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Abstract 

Objective:  Analyze key features of the anglerfish Lophius piscatorius mitochondrial transcriptome based on high-
throughput total RNA sequencing.

Results:  We determined the complete mitochondrial DNA and corresponding transcriptome sequences of L. 
piscatorius. Key features include highly abundant mitochondrial ribosomal RNAs (10–100 times that of mRNAs), and 
that cytochrome oxidase mRNAs appeared > 5 times more abundant than both NADH dehydrogenase and ATPase 
mRNAs. Unusual for a vertebrate mitochondrial mRNA, the polyadenylated COI mRNA was found to harbor a 75 
nucleotide 3′ untranslated region. The mitochondrial genome expressed several non-canonical genes, including the 
long noncoding RNAs lncCR-H, lncCR-L and lncCOI. Whereas lncCR-H and lncCR-L mapped to opposite strands in a 
non-overlapping organization within the control region, lncCOI appeared novel among vertebrates. We found lncCOI 
to be a highly abundant mitochondrial RNA in antisense to the COI mRNA. Finally, we present the coding potential of 
a humanin-like peptide within the large subunit ribosomal RNA.
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Introduction
The mitochondrial genome (mtDNA) gene content and 
organization is highly conserved among vertebrates 
[1]. All species investigated to date encode the same 37 
canonical gene products of 13 hydrophobic membrane 
proteins, 2 ribosomal RNAs (mt-rRNAs), and 22 transfer 
RNAs (tRNAs), as well as several non-canonical peptides 
and long noncoding RNAs (lncRNAs) [2]. The corre-
sponding mitochondrial transcriptomes are less studied 
and have mainly been investigated in a small number 
of vertebrates including some mammalian cells and tis-
sues [3, 4] and in gadiform fishes [5, 6]. Only minor dif-
ferences were noted between the mammals and fish. In 
general, three polycistronic transcripts initiated from two 
H-strand promoters (HSP1 and HSP2) and one L-strand 
promoter (LSP) are involved in mitochondrial gene 
expression. Whereas the highly abundant HSP1 tran-
script mainly generates mt-rRNAs, the HSP2 transcript 
is responsible for most messenger RNAs (mRNAs) and 

tRNAs. The LSP transcript generates one mRNA and 
eight tRNAs.

Atlantic cod mt-rRNAs are oligo-adenylated [5], and 
fold into similar secondary structures as in other fish spe-
cies [7, 8]. Interestingly, several mitochondrial-derived 
peptides (MDP) have been proposed to be encoded on 
both strands of the mt-rRNA gene locus [9], and two 
MDPs (MOTS-c and Humanin) have coding potential in 
Atlantic cod [2]. Mature tRNAs carry the non-template 
CCA at their 3′ ends and fold into the common tRNA 
patterns [7, 10]. Eleven mature mRNAs were found 
expressed in the Atlantic cod mitochondria, 10 from 
the HSP2 transcript and one from LSP, and two of the 
HSP2-specific mRNAs were bicistronic (ND4/4L and 
ATPase8/6) [6]. All mRNAs, except the LSP-specific ND6 
mRNA, were found polyadenylated.

Mitochondrial lncRNAs have been identified and inves-
tigated in Atlantic cod [2]. Here, lncCR-H and lncCR-L 
correspond to different strands of the mitochondrial 
control region (CR). Both lncRNAs are clearly expressed 
and appear to generate small stable mitochondrial RNA 
(mitosRNA) [2, 6, 11, 12]. We recently reported low-
level substitution heteroplasmy of the anglerfish Lophius 
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piscatorius based on SOLiD deep sequencing [13]. As 
part of a study to generate a full reference genome and 
transcriptome for L. piscatorius, we here present the 
complete mitochondrial genome and key features of the 
corresponding mitochondrial transcriptome.

Main text
Methods
Nucleic acid extraction and high‑throughput sequencing
Lophius piscatorius tissue samples were collected from 
two specimens obtained by commercial fishery off the 
coast of Nordland County, Northern Norway, in 2015 
(BF1) and 2017 (BF2). Total DNA from BF1 was extracted 
from muscle tissue and sequenced by the SOLiD5500 and 
Ion PGM platforms as described previously [13]. Total 
DNA sequencing (head kidney) of BF2 using the Illumina 
HiSeqX platform was performed by Dovetail Genomics 
(Chicago, US) as a service [14]. Total RNA from heart 
muscle tissue of specimen BF2 was isolated using QIA-
zol Lysis Reagent (QIAGEN, Hilden—Germany) accord-
ing to the manufacturers protocol. Cellular rRNA was 
depleted from 1 μg of total RNA using the RiboMinus™ 
Eukaryote System v2 (Thermo Fisher Scientific, Waltham, 
MA—USA), and whole transcriptome library was con-
structed using the Ion Total RNA-seq kit v2 (Thermo 
Fisher Scientific) according to the manufacturers proto-
cols. Manual template preparation on an Ion OneTouch™ 
2 System (Thermo Fisher Scientific) and sequencing 
of two Ion 540™ chips on the Ion GeneStudio™ S5 Sys-
tem (Thermo Fisher Scientific) were carried out at our 
Genomics Platform (Nord University) according to the 
manufacturers protocols. The sequencing resulted in a 
total of 154,741,088 reads with a mean read length of 169 
nt, corresponding to 26 billion nt.

Data analysis
RNA reads were quality trimmed with Cutadapt [15] 
using q20 as a threshold. The minimum read length was 
set to 50 nt. Trimmed RNA reads were then mapped 
to the BF2 mitochondrial genome with CLC Genom-
ics Workbench v12 (QIAGEN). The “Length fraction” 
parameter was set to 0.9 and “Similarity fraction” to 0.96, 
requiring at least 90% of the read length to map with 96% 
similarity. Other parameters were set to their defaults. 
The resulting BAM file was coordinate sorted with 
SAMtools [16] and then processed with BEDTools [17] 
(genomecov command) to obtain a base level coverage of 
the mitogenome. Mean coverage for each gene and non-
coding region was calculated from bed file. Alignments 
were visually examined to identify non-coding RNAs and 
polyA tails.

Results
Canonical mitochondrial genes in L. piscatorius
Complete mitochondrial genome sequences of two L. pis-
catorius specimens were determined using the Ion PGM 
and SOLiD5500 technologies (BF1; 2532 times mean 
coverage; MF994812; [13]) and the Illumina HiSeqX pair-
end reads (BF2; 7643 times mean coverage; MN240767). 
The circular mtDNA possesses the conventional gene 
content and organization typical in vertebrates (Fig. 1a). 
Among the nine polymorphic sites between BF1 and BF2, 
seven were located in protein coding genes, representing 
both synonymous and non-synonymous amino acid sub-
stitutions (Additional file 1: Table S1).

Mitochondrial transcripts from L. piscatorius BF2 
were generated by Ion S5 sequencing. About 145.2 mil-
lion quality-filtered total RNA reads were obtained, 
including 510,484 reads (0.35%) unambiguously identi-
fied as mitochondrial transcripts when mapped to the 
BF2 mitochondrial genome. Several features were noted 
when inspecting the mitochondrial transcripts and cor-
relating the expression values to specific mitochondrial 
gene regions (Fig.  1b): (1) reads from mt-rRNA gene 
transcripts were 10–100 times more abundant than pro-
tein coding transcripts. This observation is likely under-
estimated due to rRNA depletion of input RNA. (2) Of 
coding transcripts, cytochrome oxidase subunits were 
the most abundant, with NADH dehydrogenase subunits 
and ATPase subunits transcripts being much less abun-
dant. (3) Highly abundant lncRNAs mapping to opposite 
strands within the mitochondrial CR and cytochrome 
oxidase I gene (COI) were noted. (4) Most mRNAs were 
polyadenylated and lacked 5′ and 3′ untranslated regions 
(UTRs) (Additional file 2: Table S2). A notable exception 
was the 75 nt 3′UTR of the COI mRNA (see below). Sec-
ondary structure predictions of L. piscatorius mt-SSU 
rRNA (Additional file  3: Figure S1) and mt-LSU rRNA 
(Additional file  4: Figure S2) showed typical fish mito-
chondrial features [7, 8]. Secondary structure predictions 
of all 22 tRNAs (Additional file 5: Figure S3) followed the 
general pattern of fish mitochondrial tRNAs [7].

Non‑canonical mitochondrial genes in L. piscatorius
The two CR specific lncRNAs (lncCR-H and lncCR-L), 
transcribed from opposite strands in a non-overlapping 
organization (Fig.  2a), have previously been reported in 
Atlantic cod [11, 12] and human [18]. The L-strand spe-
cific lncCR-L was found to be 30 times more abundant 
than the L-strand specific ND6 mRNA (Fig.  1b). The 
vertebrate mitochondrial COI mRNA is unusual due 
to the presence of a structured 3′UTR. We identified a 
polyadenylated COI mRNA containing a 75-nt 3′UTR in 
L. piscatorius (Fig.  2b). RNA-Seq data revealed a highly 
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Fig. 1  Mitochondrial genome organization and transcripts of L. piscatorius. a Mitochondrial genome presented as a linear map of the circular 
mtDNA. Single nucleotide polymorphisms in BF2 compared to BF1 are indicated above the gene map. Gene abbreviations: mtSSU and mtLSU, 
mitochondrial small- and large-subunit ribosomal RNA; ND1–6, NADH dehydrogenase subunit 1 to 6; COI-III, cytochrome oxidase subunit I to III; A6 
and A8, ATPase subunit 6 and 8; Cyt B, cytochrome b; lncCR-H and lncCR-L, long non-coding RNAs coded by the control region (CR); lncCOI, long 
noncoding antisense RNA. tRNA genes are indicated by the standard one-letter symbols for amino acids. All genes are H-strand specific, except Q, A, 
N, C, Y, S1, E, P, ND6, lncCOI and lncCR-L (L-strand). b Histogram presentation of mean coverage expression values of mt-rRNAs, mRNAs, and lncRNAs 
based on Ion Torrent S5 total RNA sequencing
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Fig. 2  Non-canonical mitochondrial gene products in L. piscatorius. a Schematic view of CR and the long noncoding RNAs lncCR-L (approx. 620 
nt) and lncCR-H (approx. 140 nt). P and F, tRNAPro and tRNAPhe genes; TAS, termination associated sequence; CSB2 and 3, conserved sequence box 2 
and 3. b Schematic view of the COI mRNA structure and lncCOI (178 nt). The translation initiation codon (GUG) and termination codon (UAA) are 
indicated. The 3′UTR contains a 75 nt mirror tRNASer motif. c Left panel: Secondary structure diagram of the mt-LSU rRNA Domain IV of L. piscatorius 
with coding potential of a humanin-like peptide. See Additional file 4: Figure S2 for complete secondary structure diagram of mt-LSU rRNA. Right 
panel: Amino acid alignment of humanin-like peptides in anglerfish, zebrafish (ZF), codfish and mammals. Indicated ‘stars’ below the alignment 
represent conserved residues
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abundant 178 nt antisense RNA to the 5′ end of COI 
mRNA (Figs.  1b and 2b), which appeared novel among 
vertebrate mitochondrial lncRNAs and named lncCOI.

MDPs have been reported in vertebrates, and the best 
characterized is the humanin peptide [19]. The humanin 
gene is located within the mt-LSU rDNA locus. L. pisca-
torius contains a humanin-like open reading frame (ORF) 
in the mt-LSU rRNA Domain IV, at the exact same loca-
tion as in Atlantic cod and human (Fig.  2c, left panel). 
Sequence analysis revealed the derived peptide sequence 
to be invariant within the Lophius genus, highly con-
served among fishes, and well conserved between fish 
and mammals (Fig. 2c, right panel).

Discussion
Here we provide the complete mitochondrial genome 
sequence and key features of the corresponding tran-
scriptome of the anglerfish L. piscatorius. We found 
all canonical mitochondrial genes to be expressed. Mt-
rRNAs were clearly more abundant than mRNAs. Two 
lncRNAs (lncCR-L and lncCR-H) mapped to the mito-
chondrial CR, a finding that corroborates recent reports 
of Atlantic cod and human cells [2, 18]. Interestingly, we 
identified a novel and highly abundant antisense RNA 
(lncCOI). Finally, we present feature support for the 
encoding of a humanin-like peptide within the mt-LSU 
rRNA.

Teleost fish mitochondria generate 10 mature mRNAs 
from a single primary transcript (HSP2) that subsequently 
are translated into 12 mitochondrial proteins in OxPhos 
complexes I, III, IV and V [2, 6]. Thus, the observed dif-
ferences in transcript abundance may be explained by 
differential stability of individual mRNAs, and not by 
transcription initiation. Fish mitochondrial mRNAs con-
tain no, or very short UTRs. A notable exception is the 
approximately 75-nt 3′UTR of the COI mRNA, which is 
conserved between fish species [2, 6] and mammals [20]. 
A study in rat showed that the nuclear miR-181c was 
regulating COI mRNA stability in heart tissue by 3′UTR 
binding [21]. A similar 75-nt 3′UTR was detected in the 
polyadenylated L. piscatorius COI mRNA. It is plausible, 
that the 3′UTR structure in L. piscatorius contributes to 
the COI mRNA stability.

A number of mitochondrial lncRNAs have been noted 
and characterized in vertebrates [reviewed in 2, 22, 23], but 
no lncRNA has so far been linked to COI gene sequences. 
Our observation of lncCOI appears novel among verte-
brates. If the highly abundant lncCOI contributes to mRNA 
stability, translational regulation, or other mitochondrial 
roles is currently not known. We also detected two CR-
specific lncRNAs (lncCR-L and lncCR-H) in L. piscato-
rius. lncCR-L corresponds to the 5′ end region of the LSP 
primary transcript and has been detected in Atlantic cod 

[6]. lncCR-L appears homologous to the 7S RNA reported 
in human mitochondria more than three decades ago 
[24], that was recently shown to be aberrantly expressed 
in human cancer cells [18]. Interestingly, lncCR-L was the 
most abundant non-ribosomal mitochondrial transcripts 
in L. piscatorius. lncCR-H, on the other hand, corresponds 
to the 3′ end region of the HSP2 primary transcript. It has 
been reported in Atlantic cod to be polyadenylated, to har-
bor a mirror tRNA, a noncoding intergenic spacer, and 
heteroplasmic tandem repeats [11, 12]. Similar to that of 
Atlantic cod, the L. piscatorius lncCR-H contains a mirror 
tRNA and a polyA tail. lncCR-L and lncCR-H may function 
as precursors for mitosRNAs [2], but their biological role 
has not been elucidated.

Reports in mammals conclude that the humanin peptide 
has important roles in cellular signaling [19, 25–27]. Pre-
viously we presented evidence supporting the encoding of 
humanin-like peptides in Domain IV of the mt-LSU rRNA 
in gadiform fishes [2], and similar features have recently 
been reported in avians [28]. Here we show that several 
anglerfishes, including all Lophius species where mtDNA 
sequences are available, possess humanin-like ORFs. How 
vertebrate humanin is translated is under debate, but dif-
ferent scenarios may be considered; (1) The humanin ORF 
is recognized in mt-rRNA by mitochondrial ribosomes and 
translated in mitochondria. This scenario is supported by 
a recent study in rat [26]. (2) Translation may also occur in 
cytosolic ribosomes, which would require mitochondrial 
export. Interestingly, a chimeric mt-LSU rRNA (lncRNA 
SncmtRNA) was reported to be expressed in human prolif-
erating cells and localized in the cytoplasm and the nucleus 
[29, 30]. (3) Humanin may also be expressed from a nuclear 
copy of mt-LSU rRNA (Numt sequence). Studies from 
human cells provide support for the expression of nuclear-
encoded humanin isoforms [31]. The latter scenario may 
explain why most, but not all, fish species have intact 
humanin-like ORFs in Domain IV.

Conclusion
Our study provides a mitochondrial transcriptome 
resource from L. piscatorius heart muscle tissue. All mito-
chondrial genes were expressed, and different mRNAs had 
different abundances. Two lncRNAs mapped to the control 
region, we identified one novel lncRNA antisense to the 
COI mRNA, and the mt-LSU rRNA has the potential of 
coding a humanin-like peptide.

Limitations
Mitochondrial RNA sequencing was performed in one 
tissue type in one individual and has to be considered 
as a snapshot of the mitochondrial transcriptome of L. 
piscatorius.
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