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Abstract

A wide variety of protein and peptidomimetic design tasks require matching functional 3D motifs

to potential oligomeric scaffolds. For example, during enzyme design, one aims to graft active-site

patterns—typically consisting of 3–15 residues—onto new protein surfaces. Identifying protein

scaffolds suitable for such active-site engraftment requires costly searches for protein folds that

provide the correct side chain positioning to host the desired active site. Other examples of biode-

sign tasks that require similar fast exact geometric searches of potential side chain positioning

include mimicking binding hotspots, design of metal binding clusters and the design of modular

hydrogen binding networks for specificity. In these applications, the speed and scaling of geomet-

ric searches limits the scope of downstream design to small patterns. Here, we present an adap-

tive algorithm capable of searching for side chain take-off angles, which is compatible with an

arbitrarily specified functional pattern and which enjoys substantive performance improvements

over previous methods. We demonstrate this method in both genetically encoded (protein) and

synthetic (peptidomimetic) design scenarios. Examples of using this method with the Rosetta

framework for protein design are provided. Our implementation is compatible with multiple protein

design frameworks and is freely available as a set of python scripts (https://github.com/JiangTian/

adaptive-geometric-search-for-protein-design).
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Introduction

In the past 15 years, protein design has advanced considerably in
scale, accuracy and the variety of design tasks carried out by prac-
titioners. Early successes in protein design focused on protein fold
design (including novel folds) (Kuhlman et al., 2003) and hyperst-
abilization of proteins (Dantas et al., 2003). The redesign of
protein–protein (Boyken et al., 2016) and protein–DNA (Ashworth

et al., 2006) interfaces is a step towards functional rewiring of bio-
logical networks. More recently, protein engineers have turned toward
the redesign of protein active sites and smaller functional patterns that
demand sub-angstrom accuracy in the positioning of key side chains.
Such works include both the engraftment of known active sites onto
new scaffolds (Jiang et al., 2008) as well as the engraftment of novel
active sites (derived from quantum mechanical modeling of desired

© The Author(s) 2018. Published by Oxford University Press. 345

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-
stricted reuse, distribution, and reproduction in anymedium, provided the original work is properly cited.

http://www.oxfordjournals.org
https://github.com/JiangTian/adaptive-geometric-search-for-protein-design
https://github.com/JiangTian/adaptive-geometric-search-for-protein-design
http://creativecommons.org/licenses/by/4.0/


reactions) (Röthlisberger et al., 2008) onto new scaffold proteins. In
these enzyme design applications, active site patterns can become quite
large—as residues involved in substrate binding, reaction mechanism
and the surrounding environment may be considered. Enzyme design
and related design tasks involving functional site or hotspot transplant-
ation depend, in part, upon methods for matching a spatial pattern of
chemical functional groups onto large libraries of potential scaffolds
(proteins, nucleic acids or synthetic peptidomimetics, for example).

The earliest geometric matching applications in bioinformatics were
aimed at matching whole substructures that indicated a likelihood of
shared protein function or distant homology (Holm and Laakso,
2016). In many cases, these algorithms searched for contiguous regions
and essentially functioned as the structural analog of sequence align-
ment algorithms (both gapped and ungapped). Applications included
protein function prediction, analysis of protein structure prediction and
evaluation of new algorithms (Nussinov and Wolfson, 1991; Fischer
et al., 1992; Bonneau et al., 2002). Related work included innovative
geometric hashing to extract 3D functional motifs from protein struc-
tures (Wallace et al., 2008). In this work, we focus on geometric
searches for biodesigns rather than prospecting or annotation.

Geometric searches developed for similar design tasks have used
combinations of geometric hashing, side chain conformation librar-
ies and other heuristics that have typically limited the number of
functional elements in any given search pattern. Fleishman et al.
computationally designed a protein to bind hemaglutinin (HA), tar-
geting a conserved region on the stem (Fleishman et al., 2011). They
first identified the spatial positions of possible high-affinity (hotspot)
residues by docking single amino acids onto the HA stem region and
calculating a binding energy. Next, for residues predicted to have
sufficient binding energies to HA, they built inverse rotamer libraries
(i.e. rotamer distributions rooted at the side chain functional group
rather than the backbone)—which served as anchor sites on which
to dock protein scaffolds. The protein scaffolds themselves were
selected from proteins not known to bind HA and were filtered for
high shape complementarity with the HA target region. A low-
resolution docking procedure was used to simultaneously optimize
the HA scaffold binding energy as well as the scaffold’s ability to
accommodate anchor residues. Scaffolds that showed geometric
complementarity with the satisfied hotspot residues were used as the
starting point for a second round of docking and design to optimize
scaffold side chain positions surrounding the hotspot residues.

There are additional examples of geometric search-driven design on
synthetic oligomeric foldamers and short peptidomimetic scaffolds. The
objectives of the peptidomimetic design task may vary considerably:
e.g. active-site mimicry, interface binding, metal binding or surface
adhesion (Pacella et al., 2013). The set of oligomeric scaffolds can pro-
vide protein-like side chain spatial armaments is quite diverse; examples
include linear peptoids (Zuckermann et al., 1992), oligooxopiperazines
(OOPs) (Tošovská et al., 2010), HBS helices (Chapman et al., 2004),
cyclic peptides (Bhardwaj et al., 2016) and peptoids (Yoo et al., 2010),
β-peptides (Molski et al., 2013) and hybrids thereof. A frequent aim is
to mimic protein–protein interfacial hotspots in which a small number
of side chains scaffolded by a single secondary structure element com-
prise a significant fraction of the binding energy (Watkins and Arora,
2015). In these cases, moving such side chain groups to a new, non-
protein, scaffold with synthetically restricted backbone degrees of free-
dom and reduced atomic mass may be a viable route to inhibiting pro-
tein–protein interactions (PPIs). Lao et al. (2014) showed that by
grafting four side chains from a restricted segment of sequence onto a
four-subunit OOP scaffold creates low nanomolar inhibitors of two
important PPIs (p53-MDM2 and p300-Hif1α). The first step in this

work used a geometric search to dock the OOP scaffold into the bind-
ing site, such that side chain take-off angles were compatible with those
the three hotspot residues (predicted to comprise the majority of the
binding energy) in the experimental structure. After the geometric
search instantiated a starting pose, the Rosetta design procedure (with
modifications for both NCAA side chains and the OOP backbone) was
used to optimize binding—resulting in low nanomolar inhibitors of
both complexes. In both cases, the geometric match steps were based
on expensive inverse rotamers searches, which limits the procedure to
only small peptidomimetics.

Drew et al. (2013) previously demonstrated the incorporation of
several non-peptidic backbone chemistries in the macromolecular
modeling suite, Rosetta. There are many additional abiotic foldamer
and peptidomimetic backbones (Guichard and Huc, 2011) that are
amenable to such treatment. Determining the foldamer backbone
(or hybrid chemistry) most compatible with a given interface is a
potential bottleneck as the number of synthetically accessible scaf-
folds for biomimicry continues to increase.

Here, we describe a new method combining octrees (a data struc-
ture that maps regions of 3-dimensional space to nodes in a tree) and a
novel adaptive search that grants a significant performance gain for the
applications described above. Key innovations include the ability to
weight interaction/pattern components by energy and the adaptive
nature of the search, which both increases efficiency and allows for spe-
cification of error tolerance (per component of the template pattern)
and number of mismatches. We pose the problem by describing a typ-
ical setup. We then describe our core algorithm. Finally, we describe
applications to protein and peptidomimetic design tasks.

Methods

Problem setup

Given a library of molecular scaffolds, our method will find a suit-
able set of scaffolds to cause a set of target functional groups to be
fixed in space relative to one another. We use the term functional
group to indicate the terminal atoms of a side chain, i.e. those atoms
whose position will remain fixed relative to one another during the
rotation of the χ angles of the side chain. Examples would not only
include the phenyl, imidozol and guanadinium groups of phenyl-
alanine, histidine and arginine, respectively, but also the four ter-
minal carbons of leucine (Cβ, Cγ, Cδ1, Cδ2) and the hydrogens that
branch from them. A molecular scaffold is defined generally as any
molecule from which designable side groups could branch.

A given scaffold will typically have varying degrees of freedom and
these degrees of freedom will therefore define that scaffold’s ability to
accommodate fixed functional groups. Practically, different scaffolds
will have different degrees of flexibility at different positions and this
will drive our definition of allowable error of matching. For a peptide,
the predominant degrees of freedom are the φ and ψ angles of the
backbone and χ angles in the side chains. Peptidomimetic scaffolds will
have different degrees of freedom. For example, in peptoids we must
also consider the cis/trans state of the preceding-ω angle, which poten-
tially allows for greater diversity of side chain Cα–Cβ bond vectors for
a given sequence. Alternatively, an OOP scaffold, which has cyclic con-
straints between neighboring residues, is theoretically much more
restricted in its ability to accommodate fixed functional groups but also
has a reduced entropic cost upon binding a target.

Our approach to interface design is a two-step process. In the
first step, we consider the most influential energies and conduct an
efficient geometric search to eliminate all the impossible designs. In
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a second step, designs that passed the quick initial screening are fur-
ther refined using the Rosetta suite (Leaver-Fay et al., 2011), poten-
tially introducing additional mutations. This two-step process
efficiently saves all the time that the majority impossible designs
would take to be evaluated by Rosetta.

In the first step, since we consider only the most optimal bond
angles, the problem is reduced to the following abstract math prob-
lem. We consider the binding interface configuration as a polygon
whose vertices are the binding nodes. For each side chain, all the
possible positions of one binding node (often the end node of the
side chain) form a manifold in 3D obtained by fixing all the bond
angles to the optimal ones and sample possible rotations of dihedral
angles (Fig. 1). Thus, the task is to find (at least) one potential bind-
ing node from each manifold such that they form a ‘desirable config-
uration’ should such a ‘desirable configuration’ exist (and later
possibly check that all dependent nodes do not physically collide
with every other node).

Let P P P P, , , n1 2〈 = ⋯ 〉 be the target polygon. In this paper, all
polygons are denoted by putting angle brackets around their
ordered vertices. We define the error ε of a configuration or a poly-
gon S S S S, , , n1 2〈 = … 〉 by its distance to the target configuration P
defined as P P S Smax .i j k i j i j1 , | − |≤ ≤

Following the standard notation, we use capital letters to denote
points in space and we write AB to denote the length of the line seg-
ment joining the points A and B. Let Tε be the maximum error we
allow to account for the smaller energies we are ignoring and errors
due to the discretization of the manifolds. If Tε ε< , we call the con-
figuration or polygon S a ‘desirable configuration’. Therefore, the
problem of the peptoid design is to select the best side chain and
backbone constitutions such that there exists a desirable binding
configuration while maintaining a low-energy state.

Adaptive geometric search algorithm

We employ octrees as the core data structure for our algorithm
(Berg et al., 2008). A cubic volume, with sides of length l, centered
on a point p, can be subdivided into eight cubes with sides of length
l/2, that share p as a vertex. Each of these eight cubes can be further
subdivided into eight more cubes each with side of length l/4, and so
on. This decomposition of 3D space lends itself to a tree-like
representation called an octree. Thus, octrees are tree structures
whose nodes correspond to 3D cubes embedded in a hierarchically

subdivided overall 3D space and each deeper level of the tree
describes a successively smaller volume of space. Each node has
eight ‘children’ nodes obtained by subdividing each side of the cube
by the middle in the x, y and z dimensions. All the 3D objects, in
our case, points in 3D, are stored in the leaf nodes. Octrees have
various stopping criteria to prevent the tree from splitting into for-
ever smaller cubes, including thresholding based on the number of
3D objects in a node, i.e. the octree splits only if the nodes contain
more than a certain number of 3D objects. For our problem, these
3D objects are simply points in the 3D space and the stopping criter-
ion is the minimum cube length ls. That is, the octree splits a node
only if its corresponding cube has sides of length at least 2ls.
Moreover, all empty nodes, i.e. nodes whose corresponding cubes
contain no points, are discarded.

To find desirable configurations, first we sample all possible posi-
tions of a functional group, or binding node by fixing all the bond
angles to the optimal ones and sample possible rotations of dihedral
angles (Fig. 1). This process forms a manifold for each functional
group. Then the algorithm builds octrees using sampled points from
each manifold and the tree stops branching at the leaf cubes of
length at least ls. Next, the algorithm compares every two octrees at
a time by testing the necessary and sufficient conditions on their cor-
responding nodes and searching adaptively only down the pairs of
nodes that pass the necessary condition (see below). We call a pair
of nodes (and the corresponding cubes) that pass the necessary con-
dition a ‘possible pair’. The algorithm finds all the possible cube
pairs at each tree level until it ends up with the set of all possible
pairs of leaf cubes. Then it tests the sufficient condition on the pos-
sible pairs of leaf cubes to determine whether to accept or reject all
the pairs of points inside them. At the end, all the pairwise desirable
cubes are combined through a matrix product to identify desirable
n-tuples or ‘desirable configurations’.

Establishing necessary and sufficient conditions

for matching

Our overall strategy is to enumerate all possible residue positions
(when there is a choice on the particular scaffold) and amino acid
assignments to these residues and then to use the adaptive geometric
algorithm to determine whether the resulting functional groups, or
binding nodes, at those positions have the proper geometry. Thus,
the adaptive geometric algorithm is the ‘inner loop’ of the computa-
tion with the ‘outer loop’ being all possible residue positions and
amino acid assignments. For this inner loop to be efficient, it must
swiftly filter away impossible geometries (Theorem 1 below) and
identify promising ones (Theorem 2 below).

Mathematically, the adaptive geometric algorithm efficiently
searches for a certain n-polygon among n sets of points in 3D space
given an error tolerance and an approximation margin. This general
scheme is required for all the applications introduced above and
evaluated in the Results section. Given a target polygon P=
P P P, , , ,n1 2〈 … 〉 a tolerance 0Tε ≥ and one edge P P, ,i j( ) let C C,i j

be two non-empty cubes with size l and the distance between their
centers d, where i j n i j, 1, 2, , ,∈ { … } ≠ . Then we have the follow-
ing theorems that help us determine which cubes could possibly con-
tains pairs of points whose line segment matches that edge. That is,
the theorems provide acceptance and rejection criteria for pairs of
cubes from different trees (which correspond to different manifolds
where each manifold corresponds to, for example, a take-off residue
from a backbone). The first theorem provides a rejection criterion.

Fig. 1 An example of the manifold generation of the side chain N-C-C-C-S.

The manifold constitutes of all possible positions of S through rotations of

each bond with fixed bond angles.
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THEOREM 1: If d PP l3i j Tε< − − or d PP l3i j Tε> + + , then
there are no pairs of points G H C C, i j( ) ∈ × such that
GH PPi j Tε| − | ≤ .

Theorem 1 suggests a ‘necessary condition’ for any two cubic
regions on the same level of the trees to contain any desirable pairs of
points (at distance PPi j). We are going to refer to the condition defined
in Theorem 1 as ‘Necessary Condition 1’ in the sequel. If two cubes do
not satisfy the conditions of this theorem, no pairs of points from them
could possibly match the edge P P,i j( ) and will be rejected. That is why
we consider this to be a rejection condition for pairs of cubes. By con-
trast, we have the following ‘Sufficient Condition 2’ for all pairs of
points from two leaf cubes to be desirable (an acceptance condition).

THEOREM 2: If P l d PP l3 3j T i j Tε ε− − ≤ < + − , then all pairs
of points G H C C, i j( ) ∈ × satisfy GH PPi j Tε| − | ≤ .

Notice that the condition of Theorem 2 can hold only when
PP l d PP l3 3i j T i j Tε ε− + ≤ < + − , or when l / 3Tε≤ . Because
the leaf cubes of the octrees must have length l l2T s≤ , we require
l / 2 3s Tε≤ ( ).

Let ti be the octree generated from manifold A i nfor 1, 2, ,i = … .
Algorithm 1 gives the pseudocode of the adaptive geometric search
algorithm. Figure 2 illustrates the algorithm graphically.

Algorithmic complexity

The adaptive geometric search algorithm has three parts, building
the octrees, adaptively searching every two octrees and the graph
search. Let N be the number of sample points from each manifold.
For convenience, we build all octrees with the same initial cube
length l0. The time complexity of building an octree with initial cube
length l0 and minimum cube length ls is O l l Nlog / s2 0( ( ) ).

Next, we compute the time complexity of the adaptive search
between any two octrees (without loss of generality) called t1, t2. Let
the corresponding polygon edge length be l⁎.

THEOREM 3: If we set ls 4 3
Tη= ε for any 0 1η< < , then the adaptive

geometric search (Algorithm 1) returns all the pairs of points whose
distances are within the set l l1 , 1T Tη ε η ε[ − ( − ) + ( − ) ]⁎ , and

Algorithm I.
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some but possibly not all the pairs of points whose distances are
within the set l l l l, 1 1 ,T T T Tε η ε η ε ε[ − − ( − ) ) ∪ ( + ( − ) + ]⁎ ⁎ ⁎ ⁎ .

PROOF: See Appendix A.

LEMMA 4: Set ls 4 3
Tη= ε for some 0 1η< < . Then for any cube C1 in

an octree t1, there are at most ⎜⎛⎝3 3 2 3 l
l

4
3

4 3 2

s( ) ( )+ +π
η

⁎

⎞
⎠⎟

3 3
2

4 3 2( )+
η

cubes C2 on the same level from another octree t2

such that C C,1 2( ) are possible pairs, that is, they satisfy the

Necessary Condition 1.

PROOF: See Appendix A.

THEOREM 5: Recall that l0 denotes the initial cube length and the min-
imum cube length ls 4 3

Tη= ε . Let nm be defined as in Lemma 4. Then

the time complexity of the adaptive search part of Algorithm 1 is
⎛
⎝⎜

⎞
⎠⎟O 1

T
6 5η ε

.

PROOF: See Appendix A.
The last part of the algorithm is a graph search. Let sij be the

number of possible leaf cube pairs that also passed Sufficient
Condition 2 between octrees t t,i j for i j n i j, 1, 2, , ,∈ [ … ] < .
We view the leaf cubes as vertices and possible pairs of them as
undirected edges in the graph. If we want to produce all the desir-
able n-tuple cubes, then by induction it is easy to see that the upper
bound on the time complexity isC S O si j n ij1( ) = (∏ )≤ < ≤ .

In practice, we can probably do much better. Consider building
a directed graph by giving directions to the edges to form an n-cycle
of groups of cubes from t t t, , , n1 2 … . Finding strongly connected
components in this directed graph first would in most cases greatly
reduce the search space at only a linear cost O si j n ij1(∑ )≤ < ≤ . For
space reasons, we skip the algorithm details here.

In summary, we state the total time complexity of the algorithm
as follows.
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2
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( )
( )

( ) + + ∏

= + + ∏

= + + ∏

η ε

ηε η ε

ηε η ε

≤ < ≤

≤ < ≤

≤ < ≤

In practice, we usually search for a triangle or a four-sided poly-
gon as the target polygon, i.e. n 3= or 4. When n 3= , depending
on the parameters , Tη ε and N the computation time varies but all
three terms in the complexity formula (above) are typically of the
same order. When there are large numbers of possible pairs si’s and/

or n 4= , the term C S( ) in the last term of the complexity formula
(4.1) becomes the dominating term. The number of results sij’s can
be further reduced when we take optimal dihedral angles instead of
uniform sampling from 0, 2π[ ]. Full proofs of the above theroms
and lemmas can be found in the supporting information.

Results

Our algorithm can be applied to many different problems in macro-
molecular modeling and design. It efficiently solves the problem of
searching for a certain n-polygon among n sets of points in 3D with
error tolerance Tε and an approximation margin η. We present three
use cases where our algorithm’s improved efficiency (run times that
are in some cases many thousands of times faster than previous
approaches) improves the scaling of the overall task, enabling the
use of larger template/target structural patterns.

Scaffold matching: designing OOPs to inhibit MDM2-

p53 interface

PPIs mediate many cellular functions and a small number of residues
that make significant contributions to the binding affinity of the PPI
(deemed ‘hotspot’ residues) in turn underlay these protein interfaces.
Design tasks aimed at protein interfaces abound, as discussed above
Fleishman et al. designed an influenza HA binder. Interest in using
smaller, easy to synthesize, non-protolyzable macromolecules (called
foldamers) as potential therapeutic candidates continues to rise as
these systems become more synthetically (and computationally)
accessible to a broader community. Foldamer backbone chemistries
abound and finding a foldamer backbone type that is well matched
to a particular set of interface hotspot residues interface will prove
to be a future challenge. Here, we recapitulate an OOP foldamer
designed by Drew and coworkers that mimics P53 and can disrupt
the P53/MDM2 interaction (Fig. 3), which relies on three hotspot
residues on P53 that constitute the majority of the binding affinity
for MDM2 (Fig. 3A).

There are two parts of the algorithm. In Step 1, we search
through all possible backbones for a matching triangle to the target
triangle. In Step 2, for every match result from Step 1, the connect-
ing atom’s bond angles are checked against the optimal bond angle.
If a match passes Step 2, it is returned as a final result. Otherwise,
we continue the iteration in Step 1.

The target triangle is made up of Cβ’s of the hotspot residues
(Fig. 3C). The algorithm simply searches through the possible take-
off position combinations, four triangles in this example (Fig. 3B),
from every backbone for a match in shape within the error bound.
Notice that in this case, all Cβ atoms are fixed due to the short
lengths of hotspot residues. With longer hotspot residues, there will
be a manifold of all the possible Cβ atoms for each hotspot residue.
For every possible triplet of take-off positions, there are eight pos-
sible D and L-enantiomers. So, for each of these 32 possibilities, we
apply adaptive geometric search to find all matches.

Once we have the matching shapes, we calculate the correspond-
ing matrices R’s of rotation and translation such that after applying
these transformations R’s backbones are connected onto the hotspot
residues at atoms Cβ’s. Finally, we check if the bond angles at the con-
necting atoms (e.g. N, Cα and Cβ for leucine) are within some error
bound to the optimal bond angles (indicated by the CHECKANGLE func-
tion in Algorithm 2).

Let Ai be the manifold of possible positions of the connecting
atom on the ith hotspot residue. For example, in Fig. 3C points in

Fig. 2 An illustration of the adaptive search between two octrees. Dotted

lines point out the possible cube pairs on each level that pass the Necessary

Condition 1. Solid lines link the desirable leaf cube (gray nodes) pairs that

pass the Sufficient Condition 2.
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colors are sampled from manifolds A A,1 2 and A3 respectively. Let
Pj be the jth polygon of the backbone take-off position combination
and for example, there are 4 × 17 of them in Fig. 3B. Let BP denotes

the atoms’ position matrix corresponding to the backbone where the
target polygon P comes from. Let Si denotes the atoms’ position
matrix for the ith residue. Let δ be the distance error bound and Aδ

Fig. 3 (A) The P53 (yellow) and MDM2 (blue) interface showing phenylalanine, tryptophan and leucine hotspot residues. (B) Fifteen of the 16 OOP backbone scaf-

folds fit to hotspot residue stubs. Scaffolds combinatorically sample the L or D enantiomers of the four residues that comprise the OOP scaffold. Each backbone

has four Cβ atoms (black spheres) and thus four possibly matching triangles indicated by dashed lines. (C) The P53 hotspot residue stubs (orange). In this work,

each hotspot residue has two χ dihedral angles resulting in a single fixed Cβ (orange spheres) triangle (dashed lines). Hotspot residues with additional χ angles

would produce multiple triangles. Colored spheres show potential Cβ atoms from the OOP scaffolds for the first (green), second (cyan), third (magenta), fourth

(yellow) residues in the scaffold. (D) The LLLL-OOP scaffold (orange) designed by Drew and coworkers and correctly identified by the algorithm bound to

MDM2 (blue).

Algorithm 2.
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be the angle error bound. Then we describe in pseudocode
Algorithm 2. In the adaptive geometric search part of Algorithm 2,
the possible candidate pairs are screened out at least exponentially
fast as we search down the octrees (Fig. 4). Let C denotes the time
complexity for adaptive geometric search. Recall that m is the num-
ber of target polygons from backbone take-off site combinations.
Then the time complexity of the scaffold matching algorithm is
O Cm .( )

Algorithms

In the search process, we scored all the possible matches by the root-
mean-square deviation (RMSD) values for both shape match and
angle match in Fig. 5. Our algorithm picked the candidate at the ori-
gin (this being identical to the correct conformation that led Lao
et al. to low nanomolar inhibitors of this interface). In Fig. 3D, we
show this best design for the OOP backbone of the hotspot residues.
The run time for the initial geometric search (step on in this design
protocol) is 0.02 to 0.12 s, whereas running the same design and
producing the same results using the previously described Rosetta
codes (the scripts from Lao et al.) takes ~18min (a speedup of
>9 000-fold).

Peptoid design: design of new metal binding sites

Proteins and other macromolecules often coordinate metal ions to
aid conformational stability or carry out chemical reactions.
Proteins that bind Zn2+ ions often use four residues (most often his-
tidine, cysteine or aspartic acid) to coordinate the zinc ion in a tetra-
hedral arrangement (Hsin et al., 2008). We next tested our
algorithm by designing a peptoid for capturing zinc ions. The bind-
ing sites we target in this example are three sulfur atoms lying on
the vertices of an equilateral triangle.

The search space includes 6-mer, 8-mer and 9-mer scaffolds
(peptoid data bank codes 07AA1-6-C, 07AA2-8-C (Shin et al.,
2007) and 12AC2-9-C (Butterfoss et al., 2012), respectively) as the
backbone and 3-aminopropyl-1-thiol groups as side chains of resi-
dues (Fig. 6). Low-energy matches were identified for each scaffold
and commonly found to be comprised of alternating residue posi-
tions or sequential positions on the narrow end of the macrocycle.

We sampled eight dihedral angles per residue with different
lengths of side chains (n= number of carbon atoms), different error
values. We recorded the run time to find the first valid target poly-
gon on Intel Core 3.5 GHz (Table I).

Loop modeling

Accurately modeling protein loops is a difficult problem due to their
flexibility due to their and lack of regular structure (Mandell et al.,
2009). Computational modeling of loops generally involves defining
the loop region (the residues that are flexible), anchor or pivot posi-
tons residues beyond which the protein structure remains fixed, and
a cut point position at one of the residues in the loop region that
splits the loop into two parts. A structural perturbation is made to
one side of the loop—resulting in a break in the loop at the cut
point—and the loop modeling protocol modifies the conformation
of the other side of the loop in an attempt to close the break (Stein
and Kortemme, 2013). The abstraction of the problem can be
described as follows. Given two fixed points in 3D called pivots and
two vectors (the take-off vectors), construct the loop from pivot 1 to
pivot 2 with k residues with the type N-Cα-C such that the loop has
a low energy and it fits in the designated space (Fig. 7A).
Biologically relevant loops can vary greatly in length; the H3 CDR
loop in human antibodies, for example, can vary from 5 to 26 resi-
dues (North et al., 2011). The difficulties of the problem using a dir-
ect computation stem from exponential growth in the number of
possible loop conformations as a function of loop length, k. We div-
ide the loop into two semiloops by the midpoint or the closest point
to the midpoint between two residues. The designated space where
the loop resides within can be discretized into cubes of a certain size.
We precompute all conformations of a single residue and store the
resulting angles and x y z, , coordinates after discretization and
encoded as a unique integer. Then we compute and store the table
where two residue conformations can connect appropriately, that is,
the end atom of one residue and the beginning atom of the other
residue lie in the same cube and the two bonds form an angle within
the error bound from the optimal bond angle. Now using the pre-
computed residue conformations and matching table, we develop

Fig. 4 Averaging over 60 runs on different octree pairs, we show the number

of candidate point pairs goes down at least exponentially as we select only

those pairs of cubes that pass the Necessary Condition 1. The best exponen-

tial fit to the data is shown.

Fig. 5 RMSD of all possible OOP backbones matches with the hotspot resi-

dues’ side chain positions. The candidate at the origin is a perfect match for

both (shape and angle) to the hotspot residues we aim to minimize (use as a

template for design) and is analogous to a template used in previously

reported successful experimental designs.
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the two semi-loops. Let the number of residue conformations be Mr

and the number of cubes in the lattice space Mc. After developing
each residue, we collapse the end positions that fall into the same
cube and sharing the same last bond angle and store all intermediate
results for the purpose of producing final results in backtracking.
After the two semi-loops are developed, we have the end atoms of

both sides and their spatial intersections. The angles are checked to
eliminate from the intersection cubes those that deviate outside the
error bound from the optimal bond angle there. Starting from the
matched cubes in the middle of the loop, now we backtrack in both
sides to the pivots and produce as many results as desired (effect-
ively allowing for efficient sampling of a large number of constraint-

Fig. 6 Experimentally determined peptoid macrocycle structures and representative examples of low-energy matches for the (A) 07AA1-6-C (B) 07AA2-8-C and

(C) 12AC1-9-C peptoid macrocycle backbone scaffolds. Numbers under representative examples indicate residue position of 3-aminopropyl-1-thiol side chain.

Table I. Run times for matching different geometric representations of metal-binding sites to a library of peptoid (peptidomimetic)

scaffolds. Run times are shown in seconds for runs computed on an Intel Core 5 3.5-GHz processor. Run times are shown for three classes

of binding site pattern and for various user-defined settings (corresponding to different allowable error and approximation ranges in

atomic units)

err 0.05 0.1 0.5

η 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
General triangle:

n = 2 2.69 2.42 2.49 2.92 2.40 2.50 7.81 6.93 6.97
n = 3 76.64 73.56 67.87 106.96 101.12 91.04 1518.47 1357.48 1178.47

Equilateral triangle:
n = 2 5.43 5.12 4.78 5.41 4.47 4.37 5.29 4.10 3.93
n = 3 181.04 161.34 139.75 175.37 151.46 124.03 272.62 223.75 176.27

General 4-gon:
n = 2 7.63 7.06 7.15 7.75 7.33 7.47 9.67 8.67 8.82
n = 3 224.16 218.69 209.19 271.98 254.81 235.12 3262.67 2780.21 2079.59
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compliant loop designs). In the first experiment, we computed a 12-
residue loop, developing 1000 conformations for each residue and
121 by 121 by 121 cubes in the designated space, setting cube length
to 0.1 and maximum bond angle errors to within 0.2 rad. On a 1.3-
GHz Intel Core M with 8GB memory, our algorithm ran a total of
3.6 min to produce the first result (Fig. 7C). The development of
each semi-loop took 82 s and the matching in the middle took 20 s.
Keeping the number of conformations per residue, error bounds and
the cube size, we enlarge the number of cubes to 171 by 171 by 171
to compute for 17-residue loops. On a 2.0-GHz Intel Xeon E5-2620
CPU with 128GB memory, our algorithm ran a total of 35.5min to
produce the first result (Fig. 7D). The development of each semi-
loop took 11min and the matching in the middle took 28 s.

Discussion

We have presented an adaptive method for finding matches between
target geometric patterns (that represent protein and peptidomimetic
design goals) and scaffolds (which can serve as the biosynthetic or
organic synthesis method for positioning side chains in the desired/
target geometry). In the protein, enzyme, and peptidomimetic design
communities, such geometric search problems are increasingly
becoming limiting steps in design processes. This trend will increase
as we scale to larger target patterns and as we compare to growing
databases of proteins, peptidomimetic structures and other scaffolds.
Thus, improving the speed of geometric function scaffold search
algorithms makes a substantive contribution to biomimetic design.

Fig. 7 (A) Illustration of the loop closure algorithm set up. (B) (a) The blue and green points are pivot 1 and pivot 2. Red points are ends of the semi-loop growing

from pivot 1 and purple points those from pivot 2. (B) (b) Matched ends in position and bond angle. For clarity only every 100th points are depicted in both fig-

ures. (C) Blue and green colors represent two semi-loops of six residues. Each line segment corresponds to one residue, connecting the first and last atoms of

the residue. (D) Blue and green colors represent two semi-loops of eight residues and nine residues, respectively. Each line segment corresponds to one resi-

due, connecting the first and last atoms of the residue.
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We have tested our adaptive octree method in two realistic design
settings (each one adapted from a recent publication using geometric
target-scaffold or geometric matching) and, in each case, we were
able to speed up the required calculation by 100 to 10 000-fold over
the best previous methods. These speedups allow us to guarantee
scaling and run times in a wide variety of design tasks. In addition,
our algorithm allows for an explicit specification of allowable error
rates and mismatches (built into both the search and the initial con-
struction of the core octree data structure). Future work could
include providing a better interface to the specification of error and
allowable mismatches, resulting in a mismatch tolerant geometric
search (akin to gaps in sequence alignments). Another area for
future work would be to adapt our geometric search to a multiple-
alignment setting, allowing us, for example, to seed a search and
subsequently update the parameters of the search to reflect families
of discovered sites on proteins. This would provide an algorithmic
framework for iterative construction of functional sites on proteins
that would be informed (in a data-driven manner) by geometric vari-
ation across discovered functional sites.

An immediate advantage of our improvement in computational effi-
ciency is that it expands, by improving scaling, the range and types of
peptidomimetic and protein scaffolds that can be explored. For
example, our method dramatically increases the maximum pattern
(active site to match to potential scaffolds) that can be engrafted via
matching. This is important for enzyme design and catalysis design, as
full sites that include substrate binding and catalytic sites can include
large numbers of side chains (large numbers of component vectors in
the template/starting geometric pattern to be matched/searched) (Jiang
et al., 2008; Röthlisberger et al., 2008). The design of protein-binding
sites can also involve large target patterns that challenge previous meth-
ods. Our work here opens the door to a more efficient approach to
selecting scaffolds for designing these larger surface patterns. Our
examples here show (presented above and as supplemental code) inte-
gration with the Rosetta design framework and thus demonstrate how
one might integrate our method with a very wide variety of design
tasks including protein interface antagonist design, protein interface
engraftment, enzyme design, peptidomimetic design and the engraft-
ment of complex metal binding sites onto target proteins (Leaver-Fay
et al., 2011; Lao et al., 2014). The computational efficiency of our
algorithm also enables new approaches where geometric matching is
integrated more tightly with design protocols (for example, integrated
into inner search loops instead of simply being performed to set up ini-
tial poses or discover starting scaffolds for a design run). The code is
freely available as a set of python scripts (https://github.com/JiangTian/
adaptive-geometric-search-for-protein-design).
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