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Abstract: With non-invasive and high-resolution properties, optical coherence tomography (OCT)
has been widely used as a retinal imaging modality for the effective diagnosis of ophthalmic diseases.
The retinal fluid is often segmented by medical experts as a pivotal biomarker to assist in the clinical
diagnosis of age-related macular diseases, diabetic macular edema, and retinal vein occlusion. In re-
cent years, the advanced machine learning methods, such as deep learning paradigms, have attracted
more and more attention from academia in the retinal fluid segmentation applications. The automatic
retinal fluid segmentation based on deep learning can improve the semantic segmentation accuracy
and efficiency of macular change analysis, which has potential clinical implications for ophthalmic
pathology detection. This article summarizes several different deep learning paradigms reported
in the up-to-date literature for the retinal fluid segmentation in OCT images. The deep learning
architectures include the backbone of convolutional neural network (CNN), fully convolutional
network (FCN), U-shape network (U-Net), and the other hybrid computational methods. The article
also provides a survey on the prevailing OCT image datasets used in recent retinal segmentation in-
vestigations. The future perspectives and some potential retinal segmentation directions are discussed
in the concluding context.

Keywords: optical coherence tomography; machine learning; neural networks; retinal fluid
segmentation; ophthalmic diseases

1. Introduction

The human eyes are important organs that can sense light and provide a function
of binocular color vision. With the growth of human age and the influence of external
factors, the eyes are susceptible to a few retinal fluid disorders. Retinal fluid mainly
contains intraretinal fluid (IRF), subretinal fluid (SRF), and pigment epithelial detachment
(PED). These areas are vital biomarkers related to the diseases of age-related macular
degeneration (AMD) and retinal vein occlusion (RVO). The retinal fluid occupation area
can be detected and segmented from the medical images, which are considered to be useful
for the distinguishing the retinal pathology.

Optical coherence tomography (OCT) is one of the most widely used medical imaging
technologies, which has been rapidly developing in the past three decades. Such an imag-
ing technique was first proposed by Huang et al. [1] in 1991. The OCT technique utilizes
the basic principle of the low coherent light interferometer to detect the backscattered
near-infrared light and reconstruct the depth profile of the biological tissue sample. Its
penetration depth is hardly limited by the transparent refractive medium of the eye. Further-
more, the OCT technique can identify the anterior segment and display the morphological
structure of the posterior segment. The OCT modality is a good choice for cross-sectional
imaging of the retina because its high resolution facilitates a clear visualization of retinal
structures. From the images of the retinal structure obtained by the OCT modality, the fluid
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area can be visualized with different reflectivity measures from the surrounding tissues.
The OCT image processing and analysis may help distinguish various conditions of retinal
fluids and evaluate the progression of retina pathology. It has a brilliant prospect in the
applications of retinal pathology diagnosis, follow-up observation, and treatment effect
evaluation of intraocular diseases. Some typical segmentations of OCT images are shown
in Figure 1.

Figure 1. The OCT retinal images from left to right are from the three vendors of Cirrus, Spectralis,
and Topcon in the RETOUCH dataset [2]. The images in the first row are not manually labeled,
while the red, blue, and green segmentations on the second row represent the intraretinal fluid (IRF),
subretinal fluid (SRF), and epithelial detachment (PED), respectively.

Primarily located in the inner and outer nuclear layers, the IRF is regarded as separated
hyporeflective cystoid pockets that could increase the overall retinal thickness. The IRF
is one of the important variables of vision loss. The SRF is a hyporeflective space that
corresponds to the clear or lipid-rich exudate between the neurosensory retina and the
retinal pigment epithelium (RPE). The SRF is related to the AMD, and would cause the
retinal detachment. As one of the main indicators of progressive disease, the PED is the
separation of RPE from the Bruch’s membrane (BM), which can be subdivided into the
serous, fibrovascular, and drusenoid.

With the rapid development of high-performance computer hardware and sufficient
large datasets, the computer vision and deep learning methods have been dramatically
improved and evolved during recent years. In comparison with the traditional neural
network methods, deep learning network architectures normally contain many more
hidden layers that have powerful scalability and hierarchical feature learning capability to
automatically extract the morphological features from raw image data. Since 2016, the deep
learning algorithms have made significant impacts on the retinal fluid segmentation based
on OCT images. The most popular deep learning frameworks for the segmentation of
retinal fluids include the convolutional neural network (CNN), fully convolutional network
(FCN), U-shape network (U-Net), and hybrid computational methods. The major strategy
of the deep learning is to identify the contours of retinal fluids, and then commonly solve a
classification problem with the semantic context extracted from the OCT images.

Figure 2 shows the statistics of papers on deep learning for retinal fluid segmentation
published in academia from 2017 to 2020. According to the statistics from the Web of Science
database, the relevant publications on retinal fluid segmentation topics have consistently
grown each year, from 1 in 2016 up to 32 in 2020. The conference paper collections are
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from MICCAI, ISBI, SPIE Medical Imaging, EMBC, IJO, ICDIP, and ISSPIT, and the journal
sources include IEEE, Springer, OSA, and Elsevier. In general, the majority of these papers
were published by IEEE and Elsevier, which accounted for about 40% of all. The keywords
of these papers mainly cover OCT, deep learning, retinal fluid, segmentation, IRF, SRF,
PED, AMD, and macular edema. As the retinal-fluid-segmentation-related studies were
brought into primary focus, it calls for a review of the recent progress of advanced deep
learning architectures and algorithms for retinal fluid segmentation. This article provides
a survey on the segmentations of three retinal fluids, i.e., the IRF, SRF, and PED, in OCT
images with different deep learning architectures.

Number of publications per year

(a)

1

4

12

23

32

Percentage of papers published by each source

(b)

Occurrence of keywords in recent publications 

(c)

Figure 2. Statistics of the papers and their sources on the deep learning methods for retinal fluid
segmentation published in recent years. (a) Number of publications on retinal fluid segmentation
based on deep learning from 2016 to 2020. (b) Percentage of papers published by conferences and
journal publishers. (c) Keywords listed in the recent publications.

2. Deep Learning Applications for OCT Image Segmentation

Image segmentation is one of the research fields of computer vision. Segmentation
is the process of combining the objects of interests in multiple groups in accordance with
the join features in an image. Semantic segmentation and instance segmentation are
the two main types of image segmentations. The semantic segmentation categorizes the
objects with the same class label into a unique semantic entity, for example, grouping all
humans into one class and all animals into another class. On the other hand, the instance
segmentation distinguishes all instances of the same object into different classes, i.e., even
some similar objects could also be marked with different labels. As illustrated in Figure 3,
the semantic segmentation approach categorizes all of the retinal fluid into one class,
meanwhile the instance segmentation method separates the retinal fluid as the SRF, IRF,
and PED, respectively. Image segmentation can quickly locate a variety of abnormalities in
medical images, such as locating pulse tumors [3] and melanoma detection [4]. It can also
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extract the content of interest in medical images, such as segmentations of retinal blood
vessels [5] and the retinal fluids.

The most frequently used traditional imaging processing methods for retinal fluid
segmentation include edge-based detection, threshold-based segmentation, and histogram-
based segmentation. The edge detection method typically uses the maximum value of the
first derivative of the pixels or the zero-crossing information of the second derivative to
separate the boundaries of different regions. Both of the threshold-based segmentation and
histogram-based segmentation utilize the grayscale features of the image to distinguish
the object content from the background. The major drawback of these traditional image
segmentation methods is that the different segmentation tasks would require well-devised
algorithm, and sometimes the spatial information of images cannot be effectively utilized.
The emerging deep learning methods have the advantages of automatically combining the
low-level features of images to form more abstract high-level features, and providing higher
segmentation accuracy. The following subsections provide a brief description of the popular
deep learning neural network architectures for the OCT image segmentation applications.

IRF SRF

PED

IRF PED SRF

retinal fluids

Retinal fluid regions 

(a) (b)

Figure 3. Two different types of retinal fluid segmentation on the same optical coherence tomography
(OCT) image from the RETOUCH dataset [2]. (a) Semantic segmentation: all of the retinal fluids are
segmented into yellow regions; (b) instance segmentation: the IRF (red), SRF (green), and PED (blue)
are segmented separately.

2.1. Fully Convolutional Networks (FCNs)

The FCN paradigm was proposed by Shelhamer et al. [6] in 2017. The ordinary CNN
uses the last of a few fully connected layers to transform the two-dimensional image
matrix into one dimension to produce the class labels, or to make object localizations via
regression. The major difference between FCN and CNN is their output layers. The FCN
uses a fully CNN with some transposed convolutional layers to transform the height and
width of intermediate feature maps back to those of the input image. The FCN produces
the classification outputs in correspondence with the input image at pixel level, i.e., the
channel dimension at each output pixel holds the classification results for the input pixel
at the same spatial position [6]. Therefore, FCN’s symmetrical encoder–decoder structure
allows the network to process input images of arbitrary sizes.

As shown in Figure 4, the FCN is composed of the encoder and decoder structures.
The encoder is responsible for mapping an input image to the high-dimensional feature
representation. On the contrary, the decoder uses the transposed convolution to upsample
the feature maps, and restores them to the size of the input image when preserving the
spatial information.
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Figure 4. General structures of (a) the fully convolution network (FCN) and (b) the U-Net.

Either CNN or FCN has the major drawback of slow training process due to some
operations, such as maxpool. Therefore, the training of either CNN or FCN usually takes a
lot of time, and a high-performance graphics processing unit (GPU) is required to speed up
the network computation. In addition, the FCN is an expensive architecture, because most
of the cost is consumed by the fully convolutional layers in the end.

2.2. U-Net

To improve the segmentation performance, many other modified convolutional net-
works that propagate the mapped features from the encoder to the decoder have been
developed. One of the most prevailing deep learning architectures for the image segmen-
tation is the U-Net, proposed by Ronneberger et al. [7] in 2015. As shown in Figure 4,
the U-Net adds the skip connections to propagate the downsampling feature map to the
upsampling, and restore the semantic information through feature map splicing. The U-Net
makes the image segmentation with an end-to-end setting, and has the advantages of
requiring a smaller number images for training and also providing the desired localization.
Recently, several effective retinal segmentation networks have utilized the U-Net or its
3D modification as their backbones. Hassan et al. [8] proposed the symptomatic exudate-
associated derangement network (SEADNet), which employs two novel feature extractors
based on the U-Net. Ye et al. [9] proposed the CAF-Net, which adds context shrinkage
encode and context pyramid guide modules, without changing the depth of the U-Net,
in order to improve the segmentation accuracy. The major drawback of the U-Net is the
trade-off between localization accuracy and the context usage. Typically, larger patches of
the U-Net require more max-pooling layers which may reduce the localization accuracy,
whereas smaller patches lead to less context for visualization. On the other hand, the U-Net
also runs slowly due to a large number of overlapping patches.

2.3. SegNet

With a symmetrical design of encoder and decoder, the SegNet [10] can perform the
encoding and decoding with the same spatial size and same number of channels. The
hierarchy decoders of the SegNet use the max-pooling indices received from the corre-
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sponding encoders to implement nonlinear upsampling of their input features. The SegNet
architecture generates the sparse feature maps based on the location information, and then
restores the dense feature maps through convolutions. In addition, the SegNet architecture
usually adds a conditional random field (CRF) module to the ending layer in order to
optimize the boundary segmentation outputs. The SegNet has the advantages of improving
boundary delineation and reducing the number of end-to-end training parameters. The
unsampling form the SegNet can also be effectively utilized in other encoder–decoder
architectures without a significant modification.

2.4. DeepLab

The standard depth convolutional network would face two issues. First, the down-
sampling layers of a CNN may extend the sensory area; however, they would decrease
the spatial resolution feature maps for the image segmentation tasks [11]. Second, the
location information of the input image will decrease, and sometimes even disappear when
the depth of the network changes. In order to keep both of the size and space invariance
of the feature map, the DeepLab was proposed by Chen et al. [12] by incorporating the
atrous convolutions, atrous spatial pyramid pooling (ASPP), and CRFs. The DeepLab
has two major advantages: (1) The atrous convolution operations may speed up the GPU
computing; (2) semantic segmentation accuracy can be improved with the multiscale image
representations based on the ASPP.

2.5. Evaluation Indicators

Evaluation indicators are vital in the performance assessment of the segmentation
algorithms. Appropriate indicators can be used to objectively evaluate the segmentation
accuracy, classification sensitivity and specificity, versatility, and other characteristics
of different medical image segmentation algorithms. Chang et al. [13] categorized the
systematic evaluation methods of segmentation algorithms into three types:

• Region-based indicators;
• Distance-based indicators (e.g., Hausdorff distance, pixel distance);
• Entire image-based statistical indicators.

The Dice similarity coefficient is the most frequently used region-based indicator for
segmentation accuracy evaluation [2,13], which measures the overlapping voxels between
two samples, defined as

Dice =
2
∣∣Vp

∣∣ ∩ ∣∣Vg
∣∣∣∣Vp

∣∣+ ∣∣Vg
∣∣ × 100%, (1)

where ∩ is the intersection operator, and
∣∣Vp

∣∣ and
∣∣Vg

∣∣ denote the sizes of the predicted
voxels and the ground truth, respectively. The Dice value typically varies in a range from
0 to 1. The Dice value equal to 1 is the ideal result that implies a perfect segmentation,
whereas the Dice value equal to 0 indicates the total mismatch between the prediction and
ground truth.

The Jaccard coefficient is also a region-based indicator with the definition of the ratio of
the intersection of the predicted voxels and ground truth divided by their union region [13],
written as

Jaccard =

∣∣Vp ∩Vg
∣∣∣∣Vp ∪Vg
∣∣ × 100%, (2)

where ∪ is the union operator. The Jaccard coefficient can measure and ensure the number
of 2D pixels or 3D voxels inside the object are correctly segmented as well.

3. Benchmark OCT Datasets

The development of OCT image segmentation technology calls for large and context-
rich datasets to train the deep learning networks. This section provides some popular
public OCT datasets, which have been listed in Table 1.
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Table 1. Public benchmark optical coherence tomography (OCT) datasets for retinal fluid segmentation.
AMD: Age-related macular degeneration, CNV: choroidal neovascularization, DME: diabetic macular
edema, IRF: intraretinal fluid, MS: multiple sclerosis, PED: pigment epithelial detachment, RVO: retinal
vein occlusion, SRF: subretinal fluid. Dataset web pages last accessed on 9 February 2022.

Dataset Data Size Manual Labeling Disease Web Page

RETOUCH 70 volumes IRF, SRF, PED AMD, RVO https://retouch.grand-challenge.org

UMN 600 B-scan images IRF, SRF, PED AMD http://people.ece.umn.edu/users/
parhi/data-and-code/

OPTIMA 30 volumes IRF AMD, RVO, DME https://optima.meduniwien.ac.at/
optima-segmentation-challenge-1/

Duke 110 B-scan images Fluid regions DME https://people.duke.edu/~sf59/
Chiu_BOE_2014_dataset.htm

HCMS 49 B-scan images Fluid regions MS http://iacl.jhu.edu/Resources

Kermany 108,312 B-scan images Fluid regions CNV, DME, drusen https://data.mendeley.com/
datasets/rscbjbr9sj/2

3.1. RETOUCH Dataset

The RETOUCH dataset [2] originates from the retinal OCT fluid challenge of MICCAI
2017, in which the OCT images were marked three labels of retinal fluid, namely, IRF,
SRF, and PED, respectively. Half of the patients were diagnosed with the macular edema
secondary to AMD, and the other half with the edema secondary to RVO. Since the testing
data in the competition are not public access, the OCT image data available for all researches
actually remain as the training set. The training data consist of 70 OCT volumes in total.
In particular, the numbers of volumes obtained by Cirrus (Model: 5000), Triton (Model:
T-1000/T-2000), and Spectralis OCT systems are 24, 22, and 24, which have been labeled as
IRF, SRF, PED, and normal, respectively. Within each volume, the numbers of B-scan images
acquired with Cirrus (Carl Zeiss Meditec Inc., Jena, Germany), Triton (Topcon Corporation,
Tokyo, Japan), and Spectralis (Heidelberg Engineering Inc., Heidelberg, Germany) are
128 (512 × 1024 pixels), 128 (T-2000: 512 × 885 pixels, T-1000: 512 × 650 pixels), and 49
(512 × 496 pixels), respectively. These B-scan images contain at least one liquid in a single
volume. It is worth mentioning that the annotations and volume of this dataset were
obtained from the Medical University of Vienna (MUV) in Austria, Erasmus University
Medical Center (ERASMUS) and Radboud University Medical Center (RUNMC) in The
Netherlands. The annotations were manually made on the B-scan plane by the human
graders from the MUV and RUNMC clinical centers. Four graders from MUV were
supervised by an ophthalmology resident and trained by two retinal specialists. Two
graders from RUNMC were supervised by a retinal specialist. Most of the relevant studies
covered in this review paper were carried out based on the RETOUCH dataset.

3.2. UMN Dataset

The UMN dataset was collected by the University of Minnesota (UMN) ophthal-
mology clinic. The dataset contains a total of 600 OCT B-scan images from 24 exudative
AMD subjects [14]. During the acquisition process, each subject performed approximately
100 B-scan images, from which the 25 B-scan images with the largest liquid area were
selected as samples to export. These scanned images were captured by Spectralis system,
through an average of 12–19 frames with the resolution of 5.88 µm/pixel along the length
and 3.87 µm/pixel along the width [14]. The UMN dataset includes the retinal fluid pat-
terns of IRF, SRF, and PED. Each fluid region was manually annotated and checked by
two ophthalmologists. Unfortunately, this dataset is difficult to implement segmentation
algorithms, due to a large number of sub-RPE and sub-retinal fluid regions located in the
eyes of exudative AMD patients. Rashno et al. [14] reported that the RPE errors in the UMN
dataset would adversely affect the retinal pigment epithelium segmentation algorithm.

https://retouch.grand-challenge.org
http://people.ece.umn.edu/users/parhi/data-and-code/
http://people.ece.umn.edu/users/parhi/data-and-code/
https://optima.meduniwien.ac.at/optima-segmentation-challenge-1/
https://optima.meduniwien.ac.at/optima-segmentation-challenge-1/
https://people.duke.edu/~sf59/Chiu_BOE_2014_dataset.htm
https://people.duke.edu/~sf59/Chiu_BOE_2014_dataset.htm
http://iacl.jhu.edu/Resources
https://data.mendeley.com/datasets/rscbjbr9sj/2
https://data.mendeley.com/datasets/rscbjbr9sj/2
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3.3. OPTIMA Dataset

The OPTIMA dataset [15] was publicly available from the cyst segmentation challenge
of MICCAI 2015, and currently has been widely used for the IRF segmentation tasks. The
dataset consists of 30 volumes from 4 OCT devices used in ophthalmology (i.e., Cirrus,
Spectralis, Topcon, and Nidek). The dimension of each OCT volume is approximately
6 × 6 × 2 mm3, and the corresponding coordinate was centered on the macula. The dataset
was split into two subsets of equal size: 15 volumes for training and the other 15 volumes
for testing purpose. Only IRF labels for the training subset have been annotated by two
different professional graders at the Christian Doppler Laboratory for Ophthalmic Image
Analysis (OPTIMA), Medical University of Vienna. Either of the training or testing subset
contains three volumes scanned from the Nidek (model: RS-3000 Advance) device (Nidek
Inc., Tokyo, Japan), and the resting 12 volumes of each subset were equally obtained from
Cirrus, Spectralis, Topcon (model: 3D OCT-2000) devices.

3.4. Duke Dataset

The Duke dataset [16] is a public dataset provided by Duke University. It contains
110 annotated B-scan images recorded from 10 patients with severe diabetic macular edema
(DME) pathology and the annotations of eight-layer boundaries. Each patient performed
11 B-scan images, which were centered on the foveal, and 5 frames on each side of the
foveal (foveal slice and scans laterally acquired at ±2, ±5, ±10, ±15, and ±20 µm from
the foveal slice). The dataset also includes fluid and non-fluid regions with annotations of
eight-layer boundaries. Researchers can send requests to the experts to segment the data,
for the purpose of model training and algorithm testing. All of these samples were ethically
licensed and special attention is paid to the anonymity of the images, which were manually
labeled by two ophthalmologists for the retinal layer and fluid area.

3.5. HCMS Dataset

The HCMS dataset [17] is a public dataset provided by Johns Hopkins University. It
includes the right-eye OCT scanning results of 35 subjects acquired with the Spectralis
system. Each volume consists of 49 B-scan images (each B-scan including 1024 A-scans and
each A-scan consisting of 496 pixels) and nine-layer boundary annotations of 14 healthy
controls (HC) and 21 patients with multiple sclerosis (MS). Similar to the Duke dataset, the
HCMS dataset only contains the manually labeled semantic fluid regions, and cannot be fur-
ther subdivided. Therefore, researchers have to implement some necessary preprocessing
procedures when using this dataset for validating the segmentation performance.

3.6. Kermany Dataset

In 2018, Kermany et al. [18] constructed the validated OCT and chest X-ray image
datasets. The OCT images were scanned by the Spectralis system, and were categorized
into choroidal neovascularization (CNV), DME, drusen, and normal. The Kermany dataset
contains 207,130 OCT B-scan images in total. There are 108,312 OCT B-scan images recorded
from 4686 patients with retinal fluid labels, including 37,206 images with CNV, 11,349 im-
ages with DME, 8617 images with drusen, and 51,140 images normal, respectively. The
retinal fluid labels of the OCT images were manually annotated with a tiered grading sys-
tem. The first tier of graders were undergraduate and medical students, who reviewed the
diagnosis information and discarded the OCT images contaminated by severe artifacts. The
second tier of graders were four ophthalmologists who independently graded the images
by making records of the CNV, DME, and drusen information. The third tier of graders
were two senior independent retinal specialists with over 20 years of clinical experience,
who performed the final verification of image labels.

3.7. Other Private Datasets

In addition to the public access datasets mentioned above, some researchers use their
own datasets. Schlegl et al. [19] collected 1200 OCT B-scan volumes associated with AMD
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(400 cases), DME (400 cases), and RVO (400 cases). Half of the OCT images were scanned by
Cirrus (Model: 5000) OCT device, and the other half of images were scanned by Spectralist
OCT system. The presence of intraretinal cystoid fluid and SRF were labeled by two
independent experienced retinal specialists.

Gao et al. [20] used 52 B-scan volumes obtained from 35 subjects with central serous
chorioretinopathy. The numbers of OCT volumes diagnosed as only PED or neurosensory
retinal detachment were 6 or 23, respectively. The other 23 volumes were identified with
both PED and neurosensory retinal detachment.

Lee et al. [21] carried out the automated segmentation of macular edema with the
CNN on 1289 B-scan images acquired with the Spectralis OCT system. Retinal OCT
image segmentations were manually performed by retinal specialists from Department of
Ophthalmology, University of Washington.

Rao et al. [22] used 150 OCT volumes to test the retinal fluid segmentation based on
the FCN. Each volume contained 128 B-scan images collected by the Cirrus OCT system.

The OCT dataset of Yang et al. [23] was composed of 103 OCT volumes obtained
from 62 patients diagnosed as central serous chorioretinopathy. The retinal imaging was
performed by the Cirrus OCT system with 128 B-scan images per volume.

In the work of Bao et al. [24], a total of 240 B-scan images from 60 AMD patients
were used to test the segmentation effectiveness of the modified U-Net architectures with
channel multiscale module and spatial multiscale module. The PED segmentations of each
retinal OCT image were labeled under the supervision of two senior ophthalmologists.

In the study of Pawan et al. [25], they used 25 volumes (128 B-scan images per volume)
of patients with central serous chorioretinopathy, which were obtained by the Cirrus
(Model: 500) system. The segmentation labels for each OCT images were verified by by
an expert retina surgeon with over 15 years of experience, from Pink City Eye and Retina
Center, Jaipur, India.

The dataset used in the work of Hu et al. [26] contained 70, 15, and 15 volumes of OCT
images for training, validation, and testing purpose, respectively. A single volume was
composed of 128 B-scan images with a resolution of 512 × 1024 pixels. The SRF and PED
fluids were manually annotated at the pixel level by experienced ophthalmologists.

Venhuizen et al. [27] collected 221 spectral domain OCT volumes (a total of 6158 B-scan
images) from 151 AMD patients with Spectralis OCT device (model: HRA+OCT). The
axial resolution of each spectral domain OCT image was 496 pixels, and the dimensions
varied between 512 and 1536 pixels in the transversal direction. The number of B-scan
images in each volume varied from 19 to 37, with the B-scan spacing changing from 240 to
120 µm, respectively.

4. Retinal Fluid Segmentation Based on Deep Learning
4.1. Deep Learning Paradigms Based on CNN or FCN

When computing the large dataset, deep learning algorithms can automatically extract
distinct spatial features from OCT images in semantic context. Therefore, the retinal fluid
segmentation results provided by the deep learning methods are usually superior to those
obtained by the traditional machine learning algorithms. The deep learning architectures
and paradigms for retinal fluid segmentation described in the recent publications are
summarized in Table 2.

Modified CNN or FCN Architectures

From 2017 to 2018, several classical CNN and FCN architectures have been effectively
used to segment the retinal fluid regions in OCT images. Chen et al. [28] used a faster R-
CNN to segment different retinal fluids. The faster R-CNN first segmented the IRF regions.
Then, the IRF segmentation results were used as the seeds to grow the 3D regions to segment
the SRF, which may avoid the overfitting with the training data. Finally, the outputs from
the RPE layer were utilized to segment the PED regions. Schlegl et al. [19] developed an
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eight-layer FCN for the end-to-end detection, and achieved excellent detection accuracy
results of retinal fluids.

Venhuizen et al. [27] used two FCNs to segment the intraretinal cystoid fluids. The first
FCN aimed to identify the entire retina, and the second FCN was designed to segment the
retinal fluid by combining the outputs of the first FCN. During the network computation,
the first FCN can be used as the additional input to the second FCN, as a constraint in the
entire network training process. The network was trained by using the stochastic gradient
descent with a learning rate starting at 10−3 up to 10−6, and the momentum was set to be
0.99 in order to include a large sample of the previous steps [27].

Since 2019, the deep learning architectures have become more and more complex
and effective for solving the retinal fluid segmentation problems. Sanchez et al. [29]
proposed a novel architecture that integrated a modified deep retinal understanding (DRIU)
framework and a Pix2Pix module in the U-Net with SE-blocks (SEUNet) model. Such a
deep learning architecture has the advantage of detecting small lesions with a better
segmentation accuracy. Wang et al. [30] employed the DeepLab architecture to accomplish
effective retinal fluid and hyperreflective foci segmentations. This model used atrous
spatial pyramid pooling (ASPP) to detect macular edema and used the fully connected
CRFs to refine the boundary of macular edema. Both of them reported impressive disease
diagnosis results associated with the segmented retinal fluids.

Liu et al. [31] developed an EfficientNet-B5 architecture to detect DME. Such a deep
learning system was trained to derive retinal thickening and IRF presence in OCT images.
Then, the DME can be detected from two-dimensional color fundus photographs, based
on the reference of the retinal thickness and fluid presence. Liu et al. [31] reported that the
EfficientNet-B5 network can provide higher specificity and non-inferior sensitivity.

Besides the conventional CNN or FCN structures, many researchers focused on the
modified deep learning networks to meet some specific retinal fluid segmentation require-
ments. Sappa et al. [32] designed a modified CNN architecture named RetFluidNet, which
assimilated different skip-connect operations and ASPP to integrate multiscale contex-
tual information, which achieved good segmentation performance, among all the papers
counted in this paper. Girish et al. [33] preprocessed the regions of interest in OCT images
to enhance the semantics, and then used a CNN with a depthwise separable convolution
filter to segment the IRF regions, which can prevent the overfitting obstacle.

On the other hand, the community also paid close attention to revisions of loss
functions in the deep learning networks to improve the segmentation performance. Liu
and Wang [34] proposed a framework that comprised a student network and a teacher
network, in order to predict the probability, contour, and distance maps simultaneously.
Pawan et al. [25] made an enhancement to the existing capsule network architecture of
SegCaps [35], called DRIP-Caps, which utilized the dilation, residual connections, inception
blocks, and capsule pooling for the SRF segmentation, which reduces the computational
complexity and the number of training parameters. They reported that the DRIP-Caps
architecture might reduce the number of trainable parameters by 54.21%. Hu et al. [26]
introduced the modules of ASPP and modified stochastic ASPP into the ResNet to segment
the SRF and PED regions in OCT images, which can alleviate the overfitting problem and
greatly reduce the validation error. Gao et al. [20] introduced a novel double-branched and
area-constraint FCN structure to learn the shallow coarse and deep representations from
the spectral domain OCT images for the segmentation of the SRF and PED regions. Xing
et al. [36] proposed a new model based on FCN framework that included the attention
gate and spatial pyramid pooling modules to better extract the multiscale objects in OCT
images. A curvature regularization term was used to set the loss function to incorporate
shape prior information and tune the network parameters, especially when the lesion is
vague. The modified FCN structure combined the softmax as the loss function during the
model training process.
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Table 2. Deep learning architectures and paradigms for retinal fluid segmentation. ASPP: atrous spatial pyramid pooling, CNN: convolutional neural network,
DAC: dense atrous convolution, FCN: fully convolutional network.

Deep Learning Methodology Research Works Paradigms

Schlegl et al. [19] 8-layer FCN
Chen et al. [28] Faster R-CNN

Modified CNN
Sanchez et al. [29] SEUNet model

Wang et al. [30] Deeplab model
Sappa et al. [32] CNN (skip-connect operations + atrous spatial pyramid pooling)

FCN backbones Girish et al. [33] Enhanced semantics preprocessing + CNN with a depthwise separable convolution filter

Liu and Wang [34] Two (Student + Teacher) FCNs
Pawan et al. [25] DRIP-Caps (SegCaps with dilation, residual connections, inception blocks, and capsule pooling)

Modified FCN Hu et al. [26] ResNet added with ASPP and modified stochastic ASPP
Gao et al. [20] FCN with modified loss funciton
Xing et al. [36] FCN architecture with attention gate and spatial pyramid pooling module

Roy et al. [37] ReLayNet optimized with the weighted logistic regression and Dice loss
Fine-tuning Kang et al. [38] A cascade of two fine-tuned U-Nets (the second U-Net with 2-channel inputs)

Lee et al. [21] U-Net with 18 convolutional layers and sigmoid activation function for probability distribution mapping

Tennakoon et al. [39] Adversarial loss
Modified loss function Liu et al. [40] Semi-supervised loss

U-Net backbones
Wei and Peng [41] Mutex Dice loss

Chen et al. [42] Squeeze-and-Excitation block (SE-block)
Hassan et al. [8] Multiscale feature extractor module (DAC + ASPP)

Functional modules
Ma et al. [43] U-Net + FCN with ASPP module
Ye et al. [9] Context pyramid guide + Context shrink-age encode

Yang et al. [23] Six-string convolutions + Multiscale pyramid pooling module
Bao et al. [24] Channel multiscale module + Spatial multiscale module

3D U-Net Lin et al. [44] Batch normalization + Focal loss

Shortest path methods
Rashno et al. [45] Graph shortest path + CNN

Liu et al. [46] BM3D method + Graph shortest path + CNN

Graph-based methods
Rao et al. [22] IOWA reference algorithm + U-Net

Hybrid methods Lu et al. [47] Graph-cut algorithm + FCN + Random forest

Montuoro et al. [48] Unsupervised representation + Auto-context loop + Graph-theoretic segmentation
Unsupervised learning algorithms Gopinath and Sivaswamy [49] CNN trained with generalized motion patterns + Clustering

He et al. [50] Intra- and inter-slice contrastive learning network (ISCLNet) + CNN
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4.2. Deep Learning Paradigms with U-Net Backbone

The merits of the U-Net have been verified and demonstrated in plenty of publi-
cations [21,37,38] in biomarker segmentation research fields. This subsection reviews
the modified networks based on the U-Net backbone for the applications of retinal fluid
segmentation.

4.2.1. Fine-Tuning on the U-Net Backbone

Inspired by the U-Net and DeconvNet, Roy et al. [37] proposed a novel network
named ReLayNet for OCT retinal layer and fluid segmentations. The ReLayNet worked by
encoding the input image data with a contracting path of convolutional blocks to learn the
hierarchical contextual features, and by decoding with an expansive path of convolutional
blocks to generate the semantic segmentation results. The ReLayNet optimized a joint loss
function that combined weighted logistic regression and Dice overlap loss for training the
ReLayNet. Roy et al. [37] reported the excellent retinal layer segmentation results in terms
of Dice overlap score, estimated contour error for each layer, and the error in estimated
thickness map provided by the ReLayNet.

Kang et al. [38] used two fine-tuned U-Net networks for the IRF, SRF, and PED retinal
fluid segmentation. The first network added a fully connected layer between the encoding
and decoding paths of the U-Net in order to segment the original image and output the
corresponding categories of the segmented area. The second U-Net involved both the OCT
image and the corresponding segmented image generated from the former network as
input data (two channels) to carry out further detailed segmentations.

The fine-tuned U-Net used in the work of Lee et al. [21] contained 18 convolutional
layers and sigmoid activation functions in the last layer to output the binary segmentation
probability. A vertical window size of 432 × 32 pixels was selected to perform sliding
on the image. The U-Net computed the window patch inputs to generate a probability
distribution map which can be finally visualized to illustrate the IRF segmentation regions.

4.2.2. Loss Function Innovations

A good loss function not only may improve the accuracy of segmentation, but it
could also help speed up the training process,. The research on the loss function design
has been attracting attention from the community. Tennakoon et al. [39] introduced the
adversarial loss as the U-Net loss function, which can encode the higher-order relationships
between image regions. Furthermore, they considered the batch normalization to each of
their convolution blocks to ameliorate training efficiency, and also employed the dropout
for each jump connection to prevent overfitting. Their proposed method achieved the
fourth-best score listed in the RETOUCH challenge result panel.

Liu et al. [40] proposed a semi-supervised method with an adversarial learning strat-
egy. The segmentation network and a discriminator network were constructed with fully
convolutional architectures. Their major contribution was to optimize the joint loss function
as the objective function, which integrated the multi-class cross-entropy loss, Dice overlap
loss, adversarial loss, and semi-supervised loss [40]. Such an adversarial learning strategy
just required much smaller numbers of retinal fluid labels for network training.

Wei and Peng [41] utilized the priority of the mutex relationship between different
layers to adjust the Dice loss function to be mutex Dice loss, to better segment retinal layers
and fluids in OCT images. Moreover, they proposed a depth max pooling operation, which
selected the maximal feature map from the up-pooling layer and the corresponding convo-
lutional layer in the encoder block. Such an operation made the channel and parameters
remain unchanged, which can avoid the doubling of the channel and training parameters
caused by skip connections.
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4.2.3. U-Net with New Modules

Recently, new modules were employed in the U-Net construction, with the purpose of
better coping with different sizes of retinal fluid and utilizing the spatial information of
OCT images. Chen et al. [42] proposed a method that integrates the squeeze-and-excitation
block (SE-block) [51] into the U-Net to segment the retinal fluid regions. The regions
of interest (layers between internal limiting membrane (ILM) and BM) processed by the
graph-based segmentation algorithm [52] were used as the U-Net inputs.

In the work of Hassan et al. [8], the SEADNet consisted of three modules, i.e., a feature
encoder, two multiscale feature extractors, and a feature decoder, for segmentations of IRF,
SRF, and PED. The basic structures of the feature encoder module and feature decoder mod-
ule were the same as those in the classical U-Net. However, the batch normalization [53]
(BN) was added in each convolution block to speed up training. The multiscale feature
extractor module included a dense atrous convolution (DAC) block [54] and an ASPP block.
The DAC block can ensure that the network effectively extracts the retinal fluid features
of different sizes, and the ASPP block makes the network more robust in response to the
contour, delineation, and geometry changes.

Similarly, Ma et al. [43] embedded the ASPP module into the FCN network, and
combined U-Net to design a dual-branch neural network for retinal layer and retinal fluid
segmentation. The encoder path of U-Net performed the feature map extraction of the
input image. Meanwhile, the decoder path of U-Net and FCN restored the resolution of the
feature map, respectively. The U-Net network was effective on coarse segmentation, but it
had limited performance on boundary segmentation, whereas the FCN can reliably extract
boundary pixels. Therefore, a combination of the U-Net and FCN could be a possible
solution toward a higher segmentation accuracy.

Ye et al. [9] proposed the context pyramid guide (CPG) module and inserted it between
the encoder and decoder paths, so that the network can dynamically fuse multi-scale
information from high-level features. Their module design was inspired by the spatial
pyramid structure [12], which can be used to collect the multiscale information. In order to
effectively reduce the redundant feature maps, they proposed the context shrinkage encode
module based on the soft thresholding function [55], and embedded it in each convolution
block of the encoder path as the last layer in the deep learning network.

To better deal with the diversity of SRF, Yang et al. [23] replaced the conventional
pooling layer in the U-Net encoder with six-string convolutions based on residual architec-
ture. They proposed a multiscale pyramid pooling module with reference to the pyramid
pooling module of DeeplabV3, and connected it behind the six-string convolutions.

Considering the inconsistent sizes of PED in different OCT images, Bao et al. [24]
abandoned the skip connections of the U-Net and employed a channel multiscale module,
to obtain the multiscale information with the attention mechanism. Moreover, a spatial
multiscale module designed on the basis of dilated convolution was inserted into the
decoder path, so that the deep learning network can compute more multiscale receptive
fields with spatial information.

4.2.4. 3D U-Net Model

In the previous work of Lin et al. [44], a BN layer was employed for each convolution
block (Conv+BN+ReLu) with the focal loss function as well. In 2019, Li et al. [56] utilized
the 3D U-Net network architecture to perform the IRF and SRF segmentations in OCT
images. If a single OCT image cannot be desirably segmented, the 3D network architecture
can gather the spatial feature information of the adjacent OCT images to improve the
segmentation. In addition, they may overcome the overfitting obstacles and a few pixel
segmentation difficulties.
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4.3. Hybrid Computational Segmentation Methods

In addition to the deep learning methods mentioned above, the hybrid approaches
are also widely used to combine several effective algorithms to segment and identify the
retinal fluids in OCT images.

4.3.1. Shortest-Path Methods

Rashno et al. [45] reported a fully automated method to segment and detect three types
of retinal fluid. Their method considered the shortest-path graph technique to segment the
ILM and RPE, and then took them as input data to train the CNN for binary classifications
of the pixels between two regions. Then, the PED was segmented by combining the results
of layer segmentation and flattening. Similar to the previous related studies, Liu et al. [46]
added the BM3D method to denoise the image, and computed the shortest paths for the
retinal fluid segmentation in the spectral domain OCT images. A type of rectangular box
was also added to frame the content of the original image, in order to train the CNN for
detection of retinal fluid locations.

4.3.2. Graph-Based Methods

The FCNs were frequently used as the backbone structures for hybrid fluid region
segmentation applications. Rao et al. [22] studied the negative impact of speckle-noise
generated in OCT scanning on IRF segmentation. They used the IOWA reference algorithm
to convert the area outside the ILM and RPE layers into the zero-intensity area, and then
input the processed background neutralized image into the U-Net for segmentation. The
IOWA reference algorithm can perform the graph-based simultaneous surface segmenta-
tions with varying constraints and regional information. Lu et al. [47] implemented the
layer segmentation by using a graph-cut algorithm. In their study, the FCN was trained to
segment all pixels of each B-scan image into the non-fluid areas and the regions of IRF, SRF,
and PED, respectively. Then, features were extracted from the potential fluid regions, and a
random forest classifier was used to reject the false fluid regions.

4.3.3. Unsupervised Learning Methods

In 2017, Montuoro et al. [48] developed a novel automated 3D layer that incorporated
the unsupervised representation, auto-context loop, and graph-theoretic segmentation
to establish a retinal fluid segmentation system. Their method first extracted the image-
based features from the original OCT image data, and combined the manual labels to
train a basic voxel classifier. Then, the probability map was generated to perform the
surface segmentation and extract the context-based features to train another classifier.
The procedures of context-based feature extraction and additional classifier training were
iteratively repeated multiple times in an automatic context loop.

Gopinath and Sivaswamy [49] trained a CNN with generalized motion patterns for
retinal fluid segmentations in spectral domain OCT images. Their technique first selected
the enhancement of the cyst regions prior to the network training. Then, a mapping
function that combined the multiple motion results was optimized by the CNN to generate
a probability map of the cyst’s position in a given OCT image. Finally, the cyst segmentation
results were produced by clustering of the identified cyst locations.

He et al. [50] exploited the similarity between the retinal effusion fluid regions and
background regions, and the dissimilarity of the retinal layers and background regions, to
create an intra-and inter-slice contrastive learning network (ISCLNet) to accomplish the
point-supervised retinal fluid segmentations in OCT images. It is a weakly-supervised
learning method that can work with any CNN-based backbone, and may perform a rapid
training of the ISCLNet model for retinal fluid segmentation.
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5. Discussions

A wide variety of datasets lead to different evaluation criteria for retinal fluid seg-
mentation. In order to better compare and discuss different segmentation methods re-
ported in recent publications, we summarized the methods and their results on the same
public datasets (i.e., RETOUCH, Duke, and OPTIMA) or multiple private datasets in
Tables 3 and 4. The segmentation performance of deep learning architectures on the public
datasets are comparable. The retinal fluid segmentation results reported by researchers
based on their private datasets may also be valuable for segmentation evaluations. Ac-
cording to Hassan et al. [8], the SEADNet that integrated the DAC and ASPP modules
can achieve the best overall segmentation results on the the RETOUCH dataset, with the
averaged Dice results of 90.9%, 91.3%, and 91.8% for the segmentations of IRF, SRF, and
PED regions, respectively. The dual U-Net proposed by Kang et al. [38] also achieved the
comparable OCT segmentation results of IRF, SRF, and PED, with the Dice values of 86.00%,
92.67%, and 91.63%, respectively. It can be observed that the best Dice result of 95.78% for
the single PED segmentation on the RETOUCH dataset was obtained by the FCN-based
RetFluidNet, reported in the work of Sappa et al. [32]. In addition, the depthwise separable
CNN proposed by Girish et al. [33] provided the best IRF segmentation accuracy in terms
of Dice value of 74% on the OPTIMA dataset, which is similar to the IRF segmentation Dice
result of 76% on the Duke dataset, as reported by Montuoro et al. [48].

Regarding the segmentation results obtained with the deep learning architectures
based on the CNN-based or FCN-based backbones, the FCN method of Schlegl et al. [19]
can accurately distinguish fluid localization and extent, with the Dice values of 77% and
79% for IRF and SRF segmentations, respectively. Venhuizen et al. [27] combined two
FCN models to automatically segment the intraretinal cystoid fluid and diffuse non-cystic
IRF regions. The first FCN network can be used as the additional input to the second
FCN, which can learn a wide range of different complex features and has the capability of
capturing the large variability in AMD appearance and vendor-dependent spectral domain
OCT characteristics. They reported a Dice value of 75.4% for IRF segmentation [27]. Liu
and Wang [34] proposed an uncertainty-aware semi-supervised framework that consisted
of a teacher network and a student network, with the same structure. Three decoders of
each network can simultaneously output the probability map, contour map, and distance
map. They reported that the fusion of these three maps may achieve the averaged Dice
values of 73.6%, 75.57%, and 73.93% for IRF, SRF, and PED segmentations on the RETOUCH
dataset, respectively.

Table 3. Summary of important results of the IRF, SRF, and PED segmentations. The Dice results
of IRF, SRF, and PED were the mean value of OCT image segmentation provided by different OCT
vendors. “N/A” indicates that this type of fluid is not segmented in the paper or is not segmented by
the method of deep learning.

Research Work Dataset Backbone Loss Function
IRF SRF PED

Dice (%) Dice (%) Dice (%)

Hassan et al. [8] RETOUCH U-Net Dice loss 90.90 91.30 91.80

Ye et al. [9] RETOUCH U-Net Combination of cross-entropy and
Dice loss 73.17 79.70 71.06

Schlegl et al. [19] Private FCN Softmax loss 77.00 79.00 N/A
Gao et al. [20] Private FCN Combination of area and softmax loss N/A 95.30 91.90
Lee et al. [21] Private U-Net ReLu, sigmoid loss 72.90 N/A N/A
Rao et al. [22] Private FCN ReLu, sigmoid loss N/A 91.00 N/A

Yang et al. [23] Private U-Net Combination of binary cross-entropy, Dice,
and diff loss N/A 96.20 N/A

Bao et al. [24] Private U-Net Combination of binary cross-entropy and
Dice loss N/A N/A 79.17

Pawan et al. [25] Private SegCaps Margin loss N/A 94.04 N/A
Hu et al. [26] Private ResNet50 Cross-entropy loss N/A 87.59 73.71

Venhuizen et al. [27] Private FCN Weight map loss 75.40 N/A N/A
Chen et al. [28] RETOUCH Faster R-CNN Softmax and smooth L1 loss 70.44 58.83 70.31
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Table 3. Cont.

Research Work Dataset Backbone Loss Function
IRF SRF PED

Dice (%) Dice (%) Dice (%)

Sappa et al. [32] RETOUCH FCN Combination of softmax and cross
entropy loss 78.95 90.90 95.78

Girish et al. [33] OPTIMA DSCN Weight map loss 74.00 N/A N/A

Liu et al. [34] RETOUCH FCN Combination of Dice loss, cross-entropy,
regression and consistency loss 73.60 75.57 73.93

Xing et al. [36] RETOUCH FCN Shape prior loss function 79.00 74.00 77.00
Kang et al. [38] RETOUCH U-Net Maxout loss 86.00 92.67 91.33

Tennakoon et al. [39] RETOUCH U-Net Combination of cross-entropy, Dice loss,
and adversarial loss 69.00 67.00 85.00

Rashno et al. [45] RETOUCH CNN ReLu, tanh loss 85.45 81.30 84.08

Lu et al. [47] RETOUCH FCN Combination of softmax and cross
entropy loss 71.90 75.53 72.06

Montuoro et al. [48] Duke Unsupervised
3D-layer Probability map 76.00 76.00 N/A

Gopinath et al. [49] OPTIMA CNN Weight binary cross entropy loss 71.00 N/A N/A

He et al. [50] RETOUCH ISCLNet Inter-slice loss, cross-entropy loss, and
intra-slice loss N/A 73.16 69.42

Table 4. Summary of important results of retinal fluid segmentation, without further segmentation
of IRF, SRF, or PED regions. The Dice results are sorted in ascending order. SEUNet: U-Net with
squeeze-and-excitation blocks, DRIU: deep retinal understanding.

Research Work Dataset Backbone Loss Function Fluid in Dice (%)

Ma et al. [43] Private U-Net+FCN
Combination of weighted

Dice loss and the
weighted logistic loss

51.32

Sanchez et al. [29] Duke Ensemble network
(SEUNet, DRIU)

Cross-entropy, Dice,
Jaccard loss 62.45

Roy et al. [37] Duke U-Net
Combination of weighted

logistic regression and
Dice loss

77.00

Liu et al. [40] Duke U-Net
Combination of cross

entropy, Dice, adversarial,
and semi-supervised loss

80.00

Liu et al. [46] Private CNN Relu and softmax loss 81.10

Hao et al. [41] Duke U-Net
Combination of weighted

cross-entropy, Dice and
mutex Dice loss

81.00

Chen et al. [42] Public U-Net Dice loss 94.21
Wang et al. [30] Private DeepLab Cross-entropy loss 95.43

Li et al. [56] Private 3D U-Net Combination of weighted
loss and focal loss 95.50

Sappa et al. [32] and Hu et al. [26] both integrated the ASPP module in the FCN. Sappa
et al. [32] reported that the FCN with ASPP module may provide the Dice results of 80.05%,
92.74%, and 95.53% for the IRF, PED, and SRF segmentations on the RETOUCH dataset,
respectively. Hu et al. [26] reported that their deep learning network may achieve the
Dice values of 87.59% and 79.71 % for the SRF and PED segmentations in spectral domain
OCT images, respectively. In addition, Chen et al. [28] used the modified faster R-CNN
architecture for automatic retinal fluid segmentation, with the Dice value of 70.44% when
detecting the IRF regions.

The combinations of additional computational modules and CNN-based or FCN-
based backbones are also popular, because these computational methods could bring
about reducing training expense or increasing feature diversity for segmentation accuracy
improvements. Pawan et al. [25] utilized the dilation, residual connections, inception
blocks, and capsule pooling in their model, which could decrease the number of trainable
parameters by 37.85%, with a competitive Dice result of 94.04% for SRF segmentation. The
depthwise separable convolutional filter method proposed by Girish et al. [33] facilitates
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model generalization and prevents model overfitting, and leads to a Dice value of 74% for
IRF segmentation.

The optimizations of deep learning networks could effectively improve the instance
segmentation performance. The U-Net with 18 fine-tuned convolutional layers proposed
by Lee et al. [21] can successfully segment the IRF regions up to the Dice of 72.90%, when
handling the OCT images with different characteristics. Tennakoon et al. [39] used an
adversarial loss function to avoid the image post-processing operations, and achieved
the Dice values of 69.00%, 67.00%, and 85.00% for the IRF, SRF, and PED segmentations,
respectively. Wei et al. [41] proposed a deep max pooling scheme to reduce the network
parameters and speed up the model training procedure. They reported that the FCN
with the deep max pooling scheme may reach a Dice value of 81.00% in retinal fluid
segmentations on the Duke dataset. In the past three years, several new modules were
utilized into the U-Net backbones to obtain the multiscale spatial feature information of
retinal fluids. The six striding convolutions designed by Yang et al. [23] provide more
possibilities for segmenting retinal fluid of different sizes, and their network could provide
a Dice value of 96.20% for the SRF segmentations. In order to extract multiscale features
from the OCT images, the CPG module was introduced by Ye et al. [9], and the channel
multiscale module was used by Bao et al. [24] to replace the skip-connection layer of the
U-Net. Ye et al. [9] reported that the Dice values of 73.17%, 79.10%, and 71.06% could be
obtained in the IRF, SRF, and PED segmentations on the RETOUCH dataset, respectively.
Bao et al. [24] reported a PED segmentation Dice result of 79.17% on their own OCT dataset.

Hybrid methods usually emphasize the preprocessing steps, and tend to combine
different networks or computational algorithms toward better segmentation results. Rashno
et al. [45] and Liu et al. [46] introduced the shortest path as the input data of the CNN-based
backbones during the preprocessing process, and their hybrid methods can achieve the
Dice coefficient results over 80% both in the semantic and instance segmentations of retinal
fluid regions. Rao et al. [22] reported that the preprocessing step could greatly reduce the
noise interferences during the FCN model training, and the conventional feature extraction
techniques may assist in the SRF segmentations, with a Dice coefficient value over 90%.
Lu et al. [47] focused on the prior, domain-specific knowledge in the graph-cut algorithm,
which could help the Dice performance of the deep learning architecture exceed 70% for
the IRF, SRF, and PED instance segmentations, on the RETOUCH dataset.

The unsupervised learning and weakly supervised learning algorithms could also
provide excellent retinal fluid segmentation accuracy results. In the research of Montuoro
et al. [48], the unsupervised learning method was combined with the auto-context and
graph theory for the retinal fluid segmentation applications. Such a method may achieve the
Dice coefficients of 76% for both of the IRF and SRF segmentations on the Duke OCT dataset.
According to Gopinath and Sivaswamy [49], although the convolutional network trained
by the unsupervised learning algorithms was unable to detect very small cystic areas in the
OCT images, the unsupervised learning approach still could implement the IRF segmenta-
tion with a Dice value over 71% on the OPTIMA dataset. He et al. [50] applied a contrastive
weakly learning network to the field of retinal effusion segmentation, and accomplished
the Dice values of 73.16% and 69.42% for SRF and PED segmentations, respectively, which
were superior to the results of the other well-known point-supervised methods.

Regarding the semantic segmentation performances, Ma et al. [43] used the FCN with
the ASPP module as an extension path to ameliorate the capability of the U-Net backbone for
boundary segmentations of both retinal layer and retinal fluid segmentations, and reported
the Dice result of 51.32% for semantic segmentations. In the work of Sanchez et al. [29], the
SEUNet model ensembled with the modified deep retinal understanding framework and a
Pix2Pix module was able to obtain the Dice segmentation result of 62.53% when detecting
small lesions. The ReLayNet proposed by Roy et al. [37] considered the weighted logistic
regression in the loss function, and segmented the retinal fluid regions with a Dice result
of 77%. Based on the idea of generative adversarial networks [57], Liu et al. [40] designed
the U-Net backbone with a discriminative network for segmentation, which could achieve
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80.00% Dice coefficient on retinal fluid segmentation, by training with several labeled data
and unlabeled data. Chen et al. [42] used the SE-block module in the U-Net and made the
semantic fluid segmentation with an excellent Dice of 94.21%. Wang et al. [30] integrated
the ASPP module in their deep learning architecture to detect macular edema, and used the
CRF to refine the macular edema boundary for learning a wide variety of different complex
features of OCT images. Their proposed method achieved a Dice value of 95.43% for the
retinal fluid segmentation.

6. Conclusions

This article provides a comprehensive survey on the recent significant academia’s
contributions to the segmentation of retinal fluid in OCT images based on deep learning
architectures. The majority of deep learning architectures were established based on the
CNN, FCN, U-Net, and hybrid methods. The OCT images in the same dataset can come
from different vendors, which would affect the retinal fluid segmentation results. Therefore,
future works should focus on domain generalizations to eliminate the dependence of
segmentation on the dataset.

The advanced deep learning methods have several advantages for the accurate and
effective detection of retinal fluid lesions, which can better support the diagnosis decision
making of ophthalmic diseases in more clinical applications. Furthermore, the automatic
retinal fluid segmentation may prevent the subjective influence of manual detection and
reduce the workload of medical experts [58]. With the developments of advanced deep
learning technology in the future, the retinal fluid segmentation methods based on the
deep learning architectures will progressively replace the manual segmentation protocol in
clinical practice.
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AMD Age-related Macular Degeneration
ASPP Atrous Spatial Pyramid Pooling
BM Bruch’s Membrane
BN Batch Normalization
CNN Convolutional Neural Network
CNV Choroidal NeoVascularization
CPG Context Pyramid Guide
CRF Conditional Random Field
DAC Dense Atrous Convolution
DME Diabetic Macular Edema
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FCN Fully Convolutional Network
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
ILM Internal Limiting Membrane
IRF Intraretinal Fluid
OCT Optical Coherence Tomography
PED Pigment Epithelial Detachment
RPE Retinal Pigment Epithelium
RVO Retinal Vein Occlusion
SE-block Squeeze-and-Excitation block
SRF Subretinal Fluid
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