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The homotopy perturbationmethod (HPM) is coupled with versions of Laplace-Padé and Padé methods to provide an approximate
solution to the nonlinear differential equation that describes the behaviour of a flow with a stretching flat boundary due to partial
slip. Comparing results between approximate and numerical solutions, we concluded that our results are capable of providing an
accurate solution and are extremely efficient.

1. Introduction

According to the classification of Prandtl, the fluid motion is
divided into two regions. The first region is near the object
where the effect of friction is important and is known as the
boundary layer, while, for the second type, these effects can
be neglected [1–3]. It is common to define the boundary layer
as the region where the fluid velocity parallel to the surface is
less than 99% of the free stream velocity [1].

The boundary layer thickness 𝛿 increases from the edge
along the surface on which the fluid moves. Even for the case
of a laminar flow, the exact solution of equations describing
the laminar boundary layer is very difficult to calculate and
only few simple problems can straightforward be analysed [1,
3].

An interesting case is the one where a flow is induced
into a viscoelastic fluid by a linearly stretched sheet [4–6] (see
Figure 1). Extrusion of molten polymers through a slit die for
the production of plastic sheets is an important process in

polymer industry [4]. The process is normally complicated
from the physical point of view, because it requires significant
heat transfer between the sheet and a surrounding fluid that
plays the role of a cooling medium. An important aspect
of the flow is the extensibility of the sheet which can be
employed to improve its mechanical properties along the
sheet. To obtain better results is necessary to improve the
cooling rate, whereby it is common to add some polymeric
additives intowater (which is one of themost employed fluids
as cooling medium) in order to have a better control on the
cooling rate. The flow due to a stretching boundary is also
important in other engineering processes of interest, such
as the glass fibre drawing and crystal growing among many
others. Detail discussion about this topic can be found in
[4]. This work assumes that the boundary conditions for the
problem under study are adequately described by Navier’s
condition, which states that the amount of relative slip is
proportional to local shear stress. Unlike what happens with
fluids likewater,mercury, and glycerine, which do not require
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slip boundary conditions [7], there are caseswhere partial slip
between the fluid and the moving surface may occur. Some
known cases include emulsions, as mustard and paints and
polymer solutions and clay [7].

He [8, 9] proposed the standard HPM; it was introduced
as a powerful tool to approach several kinds of nonlinear
problems. The HPM can be considered as a combination
between the classical perturbation technique and the homo-
topy (whose origin is in the topology), but not restricted to
the limitations found in traditional perturbation methods.
For instance, HPM method does need neither small param-
eter nor linearisation, just few iterations to obtain accurate
results [5, 8–35]. The fundamentals of HPM convergence can
be found in [21, 24, 25].

There are other modern alternatives to find approximate
solutions to the differential equations that describe some
nonlinear problems such as those based on variational
approaches [36–39], tanh method [40], exp-function [41,
42], Adomian decomposition method [43–49], parameter
expansion [50], homotopy analysis method [4, 51, 52], and
perturbation method [53] among many others.

To figure out howHPMmethodworks, consider a general
nonlinear equation in the form

𝐴 (𝑢) − 𝑓 (𝑟) = 0, 𝑟 ∈ Ω, (1)

with the following boundary conditions:

𝐵(𝑢,
𝜕𝑢

𝜕𝑛
) = 0, 𝑟 ∈ Γ, (2)

where 𝐴 is a general differential operator, 𝐵 is a boundary
operator, 𝑓(𝑟) is a known analytical function, and Γ is the
domain boundary forΩ.

Also, 𝐴 can be divided into two parts 𝐿 and 𝑁, where 𝐿
is linear and𝑁 nonlinear; from this last statement, (1) can be
rewritten as

𝐿 (𝑢) + 𝑁 (𝑢) − 𝑓 (𝑟) = 0. (3)

In a broad sense, a homotopy can be constructed in the
following form [8, 9]:

𝐻(V, 𝑝) = (1 − 𝑝) [𝐿 (V) − 𝐿 (𝑢
0
)]

+ 𝑝 [𝐿 (V) + 𝑁 (V) − 𝑓 (𝑟)] = 0,

𝑝 ∈ [0, 1] , 𝑟 ∈ Ω,

(4)

or

𝐻(V, 𝑝) = 𝐿 (V) − 𝐿 (𝑢
0
) + 𝑝 [𝐿 (𝑢

0
) + 𝑁 (V) − 𝑓 (𝑟)] = 0,

𝑝 ∈ [0, 1] , 𝑟 ∈ Ω,

(5)

where 𝑝 is a homotopy parameter, whose values are within
range of 0 and 1, and 𝑢

0
is the first approximation to

the solution of (3) that satisfies the boundary conditions.
Assuming that solution for (4) or (5) can bewritten as a power
series of 𝑝

V = V
0
+ V
1
𝑝
1
+ V
2
𝑝
2

2
+ ⋅ ⋅ ⋅ . (6)

Substituting (6) into (5) and equating identical powers for
𝑝 terms, it is possible to obtain the values for the sequence
𝑢
0
, 𝑢
1
, 𝑢
2
, . . ..

When 𝑝 → 1, it yields in the approximate solution for
(1) in the form

V = V
0
+ V
1
+ V
2
+ V
3
+ ⋅ ⋅ ⋅ . (7)

Another way to build a homotopy, which is relevant for
this paper, is by considering the following general equation:

𝐿 (V) + 𝑁 (V) = 0, (8)

where 𝐿(V) and 𝑁(V) are the linear and nonlinear operators,
respectively. It is desired that solution for 𝐿(V) = 0 describes,
accurately, the original nonlinear system.

By the homotopy technique, a homotopy is constructed
as follows [18]:

(1 − 𝑝) 𝐿 (V) + 𝑝 [𝐿 (V) + 𝑁 (V)] = 0. (9)

Again, it is assumed that solution for (9) can be written
in the form (6); thus, taking the limit when 𝑝 → 1 results in
the approximate solution for (8).

The variation of homotopic parameter within the range
[0, 1] amounts to a deformation that begins from an initial
equation with known solution until it becomes the equation
to be solved. From a practical point of view, taking the limit
𝑝 → 1 is just setting 𝑝 = 1.

2. Padé Approximant

Let 𝑢(𝑡) be an analytical function with the Maclaurin’s
expansion

𝑢 (𝑡) =

∞

∑

𝑛=0

𝑢
𝑛
𝑡
𝑛
, 0 ≤ 𝑡 ≤ 𝑇. (10)

Then the Padé approximant to 𝑢(𝑡) of order [𝐿,𝑀] which we
denote by [𝐿/𝑀]

𝑢
(𝑡) is defined by [54–57]

[
𝐿

𝑀
]
𝑢

(𝑡) =
𝑝
0
+ 𝑝
1
𝑡 + ⋅ ⋅ ⋅ + 𝑝

𝐿
𝑡
𝐿

1 + 𝑞
1
𝑡 + ⋅ ⋅ ⋅ + 𝑞

𝑀
𝑡𝑀

, (11)

where we considered 𝑞
0
= 1, and the numerator and deno-

minator have no common factors.
The numerator and the denominator in (11) are con-

structed so that𝑢(𝑡) and [𝐿/𝑀]
𝑢
(𝑡) and their derivatives agree

at 𝑡 = 0 up to 𝐿 +𝑀. That is,

𝑢 (𝑡) − [
𝐿

𝑀
]
𝑢

(𝑡) = 𝑂 (𝑡
𝐿+𝑀+1

) . (12)

From (12), we have

𝑢 (𝑡)

𝑀

∑

𝑛=0

𝑞
𝑛
𝑡
𝑛
−

𝐿

∑

𝑛=0

𝑝
𝑛
𝑡
𝑛
= 𝑂 (𝑡

𝐿+𝑀+1
) . (13)
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From (13), we get the following algebraic linear systems:

𝑢
𝐿
𝑞
1
+ ⋅ ⋅ ⋅ + 𝑢

𝐿−𝑀+1
𝑞
𝑀

= −𝑢
𝐿+1

𝑢
𝐿+1

𝑞
1
+ ⋅ ⋅ ⋅ + 𝑢

𝐿−𝑀+2
𝑞
𝑀

= −𝑢
𝐿+2

.

.

.

𝑢
𝐿+𝑀−1

𝑞
1
+ ⋅ ⋅ ⋅ + 𝑢

𝐿
𝑞
𝑀

= −𝑢
𝐿+𝑀

,

(14)

𝑝
0
= 𝑢
0

𝑝
1
= 𝑢
1
+ 𝑢
0
𝑞
1

.

.

.

𝑝
𝐿
= 𝑢
𝐿
+ 𝑢
𝐿−1

𝑞
1
+ ⋅ ⋅ ⋅ + 𝑢

0
𝑞
𝐿
.

(15)

From (14), we calculate first all the coefficients 𝑞
𝑛
, 1 ≤ 𝑛 ≤ 𝑀.

Then, we determine the coefficients 𝑝
𝑛
, 0 ≤ 𝑛 ≤ 𝐿 from (15).

Note that for a fixed value of 𝐿 + 𝑀 + 1, the error (12)
is the smallest when the numerator and denominator of (11)
have the same degree or when the numerator has one degree
higher than the denominator.

3. Laplace-Padé Resummation Method

Several approximate methods provide power series solutions
(polynomial). Nevertheless, sometimes, this type of solutions
lacks large domains of convergence. Therefore, Laplace-Padé
resummation method [54] is used in literature to enlarge the
domain of convergence of solutions or inclusive to find exact
solutions.

The Laplace-Padé method can be explained as follows.

(1) First, Laplace transform is applied to power series.
(2) Next, 𝑠 is substituted by 1/𝑡 in the resulting equation.
(3) After that, we convert the transformed series into a

meromorphic function by forming its Padé approx-
imant of order [𝑁/𝑀]. 𝑁 and 𝑀 are arbitrarily
chosen, but they should be of smaller values than
the order of the power series. In this step, the Padé
approximant extends the domain of the truncated
series solution to obtain better accuracy and conver-
gence.

(4) Then, 𝑡 is substituted by 1/𝑠.
(5) Finally, by using the inverse Laplace 𝑠 transform, we

obtain the exact or approximate solution.

4. Formulation

Consider a two-dimensional stretching boundary (see Figure
1). Experiments show that the velocity of the boundary 𝑈 is
approximately proportional to the distance from the orifice𝑋
[7, 58], so that

𝑈 = 𝑏𝑋, (16)

where 𝑏 is a proportionality constant.

�

u

Y

X

U = bX

Figure 1: Schematic showing a stretching boundary.

Let (𝑢, V) be the fluid velocities for the (𝑋, 𝑌) directions,
respectively. In this case the boundary condition is adequately
described by Navier’s condition, which states that the amount
of relative slip is proportional to local shear stress:

𝑢 (𝑋, 0) − 𝑈 = 𝑘]
𝜕𝑢

𝜕𝑌
(𝑋, 0) , (17)

where 𝑘 is a constant of proportionality and ] is the kinematic
viscosity of the bulk fluid. The relevant expressions for this
case are the Navier-Stokes equations:

𝑢𝑢
𝑋
+ V𝑢
𝑌
+
𝑝
𝑋

𝜌
− ] (𝑢

𝑋𝑋
+ 𝑢
𝑌𝑌

) = 0, (18)

𝑢V
𝑋
+ VV
𝑌
+
𝑝
𝑌

𝜌
− ] (V

𝑋𝑋
+ V
𝑌𝑌

) = 0, (19)

and continuity

𝑢
𝑋
+ V
𝑌
= 0, (20)

where 𝜌 and 𝑝 are density and pressure, respectively.
To solve equations (18)–(20), we have to consider bound-

ary conditions (16) and (17), besides the fact that there is no
lateral velocity or pressure gradient away from the stretching
surface.

Next, we will show that it is possible to get an ordinary
nonlinear differential equation from (18).

With this end, we note that 𝑌 component of velocity
is negative (V < 0) and by symmetry arguments it only
depends on 𝑌 (see Figure 1).Therefore, it is possible to define
a function 𝑦(𝑥) ≥ 0, 0 ≤ 𝑥 < ∞, such that [7]:

V = −√𝑏]𝑦 (𝑥) , (21)

where

𝑥 = 𝑌√
𝑎

]
. (22)

From (21) and continuity equation (20) we obtain

𝑢 = 𝑏𝑋𝑦
󸀠
(𝑥) . (23)
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Clearly (20) is satisfied under transformations (21), (22),
and (23), while (18) adopts the simpler form;

𝑦
󸀠󸀠󸀠
(𝑥) − (𝑦

󸀠
(𝑥))
2

+ 𝑦 (𝑥) 𝑦
󸀠󸀠
(𝑥) = 0. (24)

To deduce the boundary conditions of (24), we see from
Figure 1 that V(𝑌 = 0) = 0 and lim

𝑌→∞
𝑢(𝑋, 𝑌) = 0 and

therefore

𝑦 (0) = 0,

𝑦
󸀠
(∞) = 0.

(25)

Finally, substituting (16) and (23) into (17) we obtain

𝑦
󸀠
(0) = 𝑘√𝑏]𝑦󸀠󸀠 (0) + 1. (26)

5. Approximate Solution for
a Two-Dimensional Viscous Flow Equation

Next, we present some solution methods to the study prob-
lem.

5.1. HPM Method. In this section, HPM is used to find
approximate solutions for (24). Identifying the linear part as

𝐿 = 𝑦
󸀠󸀠󸀠
, (27)

and the nonlinear as

𝑁 = − (𝑦
󸀠
)
2

+ 𝑦𝑦
󸀠󸀠
, (28)

we initiate the HPM method by constructing a homotopy
based on (9), in the form

(1 − 𝑝) 𝑦
󸀠󸀠󸀠

+ 𝑝 (𝑦
󸀠󸀠󸀠

− (𝑦
󸀠
)
2

+ 𝑦𝑦
󸀠󸀠
) = 0. (29)

Assuming that the solution has the form [8, 9]:

𝑦 = 𝑦
0
+ 𝑦
1
𝑝
1
+ 𝑦
2
𝑝
2

2
+ ⋅ ⋅ ⋅ . (30)

Then, substituting (30) into (29) and equating terms
having identical powers of 𝑝 we obtain

𝑝
0: 𝑦󸀠󸀠󸀠
0

= 0,

𝑝
1: 𝑦󸀠󸀠󸀠
1

− (𝑦
󸀠

0
)
2

+ 𝑦
0
𝑦
󸀠󸀠

0
= 0,

𝑝
2: 𝑦
1
𝑦
󸀠󸀠

0
− 2𝑦
󸀠

0
𝑦
󸀠

1
+ 𝑦
󸀠󸀠󸀠

2
+ 𝑦
0
𝑦
󸀠󸀠

1
= 0,

𝑝
3: 𝑦󸀠󸀠
2
+ 𝑦
1
𝑦
󸀠󸀠

1
− 𝑦
󸀠

1

2

+ 𝑦
2
𝑦
󸀠󸀠

0
+ 𝑦
󸀠󸀠󸀠

3
− 2𝑦
󸀠

0
𝑦
󸀠

2
= 0,

𝑝
4: 𝑦󸀠󸀠
1
+ 𝑦
0
𝑦
󸀠󸀠

3
+ 𝑦
1
𝑦
󸀠󸀠

2
− 2𝑦
󸀠

0
𝑦
󸀠

3
+ 𝑦
3
𝑦
󸀠󸀠

0
+ 𝑦
󸀠󸀠󸀠

4

− 2𝑦
󸀠

1
𝑦
󸀠

2
= 0,

𝑝
5: 𝑦󸀠󸀠
3
− 𝑦
󸀠

2

2

+ 𝑦
󸀠󸀠󸀠

5
− 2𝑦
󸀠

1
𝑦
󸀠

3
+ 𝑦
4
𝑦
󸀠󸀠

0
+ 𝑦
2
𝑦
󸀠󸀠

2
− 2𝑦
󸀠

0
𝑦
󸀠

4

+ 𝑦
0
𝑦
󸀠󸀠

4
+ 𝑦
3
𝑦
󸀠󸀠

1
= 0,

𝑝
6: 𝑦
5
𝑦
󸀠󸀠

0
+ 𝑦
0
𝑦
󸀠󸀠

5
+ 𝑦
󸀠󸀠󸀠

6
− 2𝑦
󸀠

0
𝑦
󸀠

5
+ 𝑦
4
𝑦
󸀠󸀠

1
+ 𝑦
1
𝑦
󸀠󸀠

4

+ 𝑦
2
𝑦
󸀠󸀠

3
− 2𝑦
󸀠

1
𝑦
󸀠

4
+ 𝑦
3
𝑦
󸀠󸀠

2
− 2𝑦
󸀠

2
𝑦
󸀠

3
= 0,

𝑝
7: 𝑦󸀠󸀠
4
− 𝑦
󸀠

3

2

+ 𝑦
4
𝑦
󸀠󸀠

2
+ 𝑦
1
𝑦
󸀠󸀠

5
+ 𝑦
0
𝑦
󸀠󸀠

6
+ 𝑦
6
𝑦
󸀠󸀠

0
− 2𝑦
󸀠

2
𝑦
󸀠

4

+ 𝑦
5
𝑦
󸀠󸀠

1
+ 𝑦
3
𝑦
󸀠󸀠

3
− 2𝑦
󸀠

0
𝑦
󸀠

6
+ 𝑦
󸀠󸀠󸀠

7
− 2𝑦
󸀠

1
𝑦
󸀠

5
= 0.

(31)

In order to fulfil the boundary conditions from (24) given
by (25)-(26), we find that 𝑦

0
(0) = 0, 𝑦󸀠

0
(0) = 1 + 𝑘√𝑏]𝑎,

𝑦
󸀠󸀠

0
(0) = 𝑎, 𝑦

1
(0) = 0, 𝑦󸀠

1
(0) = 0, 𝑦󸀠󸀠

1
(0) = 0, 𝑦

2
(0) = 0, 𝑦󸀠

2
(0) =

0, 𝑦󸀠󸀠
2
(0) = 0, 𝑦

3
(0) = 0, 𝑦󸀠

3
(0) = 0, 𝑦󸀠󸀠

3
(0) = 0, and so on. We

have assumed the value for 𝑦󸀠󸀠(0) as some adequate constant
𝑎, which adopts the following values for the corresponding
𝑘 as follows: {𝑘 = 0, 𝑎 = −1}, {𝑘 = 0.3, 𝑎 = −0.701},
{𝑘 = 1, 𝑎 = −0.430}, {𝑘 = 2, 𝑎 = −0.284}, {𝑘 = 5, 𝑎 = −0.145},
and {𝑘 = 20, 𝑎 = −0.0438} [6].Thus, the results obtained from
above equations are

𝑦
0
= 𝑥(1 + (

1

2
𝑥 + 𝑘) 𝑎) ,

𝑦
1
=

1

6
(1 + (

1

4
𝑥𝑘 +

1

20
𝑥
2
+ 𝑘
2
) 𝑎
2
+ (2𝑘 +

1

4
𝑥) 𝑎) 𝑥

3
,

𝑦
2
=

𝑎𝑥
6

720
(1 + (−

1

7
𝑥𝑘 −

1

56
𝑥
2
+ 𝑘
2
) 𝑎
2

+(2𝑘 −
1

7
𝑥) 𝑎) ,

𝑦
3
=

𝑥
7

2520
(1 + (

1

8
𝑥𝑘
3
+

3

160
𝑥
3
𝑘

+
1

16
𝑥
2
𝑘
2
+

3

1760
𝑥
4
+ 𝑘
4
) 𝑎
4

+ (
3

160
𝑥
3
+ 4𝑘
3
+
1

8
𝑥
2
𝑘 +

3

8
𝑥𝑘
2
) 𝑎
3

+(6𝑘
2
+

1

16
𝑥
2
+
3

8
𝑥𝑘) 𝑎

2
+ (4𝑘 +

1

8
𝑥) 𝑎) ,

𝑦
4
= −

𝑥
9

45360
(1 + (

13

40
𝑥𝑘
4
+

29

440
𝑥
2
𝑘
3
+

317

640640
𝑥
5

+
101

3520
𝑥
3
𝑘
2
+

317

45760
𝑥
4
𝑘 + 𝑘
5
) 𝑎
5

+ (
87

440
𝑥
2
𝑘
2
+ 5𝑘
4
+
13

10
𝑥𝑘
3

+
317

45760
𝑥
4
+

101

1760
𝑥
3
𝑘) 𝑎
4

+(
87

440
𝑥
2
𝑘 +

39

20
𝑥𝑘
2
+

101

3520
𝑥
3
+ 10𝑘

3
) 𝑎
3
)

−
𝑥
9

45360
((10𝑘

2
+

29

440
𝑥
2
+
13

10
𝑥𝑘) 𝑎

2

+ (5𝑘 +
13

40
𝑥) 𝑎) ,
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𝑦
5
=

1

1247400
(1 + (

589

17472
𝑥
3
𝑘
3
+

37

208
𝑥
2
𝑘
4

+
419

26880
𝑥
4
𝑘
2
+
19

24
𝑥𝑘
5

+
3431

19009536
𝑥
6
+ 𝑘
6
+

3431

1118208
𝑘𝑥
5
) 𝑎
6

+ (
37

52
𝑥
2
𝑘
3
+ 6𝑘
5
+

589

5824
𝑥
3
𝑘
2
+

3431

1118208
𝑥
5

+
95

24
𝑥𝑘
4
+

419

13440
𝑥
4
𝑘) 𝑎
5
)𝑥
11

+
1

1247400
((

111

104
𝑥
2
𝑘
2
+ 15𝑘

4
+

419

26880
𝑥
4

+
589

5824
𝑥
3
𝑘 +

95

12
𝑥𝑘
3
) 𝑎
4

+ (20𝑘
3
+
95

12
𝑥𝑘
2
+
37

52
𝑥
2
𝑘 +

589

17472
𝑥
3
) 𝑎
3

+ (
95

24
𝑥𝑘 +

37

208
𝑥
2
+ 15𝑘

2
) 𝑎
2

+(
19

24
𝑥 + 6𝑘) 𝑎) 𝑥

11
,

𝑦
6
=

1

97297200
(1 + (−

599

60928
𝑥
4
𝑘
3
−
351

224
𝑥𝑘
6
−

1693

26880
𝑥
3
𝑘
4

−
3257

3360
𝑥
2
𝑘
5
+ 𝑘
7
−

35137

2437120
𝑥
5
𝑘
2

−
124291

46305280
𝑥
6
𝑥 −

124291

926105600
𝑥
7
) 𝑎
7

+ (−
3257

672
𝑥
2
𝑘
4
−
1693

6720
𝑥
3
𝑘
3
−

35137

1218560
𝑥
5
𝑘

−
1053

112
𝑥𝑘
5
−

124291

46305280
𝑥
6

+ 7𝑘
6
−

1797

60928
𝑥
4
𝑘
2
))𝑥
13

+
1

97297200

× (𝑎
6
+ (−

3257

336
𝑥
2
𝑘
3
+ 21𝑘

5
−
1693

4480
𝑥
3
𝑘
2

−
35137

2437120
𝑥
5
−

1797

60928
𝑥
4
𝑘 −

5265

224
𝑥𝑘
4
) 𝑎
5

+ (−
3257

336
𝑥
2
𝑘
2
+ 35𝑘

4
−

599

60928
𝑥
4

−
1693

6720
𝑥
3
𝑘 −

1755

56
𝑥𝑘
3
) 𝑎
4
)𝑥
13

+
1

97297200

× ((35𝑘
3
−
5265

224
𝑥𝑘
2
−
3257

672
𝑥
2
𝑘 −

1693

26880
𝑥
3
) 𝑎
3

+ (−
1053

112
𝑥𝑘 + 21𝑘

2
−
3257

3360
𝑥
2
) 𝑎
4
)𝑥
13
,

𝑦
7
= −

23

9081072000

× (1 + (𝑘
8
−

1875011

808351272960
𝑥
8
+
395

552
𝑥𝑘
7

−
1875011

35145707520
𝑥
7
𝑘 −

392303

4792596480
𝑥
6
𝑘
2

+
270805

68465664
𝑥
5
𝑘
3
+

1037917

51349248
𝑥
4
𝑘
4

+
5075

1351296
𝑥
3
𝑘
5
+

8393

225216
𝑥
2
𝑘
6
)) 𝑎
8
𝑥
15

−
23

9081072000

× (
1037917

808351272960
𝑥
4
𝑘
3
+

8393

37536
𝑥
2
𝑘
5
+ 8𝑘
7

+
2765

552
𝑥𝑘
6
+

25375

1351296
𝑥
3
𝑘
4
−

1875011

35145707520
𝑥
7

+
270805

22821888
𝑥
5
𝑘
2
−

392303

2396298240
𝑥
6
𝑘) 𝑎
7
𝑥
15

−
23

9081072000

× (
25375

675648
𝑥
3
𝑘
3
+
1037917

8558208
𝑥
4
𝑘
2

+
270805

22821888
𝑥
5
𝑘 +

2765

184
𝑥𝑘
5

+
41965

75072
𝑥
2
𝑘
4
−

392303

4792596480
𝑥
6
+ 28𝑘

6
) 𝑎
6
𝑥
15

−
23

9081072000

× (
41965

56304
𝑥
2
𝑘
3
+ 56𝑘

5
+

25375

675648
𝑥
3
𝑘
2

+
270805

68465664
𝑥
5
+
13825

552
𝑥𝑘
4

+
1037917

12837312
𝑥
4
𝑘 +

41965

75072𝑎
𝑥
2
𝑘
2
) 𝑎
5
𝑥
15

−
23

9081072000

× (70𝑘
4
+

1037917

51349248
𝑥
4
+

25375

1351296
𝑥
3
𝑘

+
13825

552
𝑥𝑘
3
+
56𝑘
3

𝑎
+
2765𝑥𝑘

2

184𝑎

+
8393𝑥

2
𝑘

37536𝑎
+

5075𝑥
3

1351296𝑎
+
2765𝑥𝑘

552𝑎2
)𝑎
4
𝑥
15

−
23

9081072000
(

8393

225216
𝑥
6
+ 28𝑘

2
) 𝑎
2
𝑥
15
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−
23

9081072000
(
395𝑥

552
+ 8𝑘) 𝑎𝑥

15
,

(32)

and so on.
To exemplify, we will consider the seventh order approxi-

mation by substituting solutions (32) into (30) and calculating
the limit when 𝑝 → 1:

𝑦 = lim
𝑝→1

(

7

∑

𝑖=0

𝑦
𝑖
𝑝
𝑖
) . (33)

The above approximation is valid for all values of 𝑘 ≥

0 and corresponds to the results reported in [5] for the
cases when 𝑘 = 0 and 𝑘 = 20. Clearly, if higher order
approximations are considered, better accuracy is obtained
but the resulting expressions could be too long.

5.2. HPM Laplace-Padé Scheme (LPHPM). Next, we study
the case 𝑘 = 0; it means that 𝑦󸀠(0) = 1 (see (26)). This is
an interesting case because the following exact solution was
reported in [59]:

𝑦 (𝑥) = 1 − exp (−𝑥) . (34)

Thus, substituting 𝑘 = 0 in (33) we obtain the following
series solution:

𝑦 (𝑥) = −0.5𝑥
2
+ 𝑥 − 7.878129877 × 10

−11
𝑥
19

+ 1.13972148927 × 10
−11

𝑥
20

+ 1.57691357363 × 10
−10

𝑥
18

+ 2.07320134446 × 10
−13

𝑥
21

− 1.35120811977 × 10
−13

𝑥
22

+ 5.87481791204 × 10
−15

𝑥
23

+ 0.16666667𝑥
3
− 0.041666666𝑥

4

+ 0.00833333333𝑥
5
− 0.00138888888𝑥

6

+ 0.000198412698𝑥
7
− 0.0000248015873𝑥

8

− 2.755731 × 10
−7
𝑥
10
+ 0.000002755𝑥

9

+ 2.5052108 × 10
−8
𝑥
11

− 2.087675 × 10
−9
𝑥
12
+ 1.605904 × 10

−10
𝑥
13

− 1.147074559 × 10
−11

𝑥
14

+ 7.647163731 × 10
−13

𝑥
15

− 4.779477332 × 10
−14

𝑥
16

− 5.073836906 × 10
−11

𝑥
17
.

(35)

As we will see (35) is accurate only for small values of 𝑥.
To guarantee the validity of the approximate solution (35) for

large values of this variable, the series solution is transformed
using the Padé approximation and Laplace transform (see
Section 3). As first step, Laplace transform [54] is applied to
(35):

−1

𝑠3
+

1

𝑠2
−
9.583359 × 10

6

𝑠20
+
2.77283070001 × 10

7

𝑠21

+
1.009599 × 10

6

𝑠19
+
1.0592181 × 10

7

𝑠22

−
1.51875891 × 10

8

𝑠23
+
1.51875891 × 10

8

𝑠24
+

1

𝑠4

−
1

𝑠5
+

1

𝑠6
−

1

𝑠7
+

1

𝑠8
−

1

𝑠9
−

1

𝑠11
+

1

𝑠10

+
0.9999999998

𝑠12
−

1

𝑠13
+
0.9999999999

𝑠14

−
0.9999999997

𝑠15
+

1

𝑠16
−

1

𝑠17
−
18047

𝑠18
,

(36)

and then, 𝑠 is substituted by 1/𝑥 in the equation to obtain

− 𝑥
3
+ 𝑥
2
− 9.583359 × 10

6
𝑥
20

+ 2.77283070001 × 10
7
𝑥
21
+ 1.009599 × 10

6
𝑥
19

+ 1.0592181 × 10
7
𝑥
22
− 1.51875891 × 10

8
𝑥
23

+ 𝑥
4
− 𝑥
5
+ 𝑥
6
− 𝑥
7
+ 𝑥
8
− 𝑥
9
− 𝑥
11
+ 𝑥
10

+ 0.9999999998𝑥
12
− 𝑥
13
+ 0.9999999999𝑥

14

− 0.9999999997𝑥
15
+ 𝑥
16
− 𝑥
17
− 18047𝑥

18

+ 1.51875891 × 10
8
𝑥
24
.

(37)

Following Laplace-Padé scheme, Padé approximant [6/6]
is applied to obtain

𝑥
2

1 + 𝑥
; (38)

here 𝑥 is substituted by 1/𝑠; the result is

1

𝑠 (𝑠 + 1)
. (39)

Finally, bymeans of the inverse Laplace transform applied
to (39), we obtain the exact solution (34) for (24).

5.3. HPM Padé Scheme (PHPM). Another way to recover
lost information from the truncated series (33) is by means
of applying the Padé approximant [7/7]. For the particular
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case when 𝑘 = 0 (see (35)), we obtain the following rational
approximation for (24) (using dummy variables 𝑎1 and 𝑏1)

𝑎1 = 1.15625115625 × 10
−7
𝑥
7

+ 0.000174825174825𝑥
5

+ 0.0320512820513𝑥
3
+ 𝑥,

𝑏1 = 1 + 0.1153846153𝑥
2
+ 0.001456876456𝑥

4

+ 0.5𝑥 + 0.01602564102𝑥
3

+ 0.00008741258741𝑥
5

+ 0.00000323750323𝑥
6

+ 5.781255781 × 10
−8
𝑥
7
,

(40)

and therefore, the final result is

𝑦 (𝑥) =
𝑎1

𝑏1
. (41)

6. Discussion

Figures 3 and 5 show a comparison between Runge Kutta
4 (RK4) numerical solution for different values of 𝑘 and
approximations given by Laplace-Padé and Padé methods
applied to (33). From Figures 4 and 6 it can be noticed that
the relative error obtained by our approximations was low.
As a matter of fact, the largest error for LPHPM is −0.006
when 𝑘 = 5 and for PHPM is −0.0250 when 𝑘 = 0. In a broad
sense, if higher order approximations are considered, higher
accuracy is obtained from LP-HPM and PHPM methods.
In particular, it is noteworthy that Laplace-Padé method
allows recovering the exact solution (34) when 𝑘 = 0

from the truncated series (33). This contrasts with Figure 2,
which shows the comparison betweenRK4 andHPMapprox-
imations given by (33) for 𝑘 = 0, 0.3, 1, 2, 5 and 𝑘 = 20. It
is evident that HPM series is accurate only for a restricted
domain of values for the independent variable 𝑥. Also it is
worth comparing the cumbersome approximation (35) for
𝑘 = 0, with the handy expressions (34) and (41) obtained by
LHPMand PHPM, respectively. In [5] HPMwas employed to
solve (24) with a good approximation for a restricted domain
of values for 𝑥 and small values for 𝑘, while in [6] the same
equation was solved using perturbation method (PM) for
small values of 𝑘. Indeed it is known that PM provides, in
general, better results for small values of the perturbation
parameter. Unlike the LPHPM and PHPM schemes were
employed to obtain accurate solutions for different values of
𝑘, having low relative errors for 𝑥 values within the range
0 ≤ 𝑥 ≤ 30, as shown in Figures 4 and 6.

The importance of providing analytical solutions,
although approximate, with good accuracy is that numerical
solutions only provide a qualitative idea of the problem to
be solved. Besides, just as it was shown in one of our case
studies, a solution obtained by a numerical method like
Runge Kutta could hide the case of an exact solution. This
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RK4

Figure 2: Fourth order Runge Kutta numerical solution for (24)
(solid line) and HPM solution (33) (symbols).
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Figure 3: Fourth order Runge Kutta solution for (24) (symbols) and
LPHPM (solid line).

possibility was successfully explored by LPHPM for case
study 𝑘 = 0. Finally, another reason why we are interested in
obtaining analytical approximation solutions is that nume
rical algorithms could give some problems, such as numerical
instabilities and oscillations, among others. This means that
the numerical solutions may not correspond to the real
solution of the original differential equation [60].

Just as it was seen with our HPM solutions, one disadvan-
tage of approximating them with polynomials is its tendency
to oscillate; this gives rise to the fact that the obtained solu
tions diverge, especially for the case of problems defined on
open intervals. This can be attributed to the possibility that
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Figure 4: Relative error for different cases of LPHPM.
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Figure 5: Fourth order Runge Kutta numerical solution for (24)
(symbols) and PHPM (solid line).

the radius of convergence may not be sufficiently large to
contain the boundaries of the domain of study [56, 61].

In order to improve the aforementioned, the use of ratio-
nal functions was proposed, through the Padé approximation
method.

The Padé approximation is an extension of the Taylor
polynomial approximation but for rational functions. When
the denominator of the approximation is a zero degree poly
nomial function, the Padé approximation is reduced to a
Maclaurin polynomial.

Padé-approximate extrapolation technique consists in
approximating a truncated series (such as those resulting of
HPM) by a rational function; the latter extends the range
of validity of the initial polynomial. The above results are

0.0000
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t
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k = 0.3

k = 0
k = 5

Figure 6: Relative error for different cases of PHPM.

particularly relevant if the truncated series represent the
solution of a differential equation.

We observe that even though the series has a finite region
of convergence, Padé approximant allows obtaining the limit
of the function under study as 𝑥 takes large values, if 𝐿 = 𝑀

(see Figures 3 and 5) [55]. In fact, the rational functionswhose
denominator and numerator have the same values of 𝐿 and
𝑀, or a degree almost identical, give rise to results better than
those obtained by methods based on polynomial functions
[61].

Finally, the convergence is uniform in any compact
region in the case of Padé approximation, whereas truncated
Maclaurin series is valid only in a near neighbourhood of zero
point.The above explains whyHPM-Padé has larger intervals
of convergence in comparison with HPM series [55].

As it was already mentioned, LPHPM applies Padé
approximant to the resulting expression, derived of applying
Laplace transform to the HPM truncated series, and the
rational function obtained in this way acquires the benefits
of the abovementioned Padé method.

Nevertheless, one possible advantage of LPHPM is that
the application of inverse Laplace transform at the last step of
the method could result in the exact solution of the problem.

7. Conclusions

This work showed that some nonlinear problems may be
adequately approximated using the coupling of the HPM
method with Laplace-Padé and Padé methods to deal with
HPM truncated power series. For instance, the flow induced
by a stretching sheet is adequately described by our approxi-
mations given by LPHPM and PHPM (see Figure 3 through
Figure 6). Figures 4 and 6 illustrate the relative error and
show that the proposed solutions are highly accurate. Since
that this procedure is, in principle, applicable to other similar
problems, we conclude that LPHPM and PHPM are methods
with high potential in the search for analytical approximate
solutions for nonlinear problems.
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