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Background: Emerging evidence suggests that cell deaths are involved in tumorigenesis and progression, which 

may be treated as a novel direction of cancers. Recently, a novel type of programmed cell death, disulfidptosis, 

was discovered. However, the detailed biological and clinical impact of disulfidptosis and related regulators 

remains largely unknown. 

Methods: In this work, we first enrolled pancancer datasets and performed multi-omics analysis, including gene 

expression, DNA methylation, copy number variation and single nucleic variation profiles. Then we deciphered 

the biological implication of disulfidptosis in clear cell renal cell carcinoma (ccRCC) by machine learning. Finally, 

a novel agent targeting at disulfidptosis in ccRCC was identified and verified. 

Results: We found that disulfidptosis regulators were dysregulated among cancers, which could be explained by 

aberrant DNA methylation and genomic mutation events. Disulfidptosis scores were depressed among cancers 

and negatively correlated with epithelial mesenchymal transition. Disulfidptosis regulators could satisfactorily 

stratify risk subgroups in ccRCC, and a novel subtype, DCS3, owning with disulfidptosis depression, insensitivity 

to immune therapy and aberrant genome instability were identified and verified. Moreover, treating DCS3 with 

NU1025 could significantly inhibit ccRCC malignancy. 

Conclusion: This work provided a better understanding of disulfidptosis in cancers and new insights into individual 

management based on disulfidptosis. 
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. Introduction 

Renal cell cancer (RCC) remains the most malignant disease of

he urological system and is one of the top 10 most common cancers

n the world. 1 , 2 The latest global cancer statistics show a 6.6% in-
rease in new cases and a 4.2% increase in deaths worldwide in 2023 
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hen compared with data in 2018. 3 , 4 In China, RCC incidence and

ortality rates have been increasing over the past few decades, al-

hough they remain lower than those in Western countries. 5 Accord-

ng to recent estimates, the age-standardized incidence rate and mor-

ality rate for RCC in China was 7.37 and 2.40 per 100,000 individ-

als in 2020, respectively. Clear cell renal cell carcinoma (ccRCC) is
eng@smu.edu.cn (P. Luo), wanglinhui@smmu.edu.cn (L. Wang) . 
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he most common subtype of RCC and the pathological type of the vast

ajority of metastatic RCC (mRCC) cases. 6 With the development of

iagnostics and surgery, early-stage ccRCC has a 5-year survival rate of

p to 90% after radical surgery. 7 However, approximately 1/4 of ccR-

Cs are already advanced at the time of diagnosis, and approximately

/3 of localized ccRCCs develop recurrence or metastasis after surgery. 8 

lthough the use of new agents (e.g., tyrosine kinase inhibitors, immune

heckpoint inhibitors, etc.) has improved the prognosis of progressive

r mRCC in recent years, the overall survival (OS) of these patients is

till relatively short 9–11 . Therefore, further research into the molecular

echanisms underlying the progression of ccRCC and the development

f new therapeutic agents remain at the forefront of current efforts to

revent and treat ccRCC. 12 

With the increasing understanding of the biological behaviors of

cRCC, the role of cell death in the pathogenesis of ccRCC and its im-

act on the development of new drugs are attracting the attention of

esearchers. 13 Cell death, including regulated and nonregulated types,

lays an important role in maintaining normal body homeostasis and

nhibiting the uncontrolled proliferation of tumor cells, among other bi-

logical processes. 14 Regulated cell death (RCD) consists of several types

nd can be genetically determined. A novel form of RCD, or cuproptosis,

as recently reported in Tsvektov’s study. 15 Li found that cuproptosis

layed a significant role in ccRCC, and remodeling analysis based on

uproptosis could successfully stratify risk classification. 16 Wang et al.

evealed that the cuproptosis inducer FDX1 was correlated with tumor

mmunity and the prognosis of ccRCC at multiple omics levels. 17 All

hese findings shed further light on the mechanisms of malignant tumor

nitiation and progression and provide an additional theoretical basis for

he search for new therapeutic strategies. Recently, Liu applied whole

enome knockout technology or CRISPR-Cas9 technology and found ten

its involved in disulfidptosis. 18 Until now, there has been no compre-

ensive analysis of disulfidptosis in cancers, especially in ccRCC. Explor-

ng the potential interaction between disulfidptosis and ccRCC might

ssist in better understanding the heterogeneity of ccRCC and provide

ovel diagnostic and therapeutic targets. 

In this work, we depicted the aberrant expression level, biological

mpact, and clinical influence of disulfidptosis-related hits at the pan-

ancer level. Next, we divided ccRCC patients into four novel subtypes

ased on disulfidptosis-related hits and verified them in two indepen-

ent cohorts at the transcriptome and proteomic levels. DCS3, a novel

cRCC subtype with a complicated immune microenvironment, unstable

enome state, and poor clinical outcome, was found in our work. Such

 phenotype might be explained by its depressed disulfidptosis score.

oreover, two novel candidate agents that are sensitive to DCS3 were

ound and verified in our study. Taken together, we deciphered the in-

eraction between disulfidptosis and ccRCC at the multiomics level. 

. Materials and methods 

.1. Data processing and calculation of disulfidptosis state across cancers 

Transcriptome, clinical parameters, and other omics level datasets

including single nucleotide variants [SNV], copy number variation

CNV] and methylation) were downloaded from The Cancer Genome At-

as Program [TCGA] pancancer project with the use of the R package TC-

Abiolinks. 19 Ten disulfidptosis-related signatures (including six syner-

istic and four suppressor hits) were summarized from Liu’s study (Sup-

lementary Table 1). 18 We systematically calculated the correlation of

enomic mutations and the expression of ten hits by the Spearman index.

he transcriptome of fragments per kilobase of transcript per million

ragments mapped (FPKM) was transformed into transcripts per million

TPM) to perform further analysis. For cancer types that only possess

pecific omics-dimensional information or lack normal sample controls,

e restrict our analysis to the characteristics of the disulfide-associated

eath signal at the corresponding omics level. In addition, three large

cRCC cohorts from Immotion150 (sample size = 823), Fudan Univer-
264
ity Shanghai Cancer Center (FUSCC) cohort (sample size = 133) and

PTAC-ccRCC (sample size = 133) projects, with matched transcrip-

ome and clinical information, were adopted to perform validation anal-

sis. 20–23 The base line information, download links of the above men-

ioned cohorts were summarized in Supplementary Table 2. 

The index for quantifying disulfidptosis levels was established by

nalysing the gene expression data of core regulators of disulfidptosis,

ncluding NUBPL, NDUFA11, LRPPRC, OXSM, NDUFS1, and GYS1 as

ositive components, and SLC7A11, SLC3A2, and RPN1 as negative com-

onents. The enrichment score (ES) of gene sets that positively or neg-

tively regulate disulfidptosis was calculated using single-sample gene

et enrichment analysis (ssGSEA) in the R package GSVA. The normal-

zed difference between the ES of positive and negative components was

efined as the disulfidptosis score, allowing for computational analysis

f disulfidptosis levels in tissue samples. 

.2. Identification and verification of disulfidptosis-related subtypes in 

cRCC 

Ten disulfidptosis hit-based expression matrices of ccRCC from

CGA-KIRC were treated as the training cohort to perform cluster analy-

is by ConsensusClusterPlus package. 24 The optimal cluster number was

etermined by consensus cumulative distribution function (CDF) and

roportion ambiguous cluster number with prior knowledge. After iden-

ifying the cluster number, each subtype’s biomarkers, summarized in

upplementary Table 3, from TCGA-KIRC were utilized to perform near-

st template prediction (NTP) analysis among three independent ccRCC

ohorts (including Immotion150, FUSCC and CPTAC-ccRCC), and the

rognostic difference among three independent ccRCC cohorts was uti-

ized to verify the reproductivity and robustness of the four disulfidp-

osis related subtype (DCS). NTP analysis were finished with the appli-

ation of function ‘runNTP’ from R package MOVICS. Specifically, the

ost significantly differential expression gene (DEG), as determined by

og2FoldChange, are selected as biomarkers for each distinct DCS sub-

ype. These biomarkers must meet the significance threshold (adjusted

 < 0.05) and should not be shared with any biomarkers identified for

ther subtypes. 

.3. Identification of genes and pathway features among subtypes 

Different disulfidptosis type-related signatures, or DEGs, were de-

ermined by the DEseq2 package based on the count matrix. 25 Signifi-

ant DEGs were selected with two parameters, including false discovery

ates less than 0.05 and absolute fold change more than 1.8. Visual-

zation of DEGs and disulfidptosis genes was performed by the Com-

lexheatmap package. Accordingly, the biological annotation behind

EGs was analysed by the package with the aid of Msigdb datasets. 26 , 27 

Ss of pathways from the packages MOVICS and IOBR were calculated

y the package GSVA. 28 Transcriptome factor activation scores were

uantified with the use of the R package RTN based on transcriptome

atrix. 29 , 30 

.4. Correlation of disulfidptosis and tumor microenvironment components 

n ccRCC 

We quantified immune cell- and component-related signature scores

y the single-sample GSVA algorithm. 31 Seven antitumour step scores

f antitumors were downloaded from the TIP database. 32 We calculated

he correlation of the expression level of immune genes and immune

ene set signatures extracted from the IOBR and MOVICS packages. 28 

he degree of immune cell infiltration was quantified by seven decon-

olution algorithms. The R package estimate was adopted to evaluate

hree scores, including stromal, immune and ESTIMATE scores. 33 The

essel normalization score was calculated by the ratio of pericytes to

he endothelial cell score of each sample, which has been reported in

revious work. 34 
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.5. Genomic and drug sensitivity between subtypes 

The SNV information and tumor mutation burden (TMB) calculation

f TCGA-KIRC were performed by the Maftools package. 35 Genome am-

lification and deletion events were calculated with application of GIS-

IC software. 36 For mutation frequency and cooccurrence events, the

nner function from Maftools was adopted. Therapy response informa-

ion from the Genomics of Cancer Drug Sensitivity (GDSC), Connectivity

ap (CMAP) and profilingrelative inhibition simultaneously in mixtures

PRISM) databases was downloaded to detect potential potent agents for

ifferent types, especially for DCS3. 37 The half maximal inhibitory con-

entration (IC50) of each cluster was calculated and compared by the R

ackage pRRophetic. 38 

.6. Impact of NU1025 on ccRCC cell malignancy 

NU1025 (id: S773001) was purchased from Selleckchem. The opti-

al concentration of 500 nM was used according to the instructions. We

elected the DCS3-related cancer cell line A704 by the NTP algorithm

rom the Cancer Cell Line Encyclopedia (CCLE) database and used A704

o perform in vitro experiments. Transwell, migration, colony formation,

nd wound healing experiments were applied to detect the inhibitory

ffect of NU1025. The detailed experimental details have been intro-

uced and summarized in our previous works. 39–41 Each experiment

entioned above was performed three times independently. 

.7. Statistical analysis 

All data cleaning, results visualization, and statistical comparison

ere performed in R and SPSS software. Comparisons of continuous

ariables were performed with t tests or Kruskal ‒Wallis or ANOVA tests.

ategorical variables were compared by the chi-square test. Cancer- and

etabolism-related signatures were analysed with the aid of the pack-

ges MOVICS and IOBR. 42 Visualization of disulfidptosis-related genes

t multi-omics level was performed by the GSCA website. 43 , 44 Kaplan–

eier curves were plotted by survival and survminer packages. P values

nd false discovery rate (FDRs) less than 0.05 were considered signifi-

antly different. More analysis details can be seen in our previous stud-

es. 45–48 

. Results 

.1. Dysregulation of disulfidptosis-related genes across cancers 

The overall strategy of this study is summarized in Supplemen-

ary Fig. 1. Since cell death-related signatures play a pivotal role in

ancer progression, we first analysed the expression and disulfidpto-

is level, prognostic impact, methylation, CNV and SNV among can-

ers. As Figs. 1 A and B showed, nearly ten disulfidptosis signatures,

xcept SLC7A11 , were downregulated in tumor tissues compared with

ormal tissues; SCL7A11 was most highly expressed in cholangiocar-

inoma (CHOL) among all cancer types. Regarding the prognostic im-

act of disulfidptosis-related signatures, all normal genes displayed risky

oles when analysing OS and progression free interval (PFI) ( Fig. 1 C).

nterestingly, the prognostic impact of NUBPL, LRPPRC, OXSM, NDUFS1

nd NCKAP1 was protective in kidney renal clear cell carcinoma (KIRC)

 Fig. 1 C). After calculating the disulfidptosis score in each cancer type,

e found that most tumor tissues led to a depressed disulfidptosis state

ompared with normal tissues, except glioblastoma (GBM), as shown in

ig. 1 D. We also analysed the DNA methylation level of the ten hits and

ound that the deregulated expression state of most signatures was sig-

ificantly negatively correlated with methylation, especially in SLC7A11

nd RPN1 ( Fig. 1 E). In addition, we noticed that the mutation frequency

f LRPPRC was highest among the ten hits, and UCEC was ranked as the

ottest musted type among all cancers ( Fig. 1 F). Finally, we observed
265
hat the most common types of CNV among the ten hits were heterozy-

ous amplification and deletion, and this phenomenon was especially

oticeable in the OXSM and RPN1 genes and in ACC, UCS, LUSC, HNSC

nd OV ( Fig. 1 G). 

.2. Biological implication of disulfidptosis in cancers 

To better understand the potential biological roles of hits of disul-

dptosis, we investigated the correlation between classical cancer hall-

arks, immune processes and disulfidptosis score. Notably, a negative

orrelation index was found among TNF 𝛼 signaling via NF 𝜅B, KRAS,

nterferon 𝛾 and 𝛼, inflammation, IL6-JAK-STAT3 and epithelial mes-

nchymal transition (EMT) and disulfidptosis score, while a positive

orrelation was found between oxidative phosphorylation and disulfidp-

osis ( Fig. 2 A). Fig. 2 B showed a significant correlation between disul-

dptosis and immune components, which was found to stimulate in-

ltration of neutrophils, Th17 cells, Tregs, effector memory cells and

onocytes while inhibiting CD4 T cells, Tfh cells, NK cells, CD8 T

ells, gamma delta T cells and cytotoxic cells in cancers. The datasets

rom starBase, microde and mirnet implicated the ceRNA network of

LC7A11 and NCKAP1 , which suggested that AC093010.3-has-miR-27a-

p-SLCA11, AC103702.1-has-miR-122-5p-SLCA11 and has-miR-34c-3p-

CKAP1 might contribute to the dysregulation of SLCA11 and NCKAP1

mong cancers ( Fig. 2 C). The results from Genemania revealed the po-

ential interaction of ten hits with other genes, such as SLC7A10, NUBP2,

DM5 and SLC1A7 ( Fig. 2 D). The results from the GSCA database

howed that most disulfidptosis hits were positively correlated with

poptosis, the cell cycle and the DNA damage pathway but negatively

orrelated with EMT ( Fig. 2 E). Regarding the drug sensitivity of hits, the

esults from the GDSC database postulated that LRPPRC was positively

elated to dasatinib, temsirolimus, AZD6482, and BEZ235, while GYS1

as nearly negatively correlated with all drugs, especially TGX221, MG-

32 and AZ628 ( Fig. 2 F). Furthermore, Fig. 2 G showed that high expres-

ion of NCKAP1, SLC7A11 and GYS1 resulted in sensitivity to nearly all

rugs in The Cancer Therapeutics Response Portal (CTRP), while LRP-

RC led to a reverse correlation. 

.3. Different disulfidptosis-related subtypes displayed distinctive clinical 

utcomes 

As we found above, nearly all disulfidptosis-related genes were pro-

ective factors for ccRCC ( Fig. 1 C) and disulfidptosis scores were sig-

ificantly depressed in tumor tissues ( Fig. 1 D), which was unique and

ifferent from other cancers. Thus, we investigated the role of the ten

isulfidptosis hits in ccRCC. The CNV frequency of ten hits differed,

nd OXSM displayed the highest genome loss rate, while NCKAP1 had a

igher genome gain frequency ( Fig. 3 A). The total mutation frequency of

en hits was lower in ccRCC, which ranked as LRPPRC, NDUFS1, SLC3A2

nd OXSM ( Fig. 3 B). In the whole expression landscape of ccRCC, we

oticed that SLC3A2, OXSM, NUBPL, NDUFS1, LRPPRC and NCKAP1

ere more highly expressed, while NDUFA11, SLC7A11, GYS1 and RPN1

ere less expressed in normal tissues ( Fig. 3 C). Univariate Cox analy-

is further showed the protective roles of disulfidptosis hits in ccRCC

nd suggested three expression relation patterns of ten hits ( Fig. 3 D).

ig. 3 E revealed the expression correlation of ten hits, and we found

hat LRPPRC and NCKAP1 had the most significant positive correlation,

hile NUBPL and NDUFA11 had a negative relationship in ccRCC. We

ext applied cluster analysis of ccRCC to better understand the role of

isulfidptosis in ccRCC, and we chose 4 as the optimal subtype num-

er (Supplementary Fig. 2A-D). We found that the prognosis of DCS4

as superior to that of the other types in both OS and PFI, as shown

n Fig. 3 F. The expression level of ten hits also varied across four types

nd normal renal tissues, and we defined DCS3 as the disulfidptosis cold

ubtype, DCS1 as the disulfidptosis hot subtype, and DCS2 as the mixed

r disulfidptosis relative cold subtype ( Fig. 3 G). Compared with DCS1,

he other three subtypes had poor clinical characteristics, such as T, N,
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Fig. 1. Multiomics futures of disulfidptosis among pancancer. (A) Expression difference of ten disulfidptosis hits between tumor and normal tissue across pancancer. 

Red represents higher expression in tumor tissues, while blue represents lower expression levels. (B) SLC7A11 expression in normal (blue) and cancer (red) tissues. (C) 

Prognostic impact of disulfidptosis hits in various cancers. The upper panel represents the prognostic impact on OS, and the lower represents PFI. (D) Disulfidptosis 

score calculated by ssGSEA difference between normal and tumor tissues. (E) Methylation difference of ten disulfidptosis hits; purple represents hypermethylation, 

while orange represents hypomethylation. (F) Single-nucleotide variants of ten hits; a deeper color represents a high frequency of mutation. (G) Pie plot indicating 

copy number variation of ten disulfidptosis hits. The types of copy number variation are illustrated on the left. Amp, amplification; Del, deletion; FDR, false discovery 

rate; Freq, frequency; Hete, heterogeneity; Homo, homogeneity; Methy.diff, methylation differentiation; N, normal; OS, overall survival; PFI, progression-free interval; 

T, tumor; ns, not significant. 

266
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Fig. 2. Characteristics of ccRCC and subtype or risk score. (A) GSEA of cancer hallmark enrichment scores between high and low disulfidptosis score subtypes. (B) 

Correlation of disulfidptosis score and immune signatures among cancers. Orange represents a positive correlation, while purple represents a negative correlation. (C) 

ceRNAs of lncRNAs (blue), miRNAs (red) and mRNAs (yellow) of disulfidptosis hits. (D) Gene interaction of ten hits from Genemania. (E) Correlation of disulfidptosis 

score and classic cancer pathway score. The total effect of each hit was the activated score minus the inhibited score. (F, G) Correlation of drug sensitivity and ten 

hit expression levels from the GDSC (F) and CTRP (G) databases. FDR, false discovery rate; NES, normalized enrichment score. ∗ , P < 0.05; # , false discovery rate < 

0.05. 
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Fig. 3. Association of subtype in ccRCC based on disulfidptosis hits. (A) Lollipop chart showsed the CNV copy number variation of ten hits in ccRCC. (B) The waterfall 

plot depicted the mutation landscape of disulfidptosis genes in TCGA-KIRC, altered in 12 (3.57%) of 336 samples. (C) Heatmap indicated the expression differences 

in tumor and normal tissues from TCGA-KIRC. (D) Heatmap and forest plot illustrated the expression pattern and OS of ten hits by univariate Cox analysis. (E) 

Correlation of the expression of ten hits. Red represents a positive correlation, while blue represents a negative correlation. (F) Overall survival and progression free 

survival analysis of four subtypes in ccRCC. (G) Heatmap illustrated the different expression levels of disulfidptosis hits among subtypes and normal tissues (upper 
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 and stage ( Fig. 3 G). We adopted three independent ccRCC cohorts

t the transcriptome and protein levels from previous works and uti-

ized NTP to perform cluster analysis. The results showed that DCS3 in

oth cohorts led to a poor prognosis, which proved the applicability and

obustness of the cluster results based on disulfidptosis hits (Supplemen-

ary Fig. 2E and F, Supplementary Table 4). 

.4. Distinctive biological and transcriptome factor regulon differences 

To decipher the biological differences among the four types, we next

erformed gene expression analysis. The DEGs of four subtypes were

nnotated on several classic GO terms of ccRCC. In detail, we found

hat keratinization and negative regulation of apoptosis execution were

ctivated in DCS3, while the Hippo signal was activated in DCS4. The

ownregulated DEGs also showed such biological differences ( Figs. 4 A

nd B). Further analysis revealed that DCS4, with the best prognosis,

isplayed a depressed state of several immune-related signals, includ-

ng interleukins, cytokines, the TNF superfamily, cell functions, B and

-cell function, and chemokines ( Fig. 4 C). We also verified such dif-

erences in the MOVICS package and found that several classic cancer

athways, including EMT, MDSCs, immune checkpoints, CD8 T-cell ex-

austion, Tregs and plasmacytoid dendritic cells (pDCs), were down-

egulated in DCS4, while those signals were activated in the other can-

er subtypes ( Fig. 4 D). We also noticed several specific activated tran-

criptome regulators in DCS3, including PITX2, HOXA13, SHOX2, ZIC2,

MRT3, and HOXB13, and depressed transcriptome regulators, includ-

ng ZEB2, ZNF93, TFE3, TP53, E2F1 and FOXM1 ( Fig. 4 E). We also

ound that several hallmarks were downregulated in DCS3, including

he G2M checkpoint, E2F, PI3K-AKT-MTOR, protein secretion, and mi-

otic spindle, while kras signaling was activated (Supplementary Fig.

A). Specifically, Supplementary Fig. 3B showed that inositol phosphate

etabolism, ADP ribosylation, glycogen biosynthesis and degradation,

nd hexosamine biosynthesis were depressed in DCS2. 

.5. DCS3 exhibited an immune dysfunctional state among subtypes 

We noticed that several immune stimulators were lower in DCS3,

uch as BTN3A1, CXCL9, CXCL10, EDNRB and several antigen presen-

ation genes, which might be explained by the dysregulated state of DNA

ethylation and genome mutation ( Fig. 5 A). Consistently, we noticed

hat the CD8 T effector score was highest in DCS3, while mismatch re-

air, nucleotide excision repair, DNA damage response (DDR) and DNA

eplication scores were lowest in this type ( Fig. 5 B). In addition, we

oticed that DCS3 had the lowest stromal score and highest immune

core among the four types ( Fig. 5 C). We next applied the TIDE algo-

ithm to compare the antitumour potency among the four types, and we

bserved that the TIDE and immune dysfunction scores were higher in

CS3, while the immune exclusion score was lowest in DCS3 ( Fig. 5 D).

he MSI signature score also varied among the four types ( Fig. 5 D). The

YT score distribution also proved the antitumour deficiency of DCS3

 Fig. 5 E). When estimating the immunotherapy response ( Fig. 5 F), we

ound that DCS3 showed a lower response rate (26%) than the other

ypes (DSC1: 37%, DCS2: 31%, DCS4: 42%). We noticed that DCS3 had

n immune cold phenotype in the TIMER algorithm, and neutrophil and

2 cell signals were consistently lower across different immune algo-

ithms (Supplementary Fig. 4A). 

When we compared differences in TIP, we found various activated

tates among the four ccRCC subtypes. In detail, DCS1 showed relatively

ow scores for cancer antigen release and presentation, which might help

xplain the relatively depressed antitumour immunity (Supplementary

ig. 4B). We also found that cancer-associated fibroblasts (CAF) scores

nd vessel normalization scores were lowest in DCS3 (Supplementary

ig. 4C). In addition, we also compared the immune-related gene expres-

ion levels among subtypes, which also showed a complicated immune

tate, among which several chemokines and receptors were downregu-

ated in DCS3, while most immune inhibitors and stimulators were ex-
269
ressed at lower levels in DCS4 (Supplementary Fig. 5A). Furthermore,

e observed that nearly all immune checkpoint inhibitor (ICI) regula-

ors were downregulated in DCS4; consistently, all immune cells were

inimally infiltrated in DCS4, except endothelial cells (Supplementary

ig. 5B). 

.6. DCS3 led to the most unstable genome structure compared with the 

ther types 

In total, we found that DCS4 had a lower mutation rate (82.79%)

han the other three types (DCS1: 89.47%, DCS2: 90.29%, DCS3:

9.47%), as shown in Fig. 6 A. Such a difference was obvious when

omparing DCS3 with DCS4 on chromosomes 3, 5 and 7 ( Fig. 6 B). De-

ailed information on the genome can be found in Supplementary Fig.

. The genome alteration frequency of DCS3 was the highest, and that

f DCS4 was the lowest ( Fig. 6 C). We also noticed a higher TMB rate in

CS3, even though the difference was not significant ( Fig. 6 D). In ad-

ition, we noticed that RTK− RAS, PI3K and Hippo signals displayed a

ower mutated frequency when compared with the remaining subtypes

Supplementary Fig. 7A). We also detected significantly different mu-

ation interaction landscapes among the four types, and NALCN - TTN,

ALCN - PTEN, KDM5C - TTN , and SETD2 - PBRM1 cooccurred in DCS2,

hile ABCB1 - BAP1 and MTOR - BAP 1 cooccurred in DCS4 (Supplemen-

ary Fig. 7B). 

.7. Tumor cell lines belong to DCS3 were sensitive to lisitinib and NU1025

Considering the malignant phenotype of DCS3, we retrieved differ-

nt drug databases to identify subtype-specific agents, especially for

CS3. We observed that DCS3 led to paradigmatic resistance to tar-

et agents, including axitinib, crizotinib, erlotinib, imatinib, pazopanib,

aracatinib, temsirolimus, afatinib, erlotinib and sunitinib, while sen-

itizing to lisitinib ( Fig. 7 A). In addition, we detected several potential

gents for DCS3 according to the IC50 value, which consisted of CI1040,

L01011, PD0325901, Nutlin3a, LFMA13 and gefitinib ( Fig. 7 B). Fur-

hermore, datasets from CMAP suggested that NU1025 might also work

n DCS3 according to its lowest CMAP score ( Fig. 7 C). After identifying

CS subtype-related cell lines from GDSC with the use of the NTP algo-

ithm, we next performed in vitro experiments to evaluate the therapeu-

ic effect of NU1025 on A704 and 786p ( Fig. 8 A). When A704 and 786P

ells treated with NU1025 at 500 nM concentration, the prefiltration,

igration and invasion abilities were significantly inhibited, which sug-

ested that patients clustered into DCS3 might be sensitive to NU1025

 Figs. 8 B-E). 

.8. SLC7A11 was correlated with the malignant phenotype of ccRCC 

Radom forest analysis suggested that SLC7A11 ranked as the most

rognosis-relevant gene among the ten hits ( Fig. 9 A). Univariable Cox

nalysis revealed that SLC7A11 functioned as a risk factor for the OS

f the GSE167573 cohort, OS of E-MTAB-1980, OS of TCGA-KIRC, dis-

ase specific survival (DSS) of TCGA-KIRC and progression free survival

PFS) of TCGA-KIRC. KM curves also showed that the SLC7A11 high

xpression group had a short survival time ( Fig. 9 B). We found that

he SLC7A11 expression level was high in tumor tissues, and its expres-

ion level was higher in the later T and grade subgroups ( Fig. 9 C and

). SLC7A11 expression levels were also correlated with several clin-

cal parameters, including Karnofsky performance score, lactate dehy-

rogenase result and platelet qualitative result ( Fig. 9 E). At the single-

ell level, we noticed that SLC7A11 was more highly expressed in the

lasma and pDC clusters in GSE145281 and GSE139555, respectively

 Fig. 9 F). The GO term suggested that SLC7A11 might be mainly in-

olved in de novo protein folding, integrated stress response signal-

ng, noncoding RNA 3 end processing, etc. (Supplementary Fig. 8A).

SEA ranked the most potentially impacted pathways as the E2F target,

TORC1 and G2M checkpoint pathways (Supplementary Fig. 8B). We
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Fig. 4. Biofunction of DEGs among the four subtypes. (A) The left heatmap indicated the upregulated DEGs among the four types, and the annotation of upregulated 

DEGs was depicted in the right heatmap. (B) Left heatmap indicated downregulated DEGs among the four types, and annotation of downregulated DEGs was depicted 

in the right heatmap. (C, D) Heatmap presented different cancer-related signal scores and immune-related signature scores among the four subtypes. (E) Heatmap 

showed different activation scores or regulons of ccRCC-related transcriptome factors among the four types. DEGs, differential expression genes. 
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Fig. 5. Immune landscape of different disulfidptosis subtypes in ccRCC. (A) Heatmap showing the expression pattern and impact of methylation, amplification, and 

deletion frequency on immune genes among different subtypes. DCS1, red; DCS2, yellow; DCS3, green; DCS4, blue. (B) Boxplot showed different immune signature 

scores among subtypes. (C) Boxplot indicated stromal, immune and ESTIMATE scores among subtypes. (D) Boxplot combined with scatter plot depicting the TIDE, 

immune dysfunction, exclusion and MSI score among subtypes. (E) Violin plot postulates CYT score among subtypes. (F) Column scale chart of ICI response differences 

among subtypes. Co-inh, co-inhibitor; Co-stm, co-stimulator; CYT, cytolytic activity; ICI, immune checkpoint inhibitor; MSI, microsatellite instability; TIDE, tumor 

immune dysfunction and exclusion; ns, not significant; ∗ , P < 0.05; ∗∗ , P < 0.01; ∗∗∗ , P < 0.001; ∗∗∗∗ , P < 0.0001. 
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Fig. 6. Mutation profile and TMB of four subtypes. (A) Waterfall plot illustrated the mutation characteristics of four ccRCC subtypes. DCS1 (89.47%, top left), DCS2 

(90.29%, top right), DCS3 (89.47%, low left), DCS4 (82.79%, lower right). (B) Mutation details of four types of chromosomes, orange represented genome gain, 

while blue represented genome loss. (C) Barplot quantified the total copy number variation in DCS1, DCS2, DCS3 and DCS4. (D) Scatter plot indicated the TMB 

differences among the four types. Del, deletion; Ins, insertion; TMB, tumor mutation burden; ∗∗∗ , P < 0.001. 
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Fig. 7. Drug sensitivity and potential agents for different subtypes. (A) Box-violin plots showed different therapeutic sensitivities among the four subtypes. The x-axis 

showed different subtypes, and the y-axis represented the estimated IC50 values of different agents. (B) Boxplot indicated the top 10 different IC50 values of drugs 

from the GDSC database. (C) Scatter plot showed CMAP scores of different agents from the Cmap database. The lower Cmap scores suggested the high sensitivity for 

DCS3. IC50, half maximal inhibitory concentration. 
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Fig. 8. Addition of DU1025 could inhibit ccRCC progression. (A) Nearest template prediction analysis of the expression matrix of ccRCC cell lines from CCLE based 

on biomarkers from four subtypes. (B, C) Different proliferation ability of ccRCC cell in CCK8 kit and (C) clone formation. (D) Wound healing experiments showed 

difference migration ability of different groups. (E) Migration and invasion assays of 786p and A704 treated or not treated with NU1025. NC, negative control. ∗∗ , 

P < 0.01; ∗∗∗ , P < 0.001. 
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lso divided all ccRCC patients into low SCL7A11 and high SCL7A11

ubtypes based on the median expression level and found that PBRM1

nd chrome3 gain events had a higher mutation frequency in the lat-

er group, which could help explain the aberrant expression level of

LC7A11 in ccRCC (Supplementary Fig. 8C). Considering the higher ex-

ression level of SLC7A11 in ccRCC patients, we found several potential

gents targeting the SLC7A11 group in ccRCC, including temozolomide,

icalutamide, bosutinib and lenalidomide (Supplementary Fig. 8D). 

. Discussion 

Resistance to cell death is an important feature of tumors, and the

nduction of tumor cell death is an important pathway for the efficacy

f combined therapy, which can be synergistic with other therapies,

ncluding targeted therapies and immunotherapies. 49 Programmed cell

eath (PCD), or RCD, not only plays a key role in development and cel-

ular homeostasis, but its dysregulation is closely associated with many

iseases, including inflammation and cancer. 50 PCD, including scorch

eath, pyroptosis, autophagy, and necroptosis, is a central area of re-

earch to unravel resistance to tumor cell death, as it is regulated by

pecific molecular pathways and can be targeted by genetic or phar-

acological means. 51 PCD and immunotherapy are closely linked, with

he latter acting as inducers of programmed death in which CD8+ T cells

nhibit tumor growth by inducing tumor cells to undergo necrosis, py-

optosis and ferroptosis. 52 Approximately two-thirds of ccRCC patients

o not respond to immunotherapy due to defective release of tumor

ntigens caused by cell death resistance. 53 Inflammatory factors and

pecific antigens released by tumor cells induced by PCD can turn cold

umors into hot tumors, which in turn recruit immune killer cells, in-

luding NK and CD8+ T cells. Recently, the combination regimen of

RAF and MEK inhibitors (BRAFi + MEKi) was shown to recruit CD4+ 

nd CD8+ cells by inducing tumor cells to undergo scorch death, which

n turn induces dendritic cell maturation. 9 T-cell infiltration exerts an

ntitumour immune effect, and this regimen has been approved by the

DA for the treatment of melanoma with BRAF V600E/K mutations. 51 

owever, programmed death can also have pro-cancer effects in cer-

ain cancers, and Demuynck et al. found that ferroptosis in breast can-

er cells increased oxidized lipid levels in the microenvironment, lead-

ng to reduced phagocytosis and antigen cross-presentation by dendritic

ells, which helped tumor cells evade immune surveillance. 54 In conclu-

ion, PCD and antitumour immunity are inextricably linked; the specific

oles played by different types of PCD in tumors can be anticancer or

ro-cancer, depending on the heterogeneity of the tumor itself and the

egulatory mechanisms after cell death. 

Recently, Li and colleagues observed a novel form of RCD, which is

ore common in SLC7A11 high expression cancer cell lines, and they fi-

ally defined it as disulfidocytosis. 18 In detail, when performing glucose

tarvation in SCL7A11 high-expressing cells, aberrant disulfide bonds

ould form in the framework of actin cytoskeleton proteins and finally

imulate the collapse of F-actin. In contrast to traditional ferroptosis

nd apoptosis, one of the typical features is aberrant accumulation of

ntracellular disulfides. Considering the paradigmatic high expression

f SCL7A11 in solid tumours, targeting disulfidptosis in the integrated

reatment of cancer is regarded as a valuable strategy. Growing evidence

uggests that inducing cancer cell death can inhibit cancer progression

y limiting the cancer cell itself but also reshaping the tumor microenvi-

onment. Our previous work found that inducing renal cell cuproptosis

ould enhance antitumour immunity by activating cGAS-STING-TBK1

ignaling in dendritic cells, which promoted the efficacy of immune

heckpoint inhibitor therapy in a C57BL mouse model. 45 , 46 In addition

o cuproptosis, we also found that pyroptosis was depressed in ccRCC

nd that a pyroptosis-activated phenotype was associated with better

linical outcomes and a hot immune microenvironment. 55 Studies from

revious works also revealed that inducing PCD inducing necroptosis,

yroptosis and autophagy could stimulate the release of cancer antigens,

hus priming immune cell infiltration and promoting the maturation of
276
ertiary lymphoid structures. 56 All these findings suggest that PCD is out

f control in cancer tissues and that restoring the normal state of PCD

evels could enhance other forms of cancer therapies, including targeted

nd immune-related agents. 

Prior research has investigated the molecular and clinical attributes

f different types of cell death in tumors, with a particular focus on disul-

dptosis in both oncological and non-oncological conditions at various

mics levels. 57 , 58 For example, Huang et al. developed a new prognostic

odel based on disulfidptosis in lung adenocarcinoma, revealing asso-

iations with the tumor microenvironment. Patients classified into the

igh-risk category displayed elevated tumor purity and decreased stro-

al score, ESTIMATE score, and Immune score. 59 Chen et al. conducted

 thorough investigation into disulfidptosis in bladder cancer (BCa), elu-

idating its role in the modulation of tumor advancement, response to

reatment, and overall survival among BCa patients. Additionally, the

tudy identified POU5F1 and CTSE as promising targets for potential

herapeutic interventions in the clinical management of BCa. 60 A study

onducted by Xie et al. demonstrated a correlation between disulfidpto-

is activity and key biological processes and pathways in different types

f cancers. This activity was found to be linked to tumor immune char-

cteristics and predictive of immunotherapy outcomes. Specifically, the

egulator of disulfidptosis, GYS1, was identified as a potential target

or triple-negative breast cancer and validated through both in vitro and

n vivo experiments. 61 These findings offer valuable insights into can-

er progression and potential strategies for precise management. Un-

il now, there has been no comprehensive analysis of disulfidptosis in

cRCC, and the potential interaction between disulfidptosis and the tu-

or microenvironment is largely unclear. In this work, we first con-

ucted a pancancer analysis of ten disulfidptosis hits and found a uni-

orm phenomenon in which nearly all disulfidptosis hits and scores were

ownregulated in cancers. In detail, such aberrant expression patterns

ight be caused by abnormal methylation and mutation events, which

re obvious in uterine corpus endometrial carcinoma, skin cutaneous

elanoma, and colon adenocarcinoma. In ccRCC patients, we performed

 cluster analysis and deciphered four subtypes with distinctive bio-

ogical and prognostic characteristics, and the results were reproduced

n two independent datasets. Importantly, we found several candidate

gents that are officious for DCS3 and verified these findings in corre-

ponding subtype-specific cell lines, which could inhibit cell prolifera-

ion and metastasis. The role of SLC7A11 was also investigated at multi-

le levels and displayed an oncogenic role in ccRCC. Furthermore, these

our distinct phenotypes exhibited notable differences in their molecular

lteration landscape and activation of signaling pathways, resulting in

arying metabolic processes and biological behaviours (Supplementary

able 5). 

Similar to other tumors, the heterogeneity of ccRCC prognosis stems

rom intrinsic molecular alterations. Currently, the development of high-

hroughput sequencing and bioinformatics promotes the elucidation of

omprehensive molecular alteration landscape in ccRCC. Many novel

olecular clustering systems were established based on different al-

ered molecules and forms. For instance, Hu et al. identified a novel

cRCC subtype, termed as De-clear cell differentiated (DCCD)-ccRCC,

ia multi omics datasets including genomic, transcriptomic, proteomic,

etabolomic and spatial transcriptomic and metabolomic profiles from

ongji Hospital RCC (TJ-RCC) cohort. 62 Their work revealed that ccRCC

atients owing fewer lipid droplets, reduced metabolic activity, en-

anced nutrient uptake capability and a high proliferation rate, led

o a relatively poor prognosis. The RCC program of TRACERs catego-

ized ccRCC into seven primary subtypes, which include VHL mono-

river, PBRM1-SETD2, PBRM1 somatic copy number alteration (SCNA),

BRM1-PI3K, VHL wildtype, multiple clonal drivers, and BAP1 driven.

hese distinct genomic subtypes displayed a notably diverse progno-

is. 63 Furthermore, Meng et al. conducted a consensus analysis of ccRCC

tilizing multiple omics datasets. 64 Among these subtypes, MoS1 exhib-

ted the worst prognosis, potentially due to an immunosuppressed mi-

roenvironment and activated hypoxia characteristics but may respond
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ositively to PI3K/AKT inhibitors. MoS2 displayed a higher frequency of

utations in VHL and PBRM1, indicating a more favourable prognosis

nd potential suitability for sunitinib therapy. MoS3 was identified as

he immune hot subtype, suggesting potential benefits from anti-PD-1

mmunotherapy. Undoubtedly, the subtyping studies mentioned above,

hrough diverse gene sets or specific clustering algorithms, have iden-

ified particular subtypes of ccRCC patients, offering new insights for

ersonalized treatment of ccRCC. Similarly, this study, by systemati-

ally analysing the clinical and biological roles of disulfidptosis signal-

ng in pan-cancer and ccRCC, classifies ccRCC into four subtypes, among

hich the DCS3 subtype is associated with the worst prognosis and has

een validated across multiple ccRCC cohorts. In this subtype, pathways

elated to keratinization and resistance to apoptosis are significantly ac-

ivated. Ultimately, we discovered that NU1025 could act as a sensitive

rug for the DCS3 subtype. 

Studies have shown that the extensive immune infiltrative, highly

ascularized, and fibrotic nature of the TME in ccRCC compared to

ther solid tumors not only supports the use of immunotherapy but

lso has a significant impact on patient response through its complex ef-

ects. 65 , 66 However, the interaction between cell death and the TME and

hether disulfidocytosis can promote immune infiltration in ccRCC are

nclear. We found that antitumour immunity was hampered in DCS3,

ven though the immune score calculated in the ESTIMATE algorithm

as the highest among the four types. Such a paradox could be referred

o as deficiency of DNA repair and tumor antigen presentation, which

nduced persistent production of ineffective genomic-derived antigens.

onsistently, when comparing the genomic mutation landscape among

he four types, we found that the copy number alteration rate was high-

st in DCS3, which resulted in a high TMB. In addition, DCS3 led the

owest response rate to ICI (only 26% compared with 42% in DCS4)

nd cytolytic activity (CYT) score. Interestingly, Liu found that patients

ith characteristics of TMB high and CNA low might reach an opti-

al therapy result to ICI. 67 The results were different with our findings

n DCS4 and could be explained by accumulating CNA with deficient

bility of repair inducing antigens of no tumor biological futures. 68 We

ound that keratin signaling was significantly activated in DCS3, which

ight help explain the complicated TME in this type. Indeed, several

revious works have proven their roles in cancer progression and tu-

or immunity. 69 Research from Wang et al. suggested that tumor cells

ould release the coating structure of CXCL12-KRT19, thus mediating

D8 T-cell exclusion. Wang and colleagues found a classic keratin family

ember, K17, which was highly expressed in head and neck squamous

ell carcinoma, and knockout of K17 could reverse ICI resistance in a T-

ell-dependent manner. 70 The positive correlation of immune signature

nd keratins was also found in conjunctive melanoma. 71 All these find-

ngs suggest that keratin-related proteins participate in cancer immune

vasion. 

To maximize the potential benefits of immunotherapy, several clin-

cal trials have combined anti-PD-1/PD-L1 antibodies with anti-CTLA-4

ntibodies or TKIs as first-line treatment for ccRCC. 72 Some recently

ublished results showed that combination therapy is overall better

han TKI monotherapy. 73 Although combination therapy has become

he first-line treatment option for mRCC, not all patients benefit from it,

nd serious side effects can occur. 74 , 75 For example, in the KEYNOTE-

26 trial, the most common adverse events with the combination of

xitinib and pembrolizumab were diarrhea and hypertension, and the

ncidence of liver toxicities was higher than with monotherapy, with

0.5% of patients having to discontinue at least one treatment due to

dverse events. 72 We hypothesized that reactivating disulfidocytosis in

cRCC could enhance immune therapeutic efficacy in ccRCC. Interest-

ngly, we found that NU1025, a potent PARP inhibitor, might be useful

or DCS3. When culturing ccRCC cell lines with the addition of NU1025,

he malignant biological behaviours of ccRCC were significantly ham-

ered, which preliminarily suggested that NU1025 could be utilized as

 novel agent for ccRCC therapy. Basically, NU1025 does not affect cell

iability at normal concentrations and only works in specific cancer cell
277
ines, including BRCA mutation breast cancer. 76 Koustas found that the

ombination of the coinhibition effect of SU11274 (a c-MET inhibitor)

nd NU1025 could reduce tumor proliferation and trigger PCD in gastric

ancer. 77 Taken together, these results suggest that NU1025 functions

s a novel weapon for ccRCC patients with high risk and deficiency in

isulfidptosis signaling. 

It is worth noting that one of the notorious characteristics of ccRCC

s activated glucose intake and consumption, followed by aberrant

etabolic reprogramming. Previous works found that SLC7A11 was in-

olved in PCD in ccRCC via different signals. Xu et al. revealed that

LC7A11 involve in ccRCC prognosis and promoted by inhibiting ferrop-

osis. 78 SLC7A11 is also involved in ferroptosis depression as a down-

tream factor of the MITD1-TAZ and PDIA1-ATF4 pathways in ccRCC. 79 

e also found that SLC7A11 acted as the most important variable among

en disulfidptosis hits, and the prognostic impact was consistent across

ifferent ccRCC cohorts. We detected that the SLC7A11 expression level

as higher in plasma and pDC cells at the single-cell level. Further stud-

es should focus on investigating the immune impact of SLC7A11 in

cRCC. 

Our work is the first comprehensive analysis of disulfidptosis across

ancers and a detailed description of ccRCC, which shed new light on

ancer diagnostics and management. Firstly, the disulfidptosis-related

enes included in this study were limited to the top 10 genes identi-

ed by Liu et al. using the CRISPR-Cas9 technology. This gene set might

nly partially represent the activation or inhibition states of intracellu-

ar disulfidptosis, necessitating further basic research to fully elucidate

he disulfidptosis signaling axis. Secondly, although potential therapeu-

ic drugs for the DCS3 subtype, such as NU.1025, were preliminarily

dentified using the GDSC database and the NTP algorithm, and further

alidated through in vitro experiments, the efficacy of this agent, espe-

ially for patients with the DCS3 subtype, still requires additional molec-

lar experiments, particularly in vivo studies, such as patient-derived

enografts or organoid models. Finally, the cohorts used in this study

ere all retrospective, and whether this molecular subtyping can accu-

ately stratify renal cancer patients in real-world cohorts with precision

isk stratification remains to be validated through the establishment of

rospective cohorts. 

. Conclusions 

In conclusion, our work investigated the role of disulfidptosis across

ancers, especially in ccRCC. Four novel ccRCC subtypes were first iden-

ified with complicated biological and immune characteristics. Among

hese, DCS3, a subtype with inferior clinical outcomes, was suggested

o be stratified from ccRCC patients with radical treatments. In in vitro

xperiments, we verified the therapeutic efficacy of NU1025 on DCS3-

elated cell lines and showed satisfactory therapeutic value. To con-

lude, this work provides novel insights into PCD and ccRCC, and we

elieve that disulfidptosis could help improve diagnosis and therapy for

atients with ccRCC. 
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