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ARTICLE INFO ABSTRACT

Keywords: Background: Emerging evidence suggests that cell deaths are involved in tumorigenesis and progression, which
Pancancer may be treated as a novel direction of cancers. Recently, a novel type of programmed cell death, disulfidptosis,
Disulfidptosis

was discovered. However, the detailed biological and clinical impact of disulfidptosis and related regulators

Multi omics remains largely unknown.

Tumor microenvironment

Tumor related pathways Methods: In this work, we first enrolled pancancer datasets and performed multi-omics analysis, including gene
expression, DNA methylation, copy number variation and single nucleic variation profiles. Then we deciphered
the biological implication of disulfidptosis in clear cell renal cell carcinoma (ccRCC) by machine learning. Finally,
a novel agent targeting at disulfidptosis in ccRCC was identified and verified.

Results: We found that disulfidptosis regulators were dysregulated among cancers, which could be explained by
aberrant DNA methylation and genomic mutation events. Disulfidptosis scores were depressed among cancers
and negatively correlated with epithelial mesenchymal transition. Disulfidptosis regulators could satisfactorily
stratify risk subgroups in ccRCC, and a novel subtype, DCS3, owning with disulfidptosis depression, insensitivity
to immune therapy and aberrant genome instability were identified and verified. Moreover, treating DCS3 with
NU1025 could significantly inhibit ccRCC malignancy.

Conclusion: This work provided a better understanding of disulfidptosis in cancers and new insights into individual
management based on disulfidptosis.

1. Introduction when compared with data in 2018.%4 In China, RCC incidence and
mortality rates have been increasing over the past few decades, al-

Renal cell cancer (RCC) remains the most malignant disease of though they remain lower than those in Western countries.”> Accord-
the urological system and is one of the top 10 most common cancers ing to recent estimates, the age-standardized incidence rate and mor-
in the world.'>? The latest global cancer statistics show a 6.6% in- tality rate for RCC in China was 7.37 and 2.40 per 100,000 individ-
crease in new cases and a 4.2% increase in deaths worldwide in 2023 uals in 2020, respectively. Clear cell renal cell carcinoma (ccRCC) is
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the most common subtype of RCC and the pathological type of the vast
majority of metastatic RCC (mRCC) cases.® With the development of
diagnostics and surgery, early-stage ccRCC has a 5-year survival rate of
up to 90% after radical surgery.” However, approximately 1/4 of ccR-
CCs are already advanced at the time of diagnosis, and approximately
1/3 of localized ccRCCs develop recurrence or metastasis after surgery.®
Although the use of new agents (e.g., tyrosine kinase inhibitors, immune
checkpoint inhibitors, etc.) has improved the prognosis of progressive
or mRCC in recent years, the overall survival (OS) of these patients is
still relatively short®'!. Therefore, further research into the molecular
mechanisms underlying the progression of ccRCC and the development
of new therapeutic agents remain at the forefront of current efforts to
prevent and treat ccRCC.'?

With the increasing understanding of the biological behaviors of
ccRCC, the role of cell death in the pathogenesis of ccRCC and its im-
pact on the development of new drugs are attracting the attention of
researchers.'® Cell death, including regulated and nonregulated types,
plays an important role in maintaining normal body homeostasis and
inhibiting the uncontrolled proliferation of tumor cells, among other bi-
ological processes.!* Regulated cell death (RCD) consists of several types
and can be genetically determined. A novel form of RCD, or cuproptosis,
was recently reported in Tsvektov’s study.'® Li found that cuproptosis
played a significant role in ccRCC, and remodeling analysis based on
cuproptosis could successfully stratify risk classification.'® Wang et al.
revealed that the cuproptosis inducer FDX1 was correlated with tumor
immunity and the prognosis of ccRCC at multiple omics levels.!” All
these findings shed further light on the mechanisms of malignant tumor
initiation and progression and provide an additional theoretical basis for
the search for new therapeutic strategies. Recently, Liu applied whole
genome knockout technology or CRISPR-Cas9 technology and found ten
hits involved in disulfidptosis.'® Until now, there has been no compre-
hensive analysis of disulfidptosis in cancers, especially in ccRCC. Explor-
ing the potential interaction between disulfidptosis and ccRCC might
assist in better understanding the heterogeneity of ccRCC and provide
novel diagnostic and therapeutic targets.

In this work, we depicted the aberrant expression level, biological
impact, and clinical influence of disulfidptosis-related hits at the pan-
cancer level. Next, we divided ccRCC patients into four novel subtypes
based on disulfidptosis-related hits and verified them in two indepen-
dent cohorts at the transcriptome and proteomic levels. DCS3, a novel
ccRCC subtype with a complicated immune microenvironment, unstable
genome state, and poor clinical outcome, was found in our work. Such
a phenotype might be explained by its depressed disulfidptosis score.
Moreover, two novel candidate agents that are sensitive to DCS3 were
found and verified in our study. Taken together, we deciphered the in-
teraction between disulfidptosis and ccRCC at the multiomics level.

2. Materials and methods
2.1. Data processing and calculation of disulfidptosis state across cancers

Transcriptome, clinical parameters, and other omics level datasets
(including single nucleotide variants [SNV], copy number variation
[CNV] and methylation) were downloaded from The Cancer Genome At-
las Program [TCGA] pancancer project with the use of the R package TC-
GAbiolinks.'® Ten disulfidptosis-related signatures (including six syner-
gistic and four suppressor hits) were summarized from Liu’s study (Sup-
plementary Table 1).'® We systematically calculated the correlation of
genomic mutations and the expression of ten hits by the Spearman index.
The transcriptome of fragments per kilobase of transcript per million
fragments mapped (FPKM) was transformed into transcripts per million
(TPM) to perform further analysis. For cancer types that only possess
specific omics-dimensional information or lack normal sample controls,
we restrict our analysis to the characteristics of the disulfide-associated
death signal at the corresponding omics level. In addition, three large
ccRCC cohorts from Immotion150 (sample size = 823), Fudan Univer-
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sity Shanghai Cancer Center (FUSCC) cohort (sample size = 133) and
CPTAC-ccRCC (sample size = 133) projects, with matched transcrip-
tome and clinical information, were adopted to perform validation anal-
ysis.20-23 The base line information, download links of the above men-
tioned cohorts were summarized in Supplementary Table 2.

The index for quantifying disulfidptosis levels was established by
analysing the gene expression data of core regulators of disulfidptosis,
including NUBPL, NDUFA11, LRPPRC, OXSM, NDUFS1, and GYSI as
positive components, and SLC7A11, SLC3A2, and RPN1 as negative com-
ponents. The enrichment score (ES) of gene sets that positively or neg-
atively regulate disulfidptosis was calculated using single-sample gene
set enrichment analysis (ssGSEA) in the R package GSVA. The normal-
ized difference between the ES of positive and negative components was
defined as the disulfidptosis score, allowing for computational analysis
of disulfidptosis levels in tissue samples.

2.2. Identification and verification of disulfidptosis-related subtypes in
ccRCC

Ten disulfidptosis hit-based expression matrices of ccRCC from
TCGA-KIRC were treated as the training cohort to perform cluster analy-
sis by ConsensusClusterPlus package.>* The optimal cluster number was
determined by consensus cumulative distribution function (CDF) and
proportion ambiguous cluster number with prior knowledge. After iden-
tifying the cluster number, each subtype’s biomarkers, summarized in
Supplementary Table 3, from TCGA-KIRC were utilized to perform near-
est template prediction (NTP) analysis among three independent ccRCC
cohorts (including Immotion150, FUSCC and CPTAC-ccRCC), and the
prognostic difference among three independent ccRCC cohorts was uti-
lized to verify the reproductivity and robustness of the four disulfidp-
tosis related subtype (DCS). NTP analysis were finished with the appli-
cation of function ‘runNTP’ from R package MOVICS. Specifically, the
most significantly differential expression gene (DEG), as determined by
log2FoldChange, are selected as biomarkers for each distinct DCS sub-
type. These biomarkers must meet the significance threshold (adjusted
P < 0.05) and should not be shared with any biomarkers identified for
other subtypes.

2.3. Identification of genes and pathway features among subtypes

Different disulfidptosis type-related signatures, or DEGs, were de-
termined by the DEseq2 package based on the count matrix.>® Signifi-
cant DEGs were selected with two parameters, including false discovery
fates less than 0.05 and absolute fold change more than 1.8. Visual-
ization of DEGs and disulfidptosis genes was performed by the Com-
plexheatmap package. Accordingly, the biological annotation behind
DEGs was analysed by the package with the aid of Msigdb datasets.>®27
ESs of pathways from the packages MOVICS and IOBR were calculated
by the package GSVA.?® Transcriptome factor activation scores were
quantified with the use of the R package RTN based on transcriptome
matrix.2?-30

2.4. Correlation of disulfidptosis and tumor microenvironment components
in ccRCC

We quantified immune cell- and component-related signature scores
by the single-sample GSVA algorithm.! Seven antitumour step scores
of antitumors were downloaded from the TIP database.>? We calculated
the correlation of the expression level of immune genes and immune
gene set signatures extracted from the IOBR and MOVICS packages.?®
The degree of immune cell infiltration was quantified by seven decon-
volution algorithms. The R package estimate was adopted to evaluate
three scores, including stromal, immune and ESTIMATE scores.>> The
vessel normalization score was calculated by the ratio of pericytes to
the endothelial cell score of each sample, which has been reported in
previous work.>
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2.5. Genomic and drug sensitivity between subtypes

The SNV information and tumor mutation burden (TMB) calculation
of TCGA-KIRC were performed by the Maftools package.>> Genome am-
plification and deletion events were calculated with application of GIS-
TIC software.?® For mutation frequency and cooccurrence events, the
inner function from Maftools was adopted. Therapy response informa-
tion from the Genomics of Cancer Drug Sensitivity (GDSC), Connectivity
Map (CMAP) and profilingrelative inhibition simultaneously in mixtures
(PRISM) databases was downloaded to detect potential potent agents for
different types, especially for DCS3.%” The half maximal inhibitory con-
centration (IC50) of each cluster was calculated and compared by the R
package pRRophetic.>®

2.6. Impact of NU1025 on ccRCC cell malignancy

NU1025 (id: S773001) was purchased from Selleckchem. The opti-
mal concentration of 500 nM was used according to the instructions. We
selected the DCS3-related cancer cell line A704 by the NTP algorithm
from the Cancer Cell Line Encyclopedia (CCLE) database and used A704
to perform in vitro experiments. Transwell, migration, colony formation,
and wound healing experiments were applied to detect the inhibitory
effect of NU1025. The detailed experimental details have been intro-
duced and summarized in our previous works.>°-*! Each experiment
mentioned above was performed three times independently.

2.7. Statistical analysis

All data cleaning, results visualization, and statistical comparison
were performed in R and SPSS software. Comparisons of continuous
variables were performed with t tests or Kruskal-Wallis or ANOVA tests.
Categorical variables were compared by the chi-square test. Cancer- and
metabolism-related signatures were analysed with the aid of the pack-
ages MOVICS and IOBR.#? Visualization of disulfidptosis-related genes
at multi-omics level was performed by the GSCA website.*>44 Kaplan—
Meier curves were plotted by survival and survminer packages. P values
and false discovery rate (FDRs) less than 0.05 were considered signifi-

cantly different. More analysis details can be seen in our previous stud-
{ag 45-48
ies.

3. Results
3.1. Dysregulation of disulfidptosis-related genes across cancers

The overall strategy of this study is summarized in Supplemen-
tary Fig. 1. Since cell death-related signatures play a pivotal role in
cancer progression, we first analysed the expression and disulfidpto-
sis level, prognostic impact, methylation, CNV and SNV among can-
cers. As Figs. 1A and B showed, nearly ten disulfidptosis signatures,
except SLC7A11, were downregulated in tumor tissues compared with
normal tissues; SCL7A11 was most highly expressed in cholangiocar-
cinoma (CHOL) among all cancer types. Regarding the prognostic im-
pact of disulfidptosis-related signatures, all normal genes displayed risky
roles when analysing OS and progression free interval (PFI) (Fig. 1C).
Interestingly, the prognostic impact of NUBPL, LRPPRC, OXSM, NDUFS1
and NCKAP1 was protective in kidney renal clear cell carcinoma (KIRC)
(Fig. 1C). After calculating the disulfidptosis score in each cancer type,
we found that most tumor tissues led to a depressed disulfidptosis state
compared with normal tissues, except glioblastoma (GBM), as shown in
Fig. 1D. We also analysed the DNA methylation level of the ten hits and
found that the deregulated expression state of most signatures was sig-
nificantly negatively correlated with methylation, especially in SLC7A11
and RPN1 (Fig. 1E). In addition, we noticed that the mutation frequency
of LRPPRC was highest among the ten hits, and UCEC was ranked as the
hottest musted type among all cancers (Fig. 1F). Finally, we observed
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that the most common types of CNV among the ten hits were heterozy-
gous amplification and deletion, and this phenomenon was especially
noticeable in the OXSM and RPN1 genes and in ACC, UCS, LUSC, HNSC
and OV (Fig. 1G).

3.2. Biological implication of disulfidptosis in cancers

To better understand the potential biological roles of hits of disul-
fidptosis, we investigated the correlation between classical cancer hall-
marks, immune processes and disulfidptosis score. Notably, a negative
correlation index was found among TNF« signaling via NFxB, KRAS,
interferon y and «a, inflammation, IL6-JAK-STAT3 and epithelial mes-
enchymal transition (EMT) and disulfidptosis score, while a positive
correlation was found between oxidative phosphorylation and disulfidp-
tosis (Fig. 2A). Fig. 2B showed a significant correlation between disul-
fidptosis and immune components, which was found to stimulate in-
filtration of neutrophils, Th17 cells, Tregs, effector memory cells and
monocytes while inhibiting CD4 T cells, Tth cells, NK cells, CD8 T
cells, gamma delta T cells and cytotoxic cells in cancers. The datasets
from starBase, microde and mirnet implicated the ceRNA network of
SLC7A11 and NCKAP1, which suggested that AC093010.3-has-miR-27a-
3p-SLCA11, AC103702.1-has-miR-122-5p-SLCA11 and has-miR-34c-3p-
NCKAP1 might contribute to the dysregulation of SLCA11 and NCKAP1
among cancers (Fig. 2C). The results from Genemania revealed the po-
tential interaction of ten hits with other genes, such as SLC7A10, NUBP2,
KDM5 and SLC1A7 (Fig. 2D). The results from the GSCA database
showed that most disulfidptosis hits were positively correlated with
apoptosis, the cell cycle and the DNA damage pathway but negatively
correlated with EMT (Fig. 2E). Regarding the drug sensitivity of hits, the
results from the GDSC database postulated that LRPPRC was positively
related to dasatinib, temsirolimus, AZD6482, and BEZ235, while GYS1
was nearly negatively correlated with all drugs, especially TGX221, MG-
132 and AZ628 (Fig. 2F). Furthermore, Fig. 2G showed that high expres-
sion of NCKAP1, SLC7A11 and GYS1 resulted in sensitivity to nearly all
drugs in The Cancer Therapeutics Response Portal (CTRP), while LRP-
PRC led to a reverse correlation.

3.3. Different disulfidptosis-related subtypes displayed distinctive clinical
outcomes

As we found above, nearly all disulfidptosis-related genes were pro-
tective factors for ccRCC (Fig. 1C) and disulfidptosis scores were sig-
nificantly depressed in tumor tissues (Fig. 1D), which was unique and
different from other cancers. Thus, we investigated the role of the ten
disulfidptosis hits in ccRCC. The CNV frequency of ten hits differed,
and OXSM displayed the highest genome loss rate, while NCKAPI had a
higher genome gain frequency (Fig. 3A). The total mutation frequency of
ten hits was lower in ccRCC, which ranked as LRPPRC, NDUFS1, SLC3A2
and OXSM (Fig. 3B). In the whole expression landscape of ccRCC, we
noticed that SLC3A2, OXSM, NUBPL, NDUFS1, LRPPRC and NCKAP1
were more highly expressed, while NDUFA11, SLC7A11, GYS1 and RPN1
were less expressed in normal tissues (Fig. 3C). Univariate Cox analy-
sis further showed the protective roles of disulfidptosis hits in ccRCC
and suggested three expression relation patterns of ten hits (Fig. 3D).
Fig. 3E revealed the expression correlation of ten hits, and we found
that LRPPRC and NCKAP1 had the most significant positive correlation,
while NUBPL and NDUFA11 had a negative relationship in ccRCC. We
next applied cluster analysis of ccRCC to better understand the role of
disulfidptosis in ccRCC, and we chose 4 as the optimal subtype num-
ber (Supplementary Fig. 2A-D). We found that the prognosis of DCS4
was superior to that of the other types in both OS and PFI, as shown
in Fig. 3F. The expression level of ten hits also varied across four types
and normal renal tissues, and we defined DCS3 as the disulfidptosis cold
subtype, DCS1 as the disulfidptosis hot subtype, and DCS2 as the mixed
or disulfidptosis relative cold subtype (Fig. 3G). Compared with DCS1,
the other three subtypes had poor clinical characteristics, such as T, N,
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Fig. 1. Multiomics futures of disulfidptosis among pancancer. (A) Expression difference of ten disulfidptosis hits between tumor and normal tissue across pancancer.
Red represents higher expression in tumor tissues, while blue represents lower expression levels. (B) SLC7A11 expression in normal (blue) and cancer (red) tissues. (C)

Prognostic impact of disulfidptosis hits in various cancers. The upper panel represen

ts the prognostic impact on OS, and the lower represents PFI. (D) Disulfidptosis

score calculated by ssGSEA difference between normal and tumor tissues. (E) Methylation difference of ten disulfidptosis hits; purple represents hypermethylation,

while orange represents hypomethylation. (F) Single-nucleotide variants of ten hits;

a deeper color represents a high frequency of mutation. (G) Pie plot indicating
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T, tumor; ns, not significant.
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Fig. 2. Characteristics of ccRCC and subtype or risk score. (A) GSEA of cancer hallmark enrichment scores between high and low disulfidptosis score subtypes. (B)
Correlation of disulfidptosis score and immune signatures among cancers. Orange represents a positive correlation, while purple represents a negative correlation. (C)
ceRNAs of IncRNAs (blue), miRNAs (red) and mRNAs (yellow) of disulfidptosis hits. (D) Gene interaction of ten hits from Genemania. (E) Correlation of disulfidptosis
score and classic cancer pathway score. The total effect of each hit was the activated score minus the inhibited score. (F, G) Correlation of drug sensitivity and ten
hit expression levels from the GDSC (F) and CTRP (G) databases. FDR, false discovery rate; NES, normalized enrichment score. *, P < 0.05; #, false discovery rate <

0.05.
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Fig. 3. Association of subtype in ccRCC based on disulfidptosis hits. (A) Lollipop chart showsed the CNV copy number variation of ten hits in ccRCC. (B) The waterfall
plot depicted the mutation landscape of disulfidptosis genes in TCGA-KIRC, altered in 12 (3.57%) of 336 samples. (C) Heatmap indicated the expression differences
in tumor and normal tissues from TCGA-KIRC. (D) Heatmap and forest plot illustrated the expression pattern and OS of ten hits by univariate Cox analysis. (E)
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survival analysis of four subtypes in ccRCC. (G) Heatmap illustrated the different expression levels of disulfidptosis hits among subtypes and normal tissues (upper
panel) and clinical characteristics of different disulfidptosis subtypes (lower panel). CNV, copy number variation; Del, deletion; Ins, insertion; OS, overall survival;
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M and stage (Fig. 3G). We adopted three independent ccRCC cohorts
at the transcriptome and protein levels from previous works and uti-
lized NTP to perform cluster analysis. The results showed that DCS3 in
both cohorts led to a poor prognosis, which proved the applicability and
robustness of the cluster results based on disulfidptosis hits (Supplemen-
tary Fig. 2E and F, Supplementary Table 4).

3.4. Distinctive biological and transcriptome factor regulon differences

To decipher the biological differences among the four types, we next
performed gene expression analysis. The DEGs of four subtypes were
annotated on several classic GO terms of ccRCC. In detail, we found
that keratinization and negative regulation of apoptosis execution were
activated in DCS3, while the Hippo signal was activated in DCS4. The
downregulated DEGs also showed such biological differences (Figs. 4A
and B). Further analysis revealed that DCS4, with the best prognosis,
displayed a depressed state of several immune-related signals, includ-
ing interleukins, cytokines, the TNF superfamily, cell functions, B and
T-cell function, and chemokines (Fig. 4C). We also verified such dif-
ferences in the MOVICS package and found that several classic cancer
pathways, including EMT, MDSCs, immune checkpoints, CD8 T-cell ex-
haustion, Tregs and plasmacytoid dendritic cells (pDCs), were down-
regulated in DCS4, while those signals were activated in the other can-
cer subtypes (Fig. 4D). We also noticed several specific activated tran-
scriptome regulators in DCS3, including PITX2, HOXA13, SHOX2, ZIC2,
DMRT3, and HOXB13, and depressed transcriptome regulators, includ-
ing ZEB2, ZNF93, TFE3, TP53, E2F1 and FOXM1 (Fig. 4E). We also
found that several hallmarks were downregulated in DCS3, including
the G2M checkpoint, E2F, PI3K-AKT-MTOR, protein secretion, and mi-
totic spindle, while kras signaling was activated (Supplementary Fig.
3A). Specifically, Supplementary Fig. 3B showed that inositol phosphate
metabolism, ADP ribosylation, glycogen biosynthesis and degradation,
and hexosamine biosynthesis were depressed in DCS2.

3.5. DCS3 exhibited an immune dysfunctional state among subtypes

We noticed that several immune stimulators were lower in DCS3,
such as BTN3A1, CXCL9, CXCL10, EDNRB and several antigen presen-
tation genes, which might be explained by the dysregulated state of DNA
methylation and genome mutation (Fig. 5A). Consistently, we noticed
that the CD8 T effector score was highest in DCS3, while mismatch re-
pair, nucleotide excision repair, DNA damage response (DDR) and DNA
replication scores were lowest in this type (Fig. 5B). In addition, we
noticed that DCS3 had the lowest stromal score and highest immune
score among the four types (Fig. 5C). We next applied the TIDE algo-
rithm to compare the antitumour potency among the four types, and we
observed that the TIDE and immune dysfunction scores were higher in
DCS3, while the immune exclusion score was lowest in DCS3 (Fig. 5D).
The MSI signature score also varied among the four types (Fig. 5D). The
CYT score distribution also proved the antitumour deficiency of DCS3
(Fig. 5E). When estimating the immunotherapy response (Fig. 5F), we
found that DCS3 showed a lower response rate (26%) than the other
types (DSC1: 37%, DCS2: 31%, DCS4: 42%). We noticed that DCS3 had
an immune cold phenotype in the TIMER algorithm, and neutrophil and
M2 cell signals were consistently lower across different immune algo-
rithms (Supplementary Fig. 4A).

When we compared differences in TIP, we found various activated
states among the four ccRCC subtypes. In detail, DCS1 showed relatively
low scores for cancer antigen release and presentation, which might help
explain the relatively depressed antitumour immunity (Supplementary
Fig. 4B). We also found that cancer-associated fibroblasts (CAF) scores
and vessel normalization scores were lowest in DCS3 (Supplementary
Fig. 4C). In addition, we also compared the immune-related gene expres-
sion levels among subtypes, which also showed a complicated immune
state, among which several chemokines and receptors were downregu-
lated in DCS3, while most immune inhibitors and stimulators were ex-
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pressed at lower levels in DCS4 (Supplementary Fig. 5A). Furthermore,
we observed that nearly all immune checkpoint inhibitor (ICI) regula-
tors were downregulated in DCS4; consistently, all immune cells were
minimally infiltrated in DCS4, except endothelial cells (Supplementary
Fig. 5B).

3.6. DCS3 led to the most unstable genome structure compared with the
other types

In total, we found that DCS4 had a lower mutation rate (82.79%)
than the other three types (DCS1: 89.47%, DCS2: 90.29%, DCS3:
89.47%), as shown in Fig. 6A. Such a difference was obvious when
comparing DCS3 with DCS4 on chromosomes 3, 5 and 7 (Fig. 6B). De-
tailed information on the genome can be found in Supplementary Fig.
6. The genome alteration frequency of DCS3 was the highest, and that
of DCS4 was the lowest (Fig. 6C). We also noticed a higher TMB rate in
DCS3, even though the difference was not significant (Fig. 6D). In ad-
dition, we noticed that RTK—RAS, PI3K and Hippo signals displayed a
lower mutated frequency when compared with the remaining subtypes
(Supplementary Fig. 7A). We also detected significantly different mu-
tation interaction landscapes among the four types, and NALCN-TTN,
NALCN-PTEN, KDM5C-TTN, and SETD2-PBRM1 cooccurred in DCS2,
while ABCBI-BAP1 and MTOR-BAP1 cooccurred in DCS4 (Supplemen-
tary Fig. 7B).

3.7. Tumor cell lines belong to DCS3 were sensitive to lisitinib and NU1025

Considering the malignant phenotype of DCS3, we retrieved differ-
ent drug databases to identify subtype-specific agents, especially for
DCS3. We observed that DCS3 led to paradigmatic resistance to tar-
get agents, including axitinib, crizotinib, erlotinib, imatinib, pazopanib,
saracatinib, temsirolimus, afatinib, erlotinib and sunitinib, while sen-
sitizing to lisitinib (Fig. 7A). In addition, we detected several potential
agents for DCS3 according to the IC50 value, which consisted of CI1040,
SL01011, PD0325901, Nutlin3a, LFMA13 and gefitinib (Fig. 7B). Fur-
thermore, datasets from CMAP suggested that NU1025 might also work
in DCS3 according to its lowest CMAP score (Fig. 7C). After identifying
DCS subtype-related cell lines from GDSC with the use of the NTP algo-
rithm, we next performed in vitro experiments to evaluate the therapeu-
tic effect of NU1025 on A704 and 786p (Fig. 8A). When A704 and 786P
cells treated with NU1025 at 500 nM concentration, the prefiltration,
migration and invasion abilities were significantly inhibited, which sug-
gested that patients clustered into DCS3 might be sensitive to NU1025
(Figs. 8B-E).

3.8. SLC7A11 was correlated with the malignant phenotype of ccRCC

Radom forest analysis suggested that SLC7A11 ranked as the most
prognosis-relevant gene among the ten hits (Fig. 9A). Univariable Cox
analysis revealed that SLC7A11 functioned as a risk factor for the OS
of the GSE167573 cohort, OS of E-MTAB-1980, OS of TCGA-KIRC, dis-
ease specific survival (DSS) of TCGA-KIRC and progression free survival
(PFS) of TCGA-KIRC. KM curves also showed that the SLC7A11 high
expression group had a short survival time (Fig. 9B). We found that
the SLC7A11 expression level was high in tumor tissues, and its expres-
sion level was higher in the later T and grade subgroups (Fig. 9C and
D). SLC7A11 expression levels were also correlated with several clin-
ical parameters, including Karnofsky performance score, lactate dehy-
drogenase result and platelet qualitative result (Fig. 9E). At the single-
cell level, we noticed that SLC7A11 was more highly expressed in the
plasma and pDC clusters in GSE145281 and GSE139555, respectively
(Fig. 9F). The GO term suggested that SLC7A11 might be mainly in-
volved in de novo protein folding, integrated stress response signal-
ing, noncoding RNA 3 end processing, etc. (Supplementary Fig. 8A).
GSEA ranked the most potentially impacted pathways as the E2F target,
MTORCL1 and G2M checkpoint pathways (Supplementary Fig. 8B). We
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Fig. 4. Biofunction of DEGs among the four subtypes. (A) The left heatmap indicated the upregulated DEGs among the four types, and the annotation of upregulated
DEGs was depicted in the right heatmap. (B) Left heatmap indicated downregulated DEGs among the four types, and annotation of downregulated DEGs was depicted
in the right heatmap. (C, D) Heatmap presented different cancer-related signal scores and immune-related signature scores among the four subtypes. (E) Heatmap
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Fig. 5. Immune landscape of different disulfidptosis subtypes in ccRCC. (A) Heatmap showing the expression pattern and impact of methylation, amplification, and
deletion frequency on immune genes among different subtypes. DCS1, red; DCS2, yellow; DCS3, green; DCS4, blue. (B) Boxplot showed different immune signature
scores among subtypes. (C) Boxplot indicated stromal, immune and ESTIMATE scores among subtypes. (D) Boxplot combined with scatter plot depicting the TIDE,
immune dysfunction, exclusion and MSI score among subtypes. (E) Violin plot postulates CYT score among subtypes. (F) Column scale chart of ICI response differences
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also divided all ccRCC patients into low SCL7A11 and high SCL7A11
subtypes based on the median expression level and found that PBRM1
and chrome3 gain events had a higher mutation frequency in the lat-
ter group, which could help explain the aberrant expression level of
SLC7A11 in ccRCC (Supplementary Fig. 8C). Considering the higher ex-
pression level of SLC7A11 in ccRCC patients, we found several potential
agents targeting the SLC7A11 group in ccRCC, including temozolomide,
bicalutamide, bosutinib and lenalidomide (Supplementary Fig. 8D).

4, Discussion

Resistance to cell death is an important feature of tumors, and the
induction of tumor cell death is an important pathway for the efficacy
of combined therapy, which can be synergistic with other therapies,
including targeted therapies and immunotherapies.*” Programmed cell
death (PCD), or RCD, not only plays a key role in development and cel-
lular homeostasis, but its dysregulation is closely associated with many
diseases, including inflammation and cancer.>® PCD, including scorch
death, pyroptosis, autophagy, and necroptosis, is a central area of re-
search to unravel resistance to tumor cell death, as it is regulated by
specific molecular pathways and can be targeted by genetic or phar-
macological means.! PCD and immunotherapy are closely linked, with
the latter acting as inducers of programmed death in which CD8* T cells
inhibit tumor growth by inducing tumor cells to undergo necrosis, py-
roptosis and ferroptosis.”> Approximately two-thirds of ccRCC patients
do not respond to immunotherapy due to defective release of tumor
antigens caused by cell death resistance.>® Inflammatory factors and
specific antigens released by tumor cells induced by PCD can turn cold
tumors into hot tumors, which in turn recruit immune Killer cells, in-
cluding NK and CD8* T cells. Recently, the combination regimen of
BRAF and MEK inhibitors (BRAFi+MEKi) was shown to recruit CD4%
and CD8* cells by inducing tumor cells to undergo scorch death, which
in turn induces dendritic cell maturation.® T-cell infiltration exerts an
antitumour immune effect, and this regimen has been approved by the
FDA for the treatment of melanoma with BRAF V600E/K mutations.®"
However, programmed death can also have pro-cancer effects in cer-
tain cancers, and Demuynck et al. found that ferroptosis in breast can-
cer cells increased oxidized lipid levels in the microenvironment, lead-
ing to reduced phagocytosis and antigen cross-presentation by dendritic
cells, which helped tumor cells evade immune surveillance.®* In conclu-
sion, PCD and antitumour immunity are inextricably linked; the specific
roles played by different types of PCD in tumors can be anticancer or
pro-cancer, depending on the heterogeneity of the tumor itself and the
regulatory mechanisms after cell death.

Recently, Li and colleagues observed a novel form of RCD, which is
more common in SLC7A11 high expression cancer cell lines, and they fi-
nally defined it as disulfidocytosis.'® In detail, when performing glucose
starvation in SCL7A11 high-expressing cells, aberrant disulfide bonds
could form in the framework of actin cytoskeleton proteins and finally
simulate the collapse of F-actin. In contrast to traditional ferroptosis
and apoptosis, one of the typical features is aberrant accumulation of
intracellular disulfides. Considering the paradigmatic high expression
of SCL7A11 in solid tumours, targeting disulfidptosis in the integrated
treatment of cancer is regarded as a valuable strategy. Growing evidence
suggests that inducing cancer cell death can inhibit cancer progression
by limiting the cancer cell itself but also reshaping the tumor microenvi-
ronment. Our previous work found that inducing renal cell cuproptosis
could enhance antitumour immunity by activating cGAS-STING-TBK1
signaling in dendritic cells, which promoted the efficacy of immune
checkpoint inhibitor therapy in a C57BL mouse model.*>4° In addition
to cuproptosis, we also found that pyroptosis was depressed in ccRCC
and that a pyroptosis-activated phenotype was associated with better
clinical outcomes and a hot immune microenvironment.>® Studies from
previous works also revealed that inducing PCD inducing necroptosis,
pyroptosis and autophagy could stimulate the release of cancer antigens,
thus priming immune cell infiltration and promoting the maturation of
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tertiary lymphoid structures.>® All these findings suggest that PCD is out
of control in cancer tissues and that restoring the normal state of PCD
levels could enhance other forms of cancer therapies, including targeted
and immune-related agents.

Prior research has investigated the molecular and clinical attributes
of different types of cell death in tumors, with a particular focus on disul-
fidptosis in both oncological and non-oncological conditions at various
omics levels.?”->8 For example, Huang et al. developed a new prognostic
model based on disulfidptosis in lung adenocarcinoma, revealing asso-
ciations with the tumor microenvironment. Patients classified into the
high-risk category displayed elevated tumor purity and decreased stro-
mal score, ESTIMATE score, and Immune score.®® Chen et al. conducted
a thorough investigation into disulfidptosis in bladder cancer (BCa), elu-
cidating its role in the modulation of tumor advancement, response to
treatment, and overall survival among BCa patients. Additionally, the
study identified POU5SF1 and CTSE as promising targets for potential
therapeutic interventions in the clinical management of BCa.®® A study
conducted by Xie et al. demonstrated a correlation between disulfidpto-
sis activity and key biological processes and pathways in different types
of cancers. This activity was found to be linked to tumor immune char-
acteristics and predictive of immunotherapy outcomes. Specifically, the
regulator of disulfidptosis, GYS1, was identified as a potential target
for triple-negative breast cancer and validated through both in vitro and
in vivo experiments.®! These findings offer valuable insights into can-
cer progression and potential strategies for precise management. Un-
til now, there has been no comprehensive analysis of disulfidptosis in
ccRCC, and the potential interaction between disulfidptosis and the tu-
mor microenvironment is largely unclear. In this work, we first con-
ducted a pancancer analysis of ten disulfidptosis hits and found a uni-
form phenomenon in which nearly all disulfidptosis hits and scores were
downregulated in cancers. In detail, such aberrant expression patterns
might be caused by abnormal methylation and mutation events, which
are obvious in uterine corpus endometrial carcinoma, skin cutaneous
melanoma, and colon adenocarcinoma. In ccRCC patients, we performed
a cluster analysis and deciphered four subtypes with distinctive bio-
logical and prognostic characteristics, and the results were reproduced
in two independent datasets. Importantly, we found several candidate
agents that are officious for DCS3 and verified these findings in corre-
sponding subtype-specific cell lines, which could inhibit cell prolifera-
tion and metastasis. The role of SLC7A11 was also investigated at multi-
ple levels and displayed an oncogenic role in ccRCC. Furthermore, these
four distinct phenotypes exhibited notable differences in their molecular
alteration landscape and activation of signaling pathways, resulting in
varying metabolic processes and biological behaviours (Supplementary
Table 5).

Similar to other tumors, the heterogeneity of ccRCC prognosis stems
from intrinsic molecular alterations. Currently, the development of high-
throughput sequencing and bioinformatics promotes the elucidation of
comprehensive molecular alteration landscape in ccRCC. Many novel
molecular clustering systems were established based on different al-
tered molecules and forms. For instance, Hu et al. identified a novel
ccRCC subtype, termed as De-clear cell differentiated (DCCD)-ccRCC,
via multi omics datasets including genomic, transcriptomic, proteomic,
metabolomic and spatial transcriptomic and metabolomic profiles from
Tongji Hospital RCC (TJ-RCC) cohort.®? Their work revealed that ccRCC
patients owing fewer lipid droplets, reduced metabolic activity, en-
hanced nutrient uptake capability and a high proliferation rate, led
to a relatively poor prognosis. The RCC program of TRACERs catego-
rized ccRCC into seven primary subtypes, which include VHL mono-
driver, PBRM1-SETD2, PBRM1 somatic copy number alteration (SCNA),
PBRM1-PI3K, VHL wildtype, multiple clonal drivers, and BAP1 driven.
These distinct genomic subtypes displayed a notably diverse progno-
sis.%3 Furthermore, Meng et al. conducted a consensus analysis of ccRCC
utilizing multiple omics datasets.®* Among these subtypes, MoS1 exhib-
ited the worst prognosis, potentially due to an immunosuppressed mi-
croenvironment and activated hypoxia characteristics but may respond
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positively to PI3K/AKT inhibitors. MoS2 displayed a higher frequency of
mutations in VHL and PBRM1, indicating a more favourable prognosis
and potential suitability for sunitinib therapy. MoS3 was identified as
the immune hot subtype, suggesting potential benefits from anti-PD-1
immunotherapy. Undoubtedly, the subtyping studies mentioned above,
through diverse gene sets or specific clustering algorithms, have iden-
tified particular subtypes of ccRCC patients, offering new insights for
personalized treatment of ccRCC. Similarly, this study, by systemati-
cally analysing the clinical and biological roles of disulfidptosis signal-
ing in pan-cancer and ccRCC, classifies ccRCC into four subtypes, among
which the DCS3 subtype is associated with the worst prognosis and has
been validated across multiple ccRCC cohorts. In this subtype, pathways
related to keratinization and resistance to apoptosis are significantly ac-
tivated. Ultimately, we discovered that NU1025 could act as a sensitive
drug for the DCS3 subtype.

Studies have shown that the extensive immune infiltrative, highly
vascularized, and fibrotic nature of the TME in ccRCC compared to
other solid tumors not only supports the use of immunotherapy but
also has a significant impact on patient response through its complex ef-
fects.®5:%¢ However, the interaction between cell death and the TME and
whether disulfidocytosis can promote immune infiltration in ccRCC are
unclear. We found that antitumour immunity was hampered in DCS3,
even though the immune score calculated in the ESTIMATE algorithm
was the highest among the four types. Such a paradox could be referred
to as deficiency of DNA repair and tumor antigen presentation, which
induced persistent production of ineffective genomic-derived antigens.
Consistently, when comparing the genomic mutation landscape among
the four types, we found that the copy number alteration rate was high-
est in DCS3, which resulted in a high TMB. In addition, DCS3 led the
lowest response rate to ICI (only 26% compared with 42% in DCS4)
and cytolytic activity (CYT) score. Interestingly, Liu found that patients
with characteristics of TMB high and CNA low might reach an opti-
mal therapy result to ICL.%” The results were different with our findings
in DCS4 and could be explained by accumulating CNA with deficient
ability of repair inducing antigens of no tumor biological futures.®® We
found that keratin signaling was significantly activated in DCS3, which
might help explain the complicated TME in this type. Indeed, several
previous works have proven their roles in cancer progression and tu-
mor immunity.®® Research from Wang et al. suggested that tumor cells
could release the coating structure of CXCL12-KRT19, thus mediating
CD8 T-cell exclusion. Wang and colleagues found a classic keratin family
member, K17, which was highly expressed in head and neck squamous
cell carcinoma, and knockout of K17 could reverse ICI resistance in a T-
cell-dependent manner.”® The positive correlation of immune signature
and keratins was also found in conjunctive melanoma.”’ All these find-
ings suggest that keratin-related proteins participate in cancer immune
evasion.

To maximize the potential benefits of immunotherapy, several clin-
ical trials have combined anti-PD-1/PD-L1 antibodies with anti-CTLA-4
antibodies or TKIs as first-line treatment for ccRCC.”> Some recently
published results showed that combination therapy is overall better
than TKI monotherapy.”® Although combination therapy has become
the first-line treatment option for mRCC, not all patients benefit from it,
and serious side effects can occur.”*”> For example, in the KEYNOTE-
426 trial, the most common adverse events with the combination of
axitinib and pembrolizumab were diarrhea and hypertension, and the
incidence of liver toxicities was higher than with monotherapy, with
30.5% of patients having to discontinue at least one treatment due to
adverse events.”> We hypothesized that reactivating disulfidocytosis in
ccRCC could enhance immune therapeutic efficacy in ccRCC. Interest-
ingly, we found that NU1025, a potent PARP inhibitor, might be useful
for DCS3. When culturing ccRCC cell lines with the addition of NU1025,
the malignant biological behaviours of ccRCC were significantly ham-
pered, which preliminarily suggested that NU1025 could be utilized as
a novel agent for ccRCC therapy. Basically, NU1025 does not affect cell
viability at normal concentrations and only works in specific cancer cell
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lines, including BRCA mutation breast cancer.”® Koustas found that the
combination of the coinhibition effect of SU11274 (a ¢-MET inhibitor)
and NU1025 could reduce tumor proliferation and trigger PCD in gastric
cancer.”” Taken together, these results suggest that NU1025 functions
as a novel weapon for ccRCC patients with high risk and deficiency in
disulfidptosis signaling.

It is worth noting that one of the notorious characteristics of ccRCC
is activated glucose intake and consumption, followed by aberrant
metabolic reprogramming. Previous works found that SLC7A11 was in-
volved in PCD in ccRCC via different signals. Xu et al. revealed that
SLC7A11 involve in ccRCC prognosis and promoted by inhibiting ferrop-
tosis.”® SLC7A11 is also involved in ferroptosis depression as a down-
stream factor of the MITD1-TAZ and PDIA1-ATF4 pathways in ccRCC.”°
We also found that SLC7A11 acted as the most important variable among
ten disulfidptosis hits, and the prognostic impact was consistent across
different ccRCC cohorts. We detected that the SLC7A11 expression level
was higher in plasma and pDC cells at the single-cell level. Further stud-
ies should focus on investigating the immune impact of SLC7A11 in
ccRCC.

Our work is the first comprehensive analysis of disulfidptosis across
cancers and a detailed description of ccRCC, which shed new light on
cancer diagnostics and management. Firstly, the disulfidptosis-related
genes included in this study were limited to the top 10 genes identi-
fied by Liu et al. using the CRISPR-Cas9 technology. This gene set might
only partially represent the activation or inhibition states of intracellu-
lar disulfidptosis, necessitating further basic research to fully elucidate
the disulfidptosis signaling axis. Secondly, although potential therapeu-
tic drugs for the DCS3 subtype, such as NU.1025, were preliminarily
identified using the GDSC database and the NTP algorithm, and further
validated through in vitro experiments, the efficacy of this agent, espe-
cially for patients with the DCS3 subtype, still requires additional molec-
ular experiments, particularly in vivo studies, such as patient-derived
xenografts or organoid models. Finally, the cohorts used in this study
were all retrospective, and whether this molecular subtyping can accu-
rately stratify renal cancer patients in real-world cohorts with precision
risk stratification remains to be validated through the establishment of
prospective cohorts.

5. Conclusions

In conclusion, our work investigated the role of disulfidptosis across
cancers, especially in ccRCC. Four novel ccRCC subtypes were first iden-
tified with complicated biological and immune characteristics. Among
these, DCS3, a subtype with inferior clinical outcomes, was suggested
to be stratified from ccRCC patients with radical treatments. In in vitro
experiments, we verified the therapeutic efficacy of NU1025 on DCS3-
related cell lines and showed satisfactory therapeutic value. To con-
clude, this work provides novel insights into PCD and ccRCC, and we
believe that disulfidptosis could help improve diagnosis and therapy for
patients with ccRCC.
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