0.9238 0.9884 0.9030 0.9768 0.9583 5.1
E3 0.9165 0.9361 1.000 0.9975 0.9229 0.9816 0.9090 0.9843 0.9970 0.9968 0.9313 0.9835 0.9080 0.9796 0.9603 2.8
E4 0.9164 0.9372 1.000 0.9975 0.9235 0.9824 0.9059 0.9851 0.9973 0.9971 0.9318 0.9864 0.9093 0.9808 0.9608 2.2

Table 4: Performance obtained on the different image datasets using LPQ as texture descriptor.

LPQ Datasets (AUC) Av RA
PS VI CH SM HI BR PR HE LO TR PI RN PA LE

SVM 0.9039 0.9492 0.9999 0.9986 0.9138 0.9565 0.8618 0.9757 0.9764 0.9767 0.9071 0.9532 0.8834 0.9897 0.9461 8.4
RS-
SVM 0.8951 0.9485 0.9999 0.9988 0.9251 0.9568 0.8727 0.9786 0.9809 0.9817 0.9128 0.9531 0.8854 0.9891 0.9485 7.5

GPC 0.9020 0.9282 0.9991 0.9985 0.9199 0.9720 0.8883 0.9793 0.9891 0.9934 0.9073 0.9439 0.8867 0.9782 0.9490 7.4
RS AB 0.9013 0.9417 0.9998 0.9989 0.8783 0.9671 0.8843 0.9781 0.9868 0.9907 0.9255 0.9478 0.8777 0.9826 0.9472 7.9
RS RB 0.8994 0.9393 0.9992 0.9978 0.9120 0.9711 0.8999 0.9741 0.9800 0.9889 0.9116 0.9562 0.8806 0.9799 0.9493 8.6
DL1 0.8701 0.9382 0.9994 0.9982 0.9083 0.9684 0.8758 0.9815 0.9847 0.9873 0.9110 0.9537 0.8858 0.9819 0.9460 9.0
DL2 0.8081 0.9379 0.9989 0.9979 0.9025 0.9682 0.8745 0.9813 0.9851 0.9852 0.9033 0.9550 0.8783 0.9853 0.9401 10.2
DL3 0.8717 0.9401 0.9990 0.9983 0.9097 0.9647 0.8694 0.9813 0.9861 0.9854 0.9038 0.9666 0.8785 0.9833 0.9456 9.3
S D 0.8864 0.9415 0.9997 0.9982 0.9165 0.9687 0.8807 0.9830 0.9871 0.9885 0.9118 0.9594 0.8894 0.9848 0.9497 6.3
E1 0.9045 0.9345 0.9994 0.9989 0.9137 0.9726 0.8884 0.9794 0.9899 0.9931 0.9202 0.9469 0.8860 0.9807 0.9506 6.3
E2 0.9065 0.9441 0.9995 0.9991 0.9168 0.9742 0.8942 0.9793 0.9883 0.9932 0.9219 0.9574 0.8910 0.9834 0.9535 4.2
E3 0.9103 0.9467 0.9999 0.9990 0.9238 0.9716 0.8968 0.9805 0.9891 0.9927 0.9228 0.9581 0.8981 0.9867 0.9554 3.3
E4 0.9097 0.9492 1.000 0.9990 0.9258 0.9714 0.8978 0.9825 0.9902 0.9926 0.9235 0.9635 0.8998 0.9870 0.9566 2.2

Table 5: Comparisons between all the pairs of tested methods.

SVM RS-SVM GPC RS AB RS RB DL1 DL2 DL3 S D E1 E2 E3 E4
SVM — L ND L ND ND ND ND ND L L L L
RS-SVM — — ND L ND ND ND ND ND L L L L
GPC — — — ND ND ND W W ND L L L L
RS AB — — — — ND W W W ND ND L L L
RS RB — — — — — W W ND ND L L L L
DL1 — — — — — — ND ND L L L L L
DL2 — — — — — — — ND L L L L L
DL3 — — — — — — — — ND L L L L
S D — — — — — — — — — ND L L L
E1 — — — — — — — — — — L L L
E2 — — — — — — — — — — — L L
E3 — — — — — — — — — — — — L
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Table 6: Performance on the different data mining datasets.

Datasets (AUC) Av RA
BR HE PI SP SO IO LI HA VO AU TR

SVM 0.9941 0.8809 0.824 0.9708 0.9517 0.9814 0.7558 0.7012 0.9855 0.9164 0.714 0.8796 7.3077
RS-
SVM 0.9931 0.9076 0.8221 0.9771 0.9591 0.9795 0.7411 0.6399 0.9853 0.9221 0.6931 0.8745 8.6923

GPC 0.9924 0.9024 0.827 0.979 0.9409 0.9713 0.729 0.6804 0.9882 0.9267 0.7295 0.8788 8.000
RS AB 0.991 0.9101 0.8229 0.988 0.9371 0.9788 0.7581 0.6727 0.9887 0.9313 0.735 0.8831 7.000
RS RB 0.9925 0.9169 0.8208 0.9873 0.9334 0.9851 0.7664 0.6071 0.9884 0.9326 0.674 0.8731 7.3846
DL1 0.9943 0.8852 0.8252 0.966 0.8794 0.9222 0.7541 0.6751 0.9795 0.9155 0.7338 0.8664 8.7692
DL2 0.9941 0.8754 0.8149 0.9691 0.8789 0.9242 0.7478 0.6679 0.9808 0.9088 0.7318 0.8631 10.3077
DL3 0.9943 0.8941 0.8193 0.9684 0.8501 0.9022 0.6966 0.6537 0.9787 0.9154 0.7351 0.8553 10.2308
S D 0.9942 0.883 0.8238 0.9683 0.8781 0.9297 0.751 0.6772 0.9813 0.9186 0.7357 0.8674 8.6154
E1 0.992 0.9096 0.8277 0.9856 0.9426 0.9772 0.7532 0.6868 0.9896 0.9331 0.7372 0.885 6.000
E2 0.9924 0.9124 0.8285 0.988 0.9426 0.9817 0.7727 0.6724 0.9897 0.935 0.7257 0.8856 5.3846
E3 0.9933 0.9141 0.8288 0.9873 0.9508 0.9819 0.7723 0.6726 0.989 0.9343 0.7258 0.8864 5.0769
E4 0.9934 0.9113 0.8294 0.9862 0.942 0.9805 0.7717 0.6794 0.9895 0.9339 0.7297 0.8861 5.2308

Table 7: Comparisons between all the pairs of methods tested in Table 6.

SVM RS-SVM GPC RS AB RS RB DL1 DL2 DL3 S D E1 E2 E3 E4
SVM — ND ND ND ND W W W W ND L L L
RS-SVM — — ND ND W ND ND W ND L L L L
GPC — — — L ND W W W W L L L L
RS AB — — — — ND W W W W ND L L L
RS RB — — — — — ND ND W ND ND L L L
DL1 — — — — — — W W ND L L L L
DL2 — — — — — — — W ND L L L L
DL3 — — — — — — — — L L L L L
S D — — — — — — — — — L L L L
E1 — — — — — — — — — — ND ND ND
E2 — — — — — — — — — — — ND ND
E3 — — — — — — — — — — — — ND

(iii) E4 (the fusion among all the base methods) always
obtains the highest performance.

(iv) The simple ensemble S D obtains a performance that
is comparable with all the other base methods.

(v) RS, which involved no parameter tuning step, outper-
forms SVM (implemented with LibSVM) where the
parameters are optimally tuned for each dataset.

5.2. Experiments Results in Data Mining Datasets. The same
tests reported in the previous section using the image datasets
are also run for the data mining datasets.The results reported
in Tables 6 and 7 clearly show the usefulness of our ensemble
approach.

In these tests we obtain results that are similar to those
reported in Tables 3 and 4, but there is an important differ-
ence: RS-SVM works poorly in the two datasets containing
few features (HA and TR). The reason for this is simple:
when only a few features are used to describe a pattern,
they are likely to be uncorrelated, so an RS approach is not

advised. When the datasets HA and TR are removed from
consideration, RS-SVM outperforms SVM. Notice as well
that in this test the ensembles outperform the base methods.

6. Conclusions

The aim of this paper was to compare and combine several
state-of-the-art classifiers for proposing a GP ensemble that
works well across a broad set of datasets (fourteen different
image datasets and eleven UCI data mining datasets) with
no parameter tuning. No single approach was discovered that
outperformed all the other classifier systems in all the tested
datasets. This finding lends support to the “no free lunch”
hypothesis/metaphor that claims that “any two algorithms
are equivalent when their performance is averaged across
all possible problems” [40]. Nonetheless, several interesting
findings are obtained when examining the classifier results
across the twenty-five datasets:

(i) Among the different state-of-the-art methods, there
is no winner.



Computational Intelligence and Neuroscience 9

(ii) The GP ensembles clearly outperform the state-of-
the-art methods without any complex fusion rule
(the simple sum rule is used throughout the exper-
iments). In particular, the GP ensembles outper-
form SVM implemented with the LibSVM toolbox,
which is probably themost used classification toolbox
reported in the literature.

In our opinion, a heterogeneous systembased on different
state-of-the-art classifiers (including classifiers that are them-
selves an ensemble, such as a random subspace of rotation
boosting) is the most feasible way of avoiding the “curse” of
the “no free lunch” metaphor.

There are many avenues for exploring GP ensembles fur-
ther. A suggested list of future explorations is the following:

(i) Test the performance of ensembles using more com-
plex fusion rules.

(ii) Test systems on data mining problems where a large
set of features is available.

(iii) Expand the base methods to combine different deep
learning approaches, such as an extreme learning
machine [41] or convolutional neural networks [42]
where the input is the whole image and not a feature
vector.
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[5] G. Mart́ınez-Muñoz and A. Suárez, “Switching class labels to
generate classification ensembles,” Pattern Recognition, vol. 38,
no. 10, pp. 1483–1494, 2005.

[6] P. Melville and R. J. Mooney, “Creating diversity in ensembles
using artificial data,” Information Fusion, vol. 6, no. 1, pp. 99–
111, 2005.

[7] T. K. Ho, “The random subspace method for constructing
decision forests,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, no. 8, pp. 832–844, 1998.

[8] K. Tumer and N. C. Oza, “Input decimated ensembles,” Pattern
Analysis and Applications, vol. 6, no. 1, pp. 65–77, 2003.

[9] L. Nanni and A. Lumini, “Ensemble generation and feature
selection for the identification of students with learning disabil-
ities,” Expert Systems with Applications, vol. 36, no. 2, pp. 3896–
3900, 2009.

[10] L. Breiman, “Random forests,”Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001.

[11] S. Kotsiantis andV. Tampakas, “Combining heterogeneous clas-
sifiers: a recent overview,” Journal of Convergence Information
Technology, vol. 6, no. 10, pp. 164–172, 2011.

[12] L. Nanni, S. Brahnam, and A. Lumini, “Double committee
adaboost,” Journal of King Saud University—Science, vol. 25, no.
1, pp. 29–37, 2013.

[13] L. Nanni, A. Lumini, and S. Brahnam, “An empirical study of
different approaches for protein classification,” The Scientific
World Journal, vol. 2014, Article ID 236717, 17 pages, 2014.

[14] X. Tan and B. Triggs, “Enhanced local texture feature sets for
face recognition under difficult lighting conditions,” in Analysis
and Modelling of Faces and Gestures, vol. 4778 of Lecture Notes
in Computer Science, pp. 168–182, Springer, 2007.

[15] V. Ojansivu and J. Heikkila, “Blur insensitive texture classifica-
tion using local phase quantization,” in Proceedings of the 3rd
International Conference on Image and Signal Processing (ICISP
’08), pp. 236–243, 2008.

[16] N. Cristianini and J. Shawe-Taylor, An Introduction to Support
Vector Machines and Other Kernel-Based Learning Methods,
Cambridge University Press, Cambridge, UK, 2000.

[17] C. E. Rasmussen and C. K. Williams, Gaussian Processes
for Machine Learning, Adaptive Computation and Machine
Learning, The MIT Press, 2006.

[18] Y. Freund andR. E. Schapire, “A short introduction to boosting,”
Journal of Japanese Society for Artificial Intelligence, vol. 14, no.
5, pp. 771–780, 1999.

[19] C.-X. Zhang and J.-S. Zhang, “RotBoost: a technique for
combining Rotation Forest and AdaBoost,” Pattern Recognition
Letters, vol. 29, no. 10, pp. 1524–1536, 2008.

[20] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning
algorithm for deep belief nets,”Neural Computation, vol. 18, no.
7, pp. 1527–1554, 2006.

[21] R. Socher, B. Huval, B. Bhat, C. D. Manning, and A. Y. Ng,
“Convolutional-recursive deep learning for 3D object classifica-
tion,” in Advances in Neural Information Processing Systems 25,
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.Weinberger, Eds.,
pp. 1–9, 2012.

[22] Y. Sun, X. Wang, and X. Tang, “Hybrid deep learning for face
verification,” in Proceedings of the IEEE International Conference
on Computer Vision (ICCV ’13), pp. 1489–1496, IEEE, Sydney,
Australia, December 2013.

[23] K. Hornik, M. Stinchcombe, and H.White, “Multilayer feedfor-
ward networks are universal approximators,” Neural Networks,
vol. 2, no. 5, pp. 359–366, 1989.
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