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have primarily proposed telemonitoring, aimed at capturing 
signs of exacerbations early while at home. However, 
telemonitoring of changes in symptoms, vital signs, and 
body weight alone has not offered consistent results in 
reducing HF rehospitalization.9–15 In contrast, it has been 
reported that increasing face-to-face and conversational 
opportunities through frequent home visits and telephone 
interviews, in addition to monitoring symptoms and vital 
signs, could improve rehospitalization rates and prognosis 
of HF.7–10 These results suggest there are possible benefits 
of assessing biometric information acquired from a patient’s 
face and voice together for early detection of exacerbations. 
In daily practice, it is not uncommon for skilled clinicians 
to recognize the early signs of HF from changes in a 
patient’s face and voice.16 However, the diagnostic skills of 

H eart failure (HF) is a leading cause of mortality 
and morbidity worldwide, and is a chronic, 
progressive disorder with repeating remission and 

exacerbation.1,2 Additionally, HF has immeasurable 
physical and economic burdens on patients.3,4 In the year 
following HF hospitalization, the rate of rehospitalization 
is approximately 50%, and the 1-year mortality rate is 
15–20%.4,5 In contrast, even when HF exacerbations occur, 
it has been reported that appropriate intervention in the 
early phase of HF decompensation can reduce the rehospi-
talization rate and disease progression of HF.6–10 Therefore, 
early detection of signs and symptoms of cardiac decom-
pensation is important in HF management after hospital 
discharge.

Previous attempts at early detection of exacerbations 
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Background:  This study aimed to systematically evaluate voice symptoms during heart failure (HF) treatments and to exploratorily 
extract HF-related vocal biomarkers.

Methods and Results:  This single-center, prospective study longitudinally acquired 839 audio files from 59 patients with acute 
decompensated HF. Patients’ voices were analyzed along with conventional HF indicators (New York Heart Association [NYHA] 
class, presence of pulmonary congestion and pleural effusion on chest X-ray, and B-type natriuretic peptide [BNP]) and GOKAN 
scores based on the assessment of a cardiologist. Machine-learning (ML) models to estimate HF conditions were created using a 
Light Gradient Boosting Machine. Voice analysis identified 27 acoustic features that correlated with conventional HF indicators and 
GOKAN scores. When creating ML models based on the acoustic features, there was a significant correlation between actual and 
ML-derived BNP levels (r=0.49; P<0.001). ML models also identified good diagnostic accuracies in determining HF conditions 
characterized by NYHA class ≥2, BNP ≥300 pg/mL, presence of pulmonary congestion or pleural effusion on chest X-ray, and 
decompensated HF (defined as NYHA class ≥2 and BNP levels ≥300 pg/mL; accuracy: 75.1%, 69.1%, 68.7%, 66.4%, and 80.4%, 
respectively).

Conclusions:  The present study successfully extracted HF-related acoustic features that correlated with conventional HF indicators. 
Although the data are preliminary, ML models based on acoustic features (vocal biomarkers) have the potential to infer various HF 
conditions, which warrant future studies.
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Conventional HF Indicators and GOKAN Scores
Conventional HF indicators included New York Heart 
Association (NYHA) class, vital signs, percutaneous oxygen 
saturation, body weight, rales, leg edema, BNP, chest 
X-ray findings (pulmonary congestion and pleural effusion) 
and left ventricular ejection fraction (LVEF) on echocar-
diology. In our daily practice, blood tests (including BNP) 
and chest X-rays were performed daily during the acute 
phase of HF inpatient treatment, every few days at the 
attending physician’s discretion once the patient’s condition 
stabilized, and every 1–3 months as needed after discharge. 
LVEF was assessed at admission, around discharge (17 
[10–41] days from admission), and at the chronic phase 
(167 [107–242] days from admission). According to NYHA 
class and BNP levels, the HF status of patients was clinically 
classified into 3 subgroups: (1) NYHA class ≥II and BNP 
levels ≥300 pg/mL18 for decompensated HF; (2) NYHA 
class ≥II or BNP levels ≥300 pg/mL for compensated-to-
decompensated HF; and (3) NYHA class <II and BNP 
levels <300 pg/mL for compensated HF. The GOKAN 
score was the original score composed of 11-item scoring 
to visualize potential information on HF obtained from 
the faces and voices of patients and scored by an 
experienced cardiologist who was blinded to clinical and 
voice analysis data in the same session voice recording 
(Supplementary Table). Each parameter was scored at −2, 
−1, 0, 1 and 2 for a total of −22 to 22, with lower values 
indicating worse HF status and higher values indicating 
better HF status. The intra- and interobserver intra-class 
correlation coefficients for the GOKAN score were 0.999 
and 0.998 (P<0.0001 for both comparisons).

Voice Recording and Analysis
Patient voice acquisition was performed on the same 
schedule as measurements of conventional HF indicators. 
Recordings were made using a directional pin microphone 
(MX150B, SHURE, USA) connected to a portable, linear 
pulse-code modulation recorder (DR-100 mkIII, TASCAM, 
Japan), at a sampling rate of 192 kHz with 24-bit resolution. 
The microphone was attached to the patient’s clothes at 
chest level, approximately 15 cm from the mouth, and the 
voices were recorded in a coronary care unit (recording 
with monitor sound off) or in a specific quiet room in the 
cardiovascular ward. In each recording session, the patient 
performed 2 simple language-independent tasks: (1) after 
taking a deep breath, utter the sustained vowel sound (/a/) 
as long as possible; and (2) repeat the trisyllable (/pataka/) 
5 times or more as quickly as possible. The recording of the 
two tasks took less than 1 min.

For voice analyses, all measurement data were used 
and their associations with concomitant assessments of 
conventional HF indicators and GOKAN scores were 
assessed. The audio signals were downsampled to 16 kHz 
with 16-bit resolution for acoustic feature extraction. Voice 
analysis identified many acoustic features associated with 
changes in HF conditions. Among them, 27 acoustic 
features (21 and 6 features for /a/ and /pataka/, respectively), 
which correlated with conventional HF indicators and 
GOKAN scores, were extracted. The features derived from 
the phrases /a/ and /pataka/ included the statistics of 
pitch-related or voice quality-related features (e.g., shimmer, 
jitter, and harmonics-to-noise ratio) and peak intensity-
related features, respectively. For the calculation of pitch-
related or voice quality-related features, the audio signal 
was processed for each 10 ms window length. In addition, 

medical professionals in capturing changes in face and 
voice symptoms vary among individuals and it is difficult 
to verbalize and communicate these alterations as well. To 
apply this biometric information as a ‘versatile, evidence-
based new biomarker’, it is necessary to confirm their 
association with established HF indicators and make them 
indicators that can be objectively evaluated. As mentioned 
earlier, HF is a recurrent disease with repeated remissions 
and exacerbations. Considering this, we hypothesized that 
the exacerbation process of HF could be efficiently inferred 
by retrospectively reviewing the process of remission after 
inpatient treatment. Therefore, the present study aimed to 
systematically evaluate voice symptoms in conjunction 
with conventional HF indices during HF treatments and 
to extract HF-related acoustic features as vocal biomarkers.

Methods
Study Population
This study was the voice part of the GOKAN-HF study. 
The GOKAN-HF study is a prospective, observational 
study that aimed to extract biometric symptoms obtained 
from face and voice alterations, the most familiar objects 
of recognition, as digital biomarkers to complement the 
‘five senses’ (GOKAN in Japanese) of humans. Through 
this, we could create a digital biomarker that comprehen-
sively incorporates and reflects HF-related symptoms, and 
physical and laboratory findings, and aim to propose a 
solution to the clinically challenging problem of ‘early 
detection of HF deterioration’.

Between June 2021 and February 2023, patients who were 
hospitalized for acute decompensated HF at Yokohama 
City University Medical Center were eligible for enrollment 
if they were aged 20–89 years and provided written 
informed consent to participate in this study. To qualify 
the quality of the analysis, patients were excluded if they 
had any of the following factors that could affect voice and 
facial assessments: diseases of the vocal tracts including 
vocal cords; severe respiratory disease; sepsis; novel 
coronavirus infection; dermatologic disorders; facial trauma 
or tumors; psychiatric disorders; neurodegenerative diseases; 
disturbance of consciousness; delirium; stroke or a history 
of stroke; dialysis treatment; cancer treatment; diseases 
with a prognosis of ≤1 year; or hemodynamic instability 
that required inotropic therapy or mechanical circulatory 
support. Patients were also excluded if they were unable to 
maintain a sitting position for recording, or if they could 
not be recorded because of treatments including endotra-
cheal intubation or noninvasive positive pressure ventilation 
(detailed patient flow is shown in Supplementary Figure 1). 
All patients received standard medical treatment for HF 
according to clinical guidelines.17 Cardiologists made all 
medical decisions regarding indications for hospitalization, 
timing of discharge, and treatment during hospitalization, 
and were blinded to voice analysis results. Patients were 
followed for up to 541 (mean 239±139) days and evaluated 
for HF exacerbation or rehospitalization for HF. HF 
exacerbation was defined as ≥2 of the following: worsening 
symptoms; significant fluid accumulation such as leg 
edema; pleural effusion; and pulmonary congestion; and/
or significant increase in B-type natriuretic peptide (BNP) 
levels. The study protocol was approved by the institutional 
review board (IRB) at Yokohama City University, and 
followed the Declaration of Helsinki and ethical standards 
of the responsible committee on human experimentation.
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Table.  Clinical Characteristics

Variable All (n=59)

Age (years) 74 [63~81]

Male sex (%) 57.6

BMI (kg/mm2)    24.3 [22.2~28.3]

Past medical history (%)

    Current or former smoker 57.7

    Hypertension 80.0

    Dyslipidemia 44.1

    Diabetes 39.0

Type of HF (%)

    HFrEF/HFpEF 83.1/16.9

First admission for HF (%) 83.1

Primary underlying cardiac disease (%)

    Coronary artery disease 13.6

    Non-ischemic cardiomyopathy 44.1

    Valvular heart disease 23.7

    Arrhythmia 18.6

Length of hospital stay (days) 14 [11~18]

Days from symptom onset to hospitalization 25 [10~51]

�No. patients who visited a clinic prior to 
admission (%)

72.9

Days from symptom onset to a clinic 8 [0~28]

Days from clinic visit to hospitalization 13 [4~29]　　
NYHA functional class I/II/III/IV (%)

    Admission 0/8.5/25.4/66.1

    Discharge 90.0/10.0/0/0

GOKAN score

    Admission   −20 [−22~−12]

    Discharge 22 [15~22]

BW (kg)

    Admission 62 [54~81]

    Discharge 57 [48~71]

    BW changes during hospitalization    −6.0 [−9.8~−3.6]

Heart rate (beats/min)

    Admission 96±21

    Discharge 72±14

Sinus rhythm (%)

    Admission 54.2

    Discharge 67.8

Systolic blood pressure (mmHg)

    Admission   150 [126~162]

    Discharge 111±15　　
Diastolic blood pressure (mmHg)

    Admission 90±25

    Discharge 66±14

Respiratory rate (breaths/min)

    Admission 21 [17~24]

    Discharge 16 [15~16]

Rales (%)

    Admission 96.6

    Discharge 0

Leg edema (%)

    Admission 76.3

    Discharge 0

Blood biomarkers

    Hemoglobin (g/L)

        Admission    13.9 [11.6~14.9]

        Discharge 13.9±2.3　　

(Table continued the next column.)

Variable All (n=59)

Blood biomarkers

    Albumin (g/dL)

        Admission  3.7 [3.5~4.0]

        Discharge 3.6±0.4

    eGFR (mL/min/1.73 m2)

        Admission    49.5 [35.5~62.4]

        Discharge    44.9 [34.5~54.7]

    BNP (pg/mL)

        Admission      968 [610~1,915]

        Discharge   312 [154~543]

Medications on admission (%)

    ACEI/ARB/ARNI

        Admission 45.8

        Discharge 93.2

    β-blockers

        Admission 39.0

        Discharge 84.5

    MRA

        Admission 18.6

        Discharge 78.0

    SGLT-2i

        Admission 13.6

        Discharge 71.2

    Loop diuretic agents

        Admission 40.7

        Discharge 74.6

    Tolvaptan

        Admission   3.4

        Discharge 14.0

Echocardiography

    LVEF (%)

        Admission 30 [23~38]

        Discharge 34 [29~50]

        Follow-up* 47±16

    LVDd (mm)

        Admission 55±8　　
        Discharge 53±8　　
        Follow-up* 50±8　　
    LVDs (mm)

        Admission 45±0　　
        Discharge 42±10

        Follow-up* 38±10

    LVEF changes from admission

        Discharge   6±12

        Follow-up* 16±16

Values are presented as percentage (%), mean±standard 
deviation (SD), or median [interquartile range]. LVEF at discharge 
was performed at 17 (10~41) days from admission and LVEF at 
follow up was performed at 167 (107~242) days from admission. 
*Results of echocardiography at follow-up for 8 out of 59 patients 
were unavailable due to referral to another clinic/hospital after 
discharge. ACEI, angiotensin-converting enzyme inhibitor; ARB, 
angiotensin II receptor blocker; ARNI, angiotensin receptor 
neprilysin inhibitor; BMI, body mass index; BNP, B-type natriuretic 
peptide; BW, body weight; eGFR, estimated glomerular filtration 
rate; HF, heart failure; HFpEF, heart failure with preserved ejection 
fraction; HFrEF, heart failure with reduced ejection fraction; 
LVDd, left ventricular end-diastolic diameter; LVDs, left ventricular 
end-systolic diameter; LVEF, left ventricular ejection fraction; 
MRA, mineralocorticoid receptor antagonists; NYHA, New York 
Heart Association; SGLT-2i, sodium-glucose cotransporter 2 
inhibitors.
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ML models. Associated sensitivity, specificity, positive 
predictive value, negative predictive value, area under the 
curve (AUC), and overall accuracy were calculated.

Statistical Analysis
Statistical analyses were performed with JMP Pro® 16 
(SAS Institute Inc., Cary, NC, USA). Data were expressed 
as mean ± standard deviation (SD) or median with inter-
quartile range for continuous variables, and as percentages 
for categorical variables. Continuous values were compared 
using the Wilcoxon rank-sum test or t-test. Categorical 
comparisons were performed using a chi-square test or 
Fisher’s exact test. Associations between continuous 
variables were investigated using linear regression analysis. 
Repeated measures correlation was also performed to 
determine the common within-individual association for 
paired measures assessed on two or more occasions for 
multiple individuals. A P value <0.05 was considered 
statistically significant.

Results
Clinical Characteristics and Clinical Course
The present study enrolled 59 patients with acute decom-
pensated HF. Clinical characteristics and clinical course 
are summarized in Table. The median age was 74 (63–81) 
years, and 57.6% of patients were male. Most patients had 
HF with reduced ejection fraction (HFrEF) and first-time 
HF admissions. The primary underlying cardiac diseases 
that caused HF were relatively well balanced in distribution. 
All patients were relieved by HF treatments and discharged 
in 14 (11–18) days after admission. Key HF medications 
were introduced during hospitalization as part of the 
standard HF treatment. Body weights decreased by a 
median of 6.0 (3.6–9.8) kg in response to HF treatment. 
NYHA class improved from admission to discharge, with 

hand-crafted features that reflect the ‘roughness’ of the 
voice were measured based on the dynamics in the power 
spectrum of the waveform envelope as a novel index. For 
the intensity-related features, peaks in the waveforms were 
extracted by calculating the relative maxima in the time 
series data of intensity values.

Machine Learning (ML) Models
Based on 27 acoustic features extracted, ML models 
were created using a Light Gradient Boosting Machine 
(LightGBM), a gradient boosting tree algorithm for 
classification, to estimate various HF conditions, which 
included NYHA class ≥2, BNP levels ≥300 pg/mL,18 
presence of pulmonary congestion or pleural effusion on 
chest X-ray, decompensated HF (NYHA class ≥2 and BNP 
levels ≥300 pg/mL18). To confirm that AI methods would 
work with the present study’s sample size, ML models were 
also created and tested by a support vector machine 
(SVM), which is considered the optimal ML method for 
small-sample studies.19 Shapley Additive exPlanations 
(SHAP) values were calculated to interpret the influence of 
individual acoustic features on HF conditions and improve 
explainability of the models.20

Hyperparameters for the LightGBM classifiers were 
optimized using the Optuna hyperparameter optimization 
framework.21 To avoid overfitting in the ML models, we 
performed feature selection from 27 acoustic features 
based on the null importance, which compares the null 
importance distributions with the actual importance of the 
features gathered by fitting models on the original target. 
A 5-fold cross-validation was applied to evaluate model 
performance. Group 5-fold validation was performed as 
internal validation, where all data from a given patient 
were categorized in the test set or training set, but not in 
both. Receiver operating characteristics (ROC) curve 
analysis was performed to evaluate diagnostic accuracy of 

Figure 1.    Example of changes in voice symptoms. In response to heart failure (HF) treatments, New York Heart Association 
(NYHA) class improved from IV at admission to I at discharge, and body weight (BW) decreased by 21 kg. The duration of 
sustained vowel sound at admission was 4 s but extended approximately 6-fold to 26 s at discharge. Conversely, B-type natriuretic 
peptide (BNP) levels decreased to approximately 1/6, from 1,788 pg/mL at admission to 282 pg/mL at discharge.
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to appear at a median of 25 (10–51) days before admission, 
and 72.9% of the patients visited other clinics and hospitals 
8 (0–28) days after symptom onset and were then admitted 
13 (4–29) days later without receiving an appropriate diag-
nosis, treatments, and follow-up for worsening HF (Table).

BNP levels decreasing from 968 (610–1,915) pg/mL at 
admission to 312 (154–543) pg/mL at discharge. LVEF 
improved over time from admission to discharge and 
chronic phase.

Based on medical history, patients’ HF symptoms began 

Figure 2.    Association of a single acoustic feature with B-type natriuretic peptide (BNP) and New York Heart Association (NYHA). 
A sound intensity parameter was correlated with BNP levels (A), while patients with NYHA class ≥2 had shorter durations of 
sustained vowel sounds compared with those with NYHA class <2 (B).

Figure 3.    Examples of changes in New York Heart Association (NYHA) class, B-type natriuretic peptide (BNP), and voice 
symptoms. Data are shown for 30 (Cases 1–4) and 75 (Case 5) days after hospitalization. The left Y-axis represents BNP levels. 
The right Y-axis represents the duration of the sustained vowel sound. With heart failure (HF) treatments, NYHA, BNP levels, and 
sustained vowel sound duration improved overall. Changes in sustained vowel sound duration and BNP and NYHA were relatively 
well matched, but some cases showed different trends. For example, even with transient BNP increases and residual symptoms, 
if the duration of sustained vowel sounds was maintained or tended to prolong, the subsequent HF status spontaneously improved 
(Cases 1–3 and 5). Conversely, patients who could not prolong the duration of sustained vowel sounds showed worsening HF 
characterized by increased BNP levels and NYHA class thereafter (Case 4). We were also convinced of the success of HF 
treatments through improved patients’ voices, even if there were no significant changes in conventional HF indicators.
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after (Figure 3). Conversely, if voice symptoms worsened 
as BNP levels increased, we often found that HF was likely 
to be in an exacerbating trend (Figure 3).

ML Models for Estimating HF Conditions
Various ML models to estimate HF conditions were created 
and evaluated. For example, there was a statistically 
significant correlation between actual and voice-derived 
BNP levels (r=0.49; P<0.001; Figure 4). While standard-
ization of the acoustic features did not further improve the 
correlation with a similar correlation coefficient (r=0.47; 
P<0.001) in the present study, this correlation was preserved 
in multiple linear regression analysis with explained variance 
scores (variance of BNP explained=19%, adjusted for the 
other HF conditions and acoustic features) and in the 
analysis of relative changes between actual and voice-
derived BNP levels. The other ML models to estimate NYHA 
class ≥2 (n=477), BNP ≥300 pg/mL (n=337), presence of 
pulmonary congestion (n=259) or pleural effusion (n=253) 
on chest X-ray, and HF decompensation (n=219), also 
showed good diagnostic accuracies (Figure 5), although 
some variation in the diagnostic accuracy of each indicator 
was observed due to differences in sample size and 
characteristics (e.g., NYHA is susceptible to deconditioning 

Acoustic Features Related to HF Conditions
During hospitalization, a total of 839 audio files from 59 
patients (median of 10 [8–17] recording sessions for each 
patient) was longitudinally obtained and analyzed. Overall, 
voice symptoms changed over time in response to HF 
treatments (Figure 1). Although commercial and intellectual 
property concerns preclude detailed descriptions, 27 acoustic 
features extracted from voice analyses had statistically 
significant correlations with HF indicators and GOKAN 
scores (Supplementary Figure 2). For example, I_F01, one 
of the indices related to sound intensity, correlated with 
BNP levels, while the duration of sustained vowel sound 
(S_DUR_01) differed significantly between NYHA class 
≥2 and <2 (Figure 2). In contrast, acoustic features at stable 
HF symptoms did not differ significantly between the 2 
clinical settings (hospitalization and outpatient). These 
acoustic features were also suggested to complement the 
interpretation of changes in conventional HF indicators. 
We observed a certain number of patients who were able 
to speak with energetic voices even though they had 
residual symptoms (NYHA ≥2) or observed temporarily 
elevated BNP levels. In such patients, we could see that HF 
did not worsen in subsequent clinical courses, and both 
symptoms and BNP levels spontaneously improved there-

Figure 4.    Correlations between actual and estimated B-type natriuretic peptide (BNP) levels. There was a significant correlation 
between actual and voice-derived BNP levels (A), whose relationship was preserved in the analysis of their relative changes (B). 
Shapley Additive exPlanations (SHAP) values were calculated to interpret the influence of individual acoustic features on BNP 
levels and BNP changes. When more than 10 acoustic features were selected in a prediction model, the top 10 features were 
presented. HNR, harmonics-to-noise ratio; I, intensity-derived features; JIT, jitter; ROU, voice roughness; S, sustained vowel sound-
derived features; SHI, shimmer; VQR, voice quality-related measures.
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Figure 5.    Diagnostic accuracy of ML models to estimate HF conditions. Machine-learning models estimated heart failure (HF) 
conditions characterized by New York Heart Association (NYHA) class ≥2 (A), B-type natriuretic peptide (BNP) ≥300 pg/mL (B), 
presence of pulmonary congestion or pleural effusion on chest X-ray (C,D), and worsening HF statuses (decompensated vs. 
compensated HF) (E). Influence of individual acoustic features on HF conditions was expressed using Shapley Additive 
exPlanations (SHAP). HNR, harmonics-to-noise ratio; I, intensity-derived features; JIT, jitter; ROU, voice roughness; S, sustained 
vowel sound-derived features; SHI, shimmer; VQR, voice quality-related measures.
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parameters, including shimmer, fundamental frequency, 
maximum phonation time, and the noise-to-harmonics 
ratio.24–26 Although previous studies suggest a potential 
association between voice alterations and fluid retention, 
their associations with established HF indicators are yet to 
be adequately proven;22–27 further study may help to 
understand the role and rationale of a vocal biomarker in 
the management of HF. The answer to the clinically impor-
tant question of ‘whether voice symptoms could change as 
continuous variables in response to HF conditions’ also 
remains unknown, since all acoustic features of previous 
studies were extracted from the difference between two 
extremely distinct conditions (admission and discharge, 
pre- and post-dialysis).22–26 Additionally, the spontaneous 
speech-based, manually processed analyses might have 
other concerns regarding influence of different languages 
and bias due to the manual processes. The present study 
expanded on previous studies by providing particular 
solutions to the issues highlighted above. For example, the 
present study used simple, language-independent input 
tasks to extract HF-related acoustic features, including 
novel hand-crafted features, and confirmed that changes in 
these acoustic features were longitudinally correlated with 
changes in HF conditions and the established HF indicators. 
Importantly, the present study also showed that vocal 
biomarkers could be applied even in a population with a 
different language (e.g., Japanese) from the previous studies. 
These findings contribute to the accumulation of evidence 
and complement the results and mechanisms of previous 
studies. Additionally, it was potentially noteworthy that 
the present study found the differences in vocal biomarkers 
at discharge between patients with and without subsequent 
HF events (i.e., worsening or rehospitalization), as well as 
improvements in LVEF during follow up, although this 
was not the primary objective of the study. Furthermore, 
as our ML models were created based on acoustic features 
that were extracted from language-independent input tasks 
and correlated with conventional HF indicators, our results 
might contribute to the development of explainable AI 
models for HF monitoring, and could be used on a global 
scale to monitor HF, but this requires further study.

Potential Utility of Vocal Biomarkers in HF Management
The present study includes clinically important messages. 
First, vocal biomarkers based on HF-related acoustic 
features could allow noninvasive, repeatable, continuous 
monitoring of HF status even at home or in clinics, where 
blood draws, X-rays, and other tests are limited. Second, 
the classification threshold of the model could be changed 
according to clinical purposes. For example, higher-
sensitivity models, even at the cost of lower specificity, might 
be useful in the early detection, or screening, of HF for 
further testing at hospitals. Conversely, higher-specificity 
models might enable the reduction of unnecessary tests 
or hospital visits by ruling out the possibility of HF 
exacerbations. Third, vocal biomarkers could translate a 
physician’s subjective impression into an objective measure, 
as well as support diagnosis of HF by complementing the 
interpretation of conventional HF indicators. In the present 
study, often we could have been convinced of treatment 
success or HF exacerbation by changes in a patient’s vocal 
symptoms. Fourth, vocal biomarkers could help enhance 
the identification of high-risk patients with future HF 
exacerbation by demonstrating significant differences in 
vocal biomarkers at discharge between patients with or 

during hospitalization, BNP varies widely among individuals). 
When including voice data in outpatients in the analysis, 
the ML model estimated NYHA class ≥2 with a similar 
diagnostic accuracy (sensitivity 70.6%; specificity 75.9%; 
accuracy 72.2%) to that based on the data of inpatients 
alone. Similar results were preserved in group 5-fold 
analyses using separate independent cohorts and analyses 
by SVM (diagnostic accuracy for inferring HF decompen-
sation: 73.5% and 76.3%, respectively). SHAP value analysis 
demonstrated that different acoustic features contributed 
to the model prediction with various degrees of contribution 
in each model (Figures 4,5). For example, intensity-derived 
features (I_F01 and I_F02) predominantly contributed to 
the model for BNP-level estimation, while sustained vowel 
sound-derived acoustic features (S_DUR_01 or S_SHI_03) 
predominantly contributed to the models for the other HF 
indicators.

The cutoff point (i.e., classification threshold) of the 
model could be changed according to clinical purposes. 
For example, in the ROC analysis of the NYHA class ≥2, 
sensitivity, specificity, and accuracy calculated at the cutoff 
point based on the Youden index (where sensitivity and 
specificity were balanced) were 74.3%, 75.9%, and 75.1%, 
respectively. In contrast, in a case where a higher-sensitivity 
model was preferred (e.g., 90.0% for sensitivity), specificity 
and accuracy were 50.4% and 71.2%, respectively.

Voice Symptoms and Worsening HF
During the follow-up period, seven (11.9%) patients had 
apparent worsening HF, 6 of whom were rehospitalized 
for HF. Although the present study was not able to follow 
patients’ drug compliance and lifestyle care after discharge 
in detail for all patients, 1 patient forgot to take the 
medication and showed HF exacerbation (not rehospital-
ization). HF indicators, such as NYHA ≥2 (28.6% vs. 
8.0%; P=0.15), BNP levels (404 [171–622] vs. 301 [141–514]; 
P=0.46), and LVEF (32.9 [26.4–48.2] vs. 34.3 [28.6–50.6]; 
P=0.71) at discharge, did not differ significantly between 
patients with or without worsening HF. In contrast, signifi-
cant differences in voice symptoms were observed between 
the two groups. For example, patients with worsening HF 
had a significantly shorter duration of sustained vowel 
sound at discharge compared with those without )7.47 
[3.62–16.5] vs. 14.9 [5.6–45.6]; P=0.03). Conversely, 
patients who could sustain vowel sound production for a 
certain time (≥10.62 s) at discharge more frequently 
observed improvements in LVEF at the chronic phase than 
those who could not.

Discussion
To the best of our knowledge, this is the first study to 
systematically evaluate changes in patients’ voice symptoms 
during treatments of acute decompensated HF and to 
identify HF-related acoustic features that correlated with 
HF conditions.

HF-Related, Explainable Vocal Biomarkers
Previous studies using language-dependent phrases (e.g., 
Rainbow passage) or spontaneous speech-based analysis 
have reported possible differences in acoustic features 
between admission and discharge in patients hospitalized 
for acute decompensated HF.22,23 Another investigation of 
dialysis patients has reported that pre- vs. post-hemodialysis 
speech recordings showed significant differences in acoustic 
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conditions. Further studies are warranted to confirm our 
results and address the possible clinical benefits of vocal 
biomarkers in the early detection of worsening HF.
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