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Summary

		  Our mini-review focuses on dual regulation of cellular nitric oxide (NO) signaling pathways by 
traditionally characterized enzymatic formation from L-arginine via the actions of NO synthases 
(NOS) and by enzymatic reduction of available cellular nitrite pools by a diverse class of cytosolic 
and mitochondrial nitrite reductases. Nitrite is a major metabolic product of NO and is found in 
all cell and tissue types that utilize NO signaling processes. Xanthine oxidoreductase (XOR) has 
been previously characterized as a housekeeping enzyme responsible for cellular uric acid forma-
tion via enzymatic conversion of hypoxanthine and xanthine. It has become apparent that XOR 
possesses multi-functional enzymatic activities outside the realm of xanthine metabolism and a 
small but significant literature also established a compelling functional association between ad-
ministered sodium nitrite, XOR activation, and pharmacologically characterized NO transductive 
effects in positive cardiovascular function enhanced pulmonary perfusion, and protection against 
ischemia/reperfusion injury and hypoxic damage and oxidative stress. Similar positive vascular 
and cellular effects were observed to be functionally associated with mitochondrial aldehyde de-
hydrogenase and cytochrome c/cytochrome c oxidase. The profound implications of a reciprocal 
regulatory mechanism responsible for cytosolic and mitochondrial NO production are discussed 
below.
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Nitric Oxide Synthases and Nitrite Reductases

Over the last two decades, the biological preeminence of cel-
lular nitric oxide (NO) signaling pathways has been intimately 
linked to many processes and to its regulated enzymatic forma-
tion from L-arginine via the actions of NO synthases (NOS) and 
to secondary activation of soluble guanylate cyclase as a major 
physiological target/effector system [1–20]. Evolutionary pres-
sure has established a functional diversity in cellular expres-
sion of NOS isoenzymes derived from three distinct genes and 
designated as endothelial (e), neuronal (n) and inducible (i) 
NOS. E- and n-NOS are constitutively expressed, display Ca2+ 
dependent activation, and rapidly produce and release NO 
within spatially defined cellular domains. In contrast, iNOS 
expression is intimately linked to proinflammatory processes, 
displays a significant latency period due to transcriptional and 
translational processing, and effects unregulated Ca2+– inde-
pendent release of NO for extended periods of time [7,21–28]. 
Interestingly, a significant body of literature supports the con-
tention that constitutively released NO can attenuate the ex-
pression of iNOS in vascular smooth muscle, neutrophils, mi-
croglia, astrocytes and hepatocytes [29–35]. Work from our 
laboratory has demonstrated significant feedback inhibition 
of NO on constitutively derived NO release [12,14–16,36–41] 
as well as iNOS derived NO release [27].

Within the past decade, an important body of work has chal-
lenged the primacy of NOS/L-arginine derived NO in cellu-
lar signaling processes and involves the existence of chemical-
ly stable nitrite and nitrite reductase activities in these same 
cell/tissue types [42–56]. Nitrite is a major metabolic prod-
uct of NO and is found in all cell and tissue types that utilize 
NO signaling processes [42–46,52,53,55–67]. Accordingly, the 
establishment of a parallel and complementary NO signaling 
pathway utilizing recycled nitrite chemical equivalents, inde-
pendently expressed from well established NOS/L-arginine 
signaling pathway, requires the identification and biochemi-
cal characterization of key candidate enzymes displaying sig-
nificant nitrite reductase activities within meaningful biolog-
ical contexts. Until now, accumulated NO/nitrite reductase 
literature has focused on xanthine oxidoreductase (XOR) as 
the major candidate nitrite reductase enzyme linked to cellu-
lar NO signaling events [49,51,52,54–58,60–64,68–76]. Other 
candidate nitrite reductases displaying potentially important 
biological roles as accessory players in NO signaling events in-
clude the mitochondrial enzymes aldehyde dehydrogenase 
[42,44,50,57], cytochrome c/cytochrome c oxidase [45,47,77], 
deoxymyoglobin [48,53] and deoxyhemoglobin [57,78].

Potent Vascular and Anti-inflammatory Effects of 
Sodium Nitrite: Functional Involvement of Xanthine 
Oxidoreductase and Accessory Nitrite Reductases

Xanthine oxidoreductase has been previously characterized 
as a housekeeping enzyme responsible for cellular uric acid 
formation via enzymatic conversion of hypoxanthine and 
xanthine [55,56,70,79]. Based on its intrinsic state-depen-
dent biochemical properties to exist as both a dehydroge-
nase and an oxidase, it became apparent to several investiga-
tors that XOR possessed multi-functional enzymatic activities 
outside the realm of xanthine metabolism [54–56,70,79]. 
Hallmark positive vascular effects were well established to be 
mediated by cellular NOS/L-arginine NO signaling pathways 
[7–11]. A small but significant literature has also established 

a compelling functional association between administered 
sodium nitrite, XOR activation, and pharmacologically char-
acterized NO transductive effects in positive cardiovascular 
function [62,63,75,80–82], enhanced pulmonary perfusion 
[60,80], and protection against ischemia/reperfusion inju-
ry [64,72–75] and hypoxic damage [56,58,83-85] and oxi-
dative stress [63,76]. Similar positive vascular and cellular 
effects were observed to be functionally associated with mi-
tochondrial aldehyde dehydrogenase [42,44,50,57], cyto-
chrome c/cytochrome c oxidase [45,47,77].

Nitric oxide derived from NOS/L-arginine systems functions 
not only as a vasodilator but as a general antibacterial and 
antiviral agent and, counter-intuitively, it can down-regulate 
proinflammatory events [27,86–92]. Accordingly, signifi-
cant anti-inflammatory properties of administered sodium 
nitrite have been attributed to XOR activation via pharma-
cologically characterized NO transductive effects [58,68].

Microenvironmental Modulation of NO Production: 
A Putative Role for Xanthine Oxidoreductase and 
Accessory Nitrite Reductases

Work from our laboratory supports the contention that consti-
tutively derived NO provides a basal or ‘tonal’ level of chem-
ical mediator keeps particular types of cells in a state of in-
hibition [93]. We have hypothesized that certain classes of 
cells are always ‘on’, i.e., respond to environmental changes, 
and that this low basal level of NO [94] provides an organ-
ism with a major pathway that functions to dampen microen-
vironmental “noise” which would otherwise nonspecifically 
and inappropriately activate them [93]. NO may control the 
threshold for activation of these cells. This kind of activation 
really represents a disinhibition process, i.e., an overcom-
ing of the inhibitory influence of NO by changing the bal-
ance between basal NO and the levels of excitatory signals.

In support of the hypothesis stated above, there is consid-
erable evidence that constitutively derived NO down-regu-
lates the immunocyte-endothelial interaction [86,93,94]. NO 
has been shown to inhibit platelet and neutrophil aggrega-
tion [90]. In vitro, NO inhibits monocyte adhesion to por-
cine aortic endothelial cells [95]. In human vessels, the ad-
herence of monocytes and granulocytes is reduced following 
the stimulation of cNOS [86,94,96] and, in the presence of 
NO, monocytes, granulocytes and endothelial cells become 
round and inactive [25,97]. These findings strongly indicate 
that NO can diminish the adherence and level of activation 
of leukocytes and endothelial cells. It also suggests these are 
phenomena that occur within a microenvironment given 
NO short-half life and the strength of the effect produced by 
many of these cells via autocrine and/paracrine signaling. It 
is now possible to add a functionally reinforcing mechanism 
whereby basal levels of cellular nitrite are recycled to active 
NO equivalents via the actions of XOR and accessory nitrite 
reductases upon physiological demand (Figure 1) [58,68].

Nitric Oxide Regulation of Mitochondrial Respiration 
and Intermediary Energy Metabolism: Functional 
Involvement of Xanthine Oxidoreductase and 
Accessory Nitrite Reductases

It has been well established that mitochondrial respiration 
linked to homeostasis of intermediary energy metabolism 
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is regulated by NO signaling systems [12,98–104]. For ex-
ample, pharmacological inhibition of constitutively derived 
NO has been shown to increase oxygen consumption in 
many animal species [105–109]. Furthermore, a novel NOS 
isoform, mtNOS, is present in mitochondria [12,99,110] 
and appears to modulate local circuit regulatory functions 
within electron transport complexes. Interestingly, nitrite-
derived NO has been shown to potently regulate respira-
tion, reactive oxygen species, and energy metabolism in 
plant mitochondria [83,111–113]. The apparent redun-
dancy of plant mitochondrial NOS/L-arginine- and ni-
trite-derived NO signaling systems [83,111–113] provides 
a compelling platform for further investigation into recip-
rocal regulatory effects of mtNOS and concerted nitrate 
reductase actions in mammalian mitochondria (Figure 1) 
[42–46,53,85,114].

A recent important publication has described local circuit 
nitrite/NO cycling to produce biologically active NO with-
in liver mitochondria [47]. The investigators have dem-
onstrated that nitrite mediates cellular signaling through 
its reduction to NO via reactions with the mitochondri-
al electron carrier cytochrome c. Cytochrome c-mediated 
nitrite reductase activity is dependent on pentacoordina-
tion of the heme iron in the protein and occurs under an-
oxic and in the presence of nitrite, pentacoordinate cyto-
chrome c generates bioavailable NO that is able to inhibit 
mitochondrial respiration. An elegant complementary study 
has demonstrated in yeast that state-dependent hypoxia re-
cruits cytochrome c oxidase as a functionally competent 
nitrite reductase [77]. The investigators have also evaluat-
ed nitrite-dependent NO production by specific isoforms 
of cytochrome c oxidase in support of a functional role of 
the enzyme in hypoxic signaling events. Additionally, the 
study findings suggest a positive feedback mechanism for 
nitrite-derived mitochondrial NO on selective gene expres-
sion of a cytochrome c oxidase subunit that is functional-
ly associated with enhanced production of NO in hypox-
ic/anoxic cells.

Further Investigation Into the Dual Regulation of 
Nitric Oxide Production by Nitric Oxide Synthases 
and Nitrite Reductases

On a functional basis it has become clear that the basal lev-
el of NO derived from cNOS in concert with cellular nitrite 
reduction by XOR within a diverse class of nitrite reduc-
tases may serve as a key regulatory mechanism underly-
ing complex, cascading, physiological processes associat-
ed with maintaining cellular and organ viability. Further 
studies are required to probe selective regulatory effects 
of NOS-derived and nitrite-derived NO on gene expres-
sion of their cognate synthetic enzymes. Similar compel-
ling studies are needed to elucidate biologically meaning-
ful cellular coupling of cytosolic XOR and mitochondrial 
nitrite reductases in normal and pathophysiological states 
(Figure 1) [68–70,80,115–117]. Finally, holistic pre-clinical 
and studies to evaluate conversion of dietary nitrate to re-
cycling active cellular nitrite pools hold great promise for 
improving quality of life in human and animal populations 
[52,81,118,119].
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Figure 1. �Nitric oxide synthase (NOS) and nitrite 
reductases, e.g., xanthine oxidoreductase 
(XOR) physiological recruitment 
pathways. Nitric oxide synthase and 
nitrite reductases all can produce 
constitutive nitric oxide (NO) either alone 
or in synchrony to meet physiological 
demands in the modulation of tissue 
health. Their diminished reduction in 
NO production and ability to modulate 
their respective enzymes mediating 
their synthesis may contribute to 
pathophysiological sequelae. Given the 
presence of these parallel systems for NO 
production highlights the significance of 
baseline NO presence in “normal” health 
[93].
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