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M.; Lalonde, A.; Nesteruk, K.P.;

Winey, B.; Sharp, G.C.; Sudhyadhom,

A.; Paganetti, H. Integrating Structure

Propagation Uncertainties in the

Optimization of Online Adaptive

Proton Therapy Plans. Cancers 2022,

14, 3926. https://doi.org/

10.3390/cancers14163926

Academic Editor: Esther G.C. Troost

Received: 9 July 2022

Accepted: 12 August 2022

Published: 14 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Integrating Structure Propagation Uncertainties in the
Optimization of Online Adaptive Proton Therapy Plans
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Simple Summary: The fast and accurate definition of structures is a main limiting factor in on-
line adaptive proton therapy. In this study, different methods to include structure propagation
uncertainties in the optimization were compared with adaptation using physician-drawn structures,
uncorrected propagated structures, and no adaptation. While adaptation with physician-drawn
structures resulted in the best adaptive plan quality and no adaptation in the worst, manual struc-
ture correction could be replaced by a fast ‘plausibility check’, and plans could be adapted with
correction-free adaptation strategies.

Abstract: Currently, adaptive strategies require time- and resource-intensive manual structure correc-
tions. This study compares different strategies: optimization without manual structure correction,
adaptation with physician-drawn structures, and no adaptation. Strategies were compared for 16 pa-
tients with pancreas, liver, and head and neck (HN) cancer with 1–5 repeated images during treatment:
‘reference adaptation’, with structures drawn by a physician; ‘single-DIR adaptation’, using a single
set of deformably propagated structures; ‘multi-DIR adaptation’, using robust planning with multiple
deformed structure sets; ‘conservative adaptation’, using the intersection and union of all deformed
structures; ‘probabilistic adaptation’, using the probability of a voxel belonging to the structure in the
optimization weight; and ‘no adaptation’. Plans were evaluated using reference structures and com-
pared using a scoring system. The reference adaptation with physician-drawn structures performed
best, and no adaptation performed the worst. For pancreas and liver patients, adaptation with a
single DIR improved the plan quality over no adaptation. For HN patients, integrating structure
uncertainties brought an additional benefit. If resources for manual structure corrections would
prevent online adaptation, manual correction could be replaced by a fast ‘plausibility check’, and
plans could be adapted with correction-free adaptation strategies. Including structure uncertainties
in the optimization has the potential to make online adaptation more automatable.

Keywords: proton therapy; online adaptation; deformable image registration; structure propagation

1. Introduction

Online treatment plan adaptation can improve dose conformity during the course of
radiotherapy [1,2]. Treatment machines, such as MRI cobalt, MRI linacs [3,4], or Varian’s
ETHOS [5], are specifically designed to enable online adaptive treatments. Online adapta-
tion is most commonly applied to fast-changing or moving anatomies, such as pancreas,
liver, lung, small nodes in the abdomen, head and neck (HN), or prostate cancer [6–8].
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Early clinical trials show promising results in combination with hypofractionation and
dose escalation, for example, for pancreas cancer patients [9].

Combining online adaptation with the superior low-dose characteristics of proton
therapy is attractive, especially in anatomical areas that change quickly and are surrounded
by multiple organs at risk, such as in the abdomen or head and neck regions. As a result,
online adaptive proton therapy is being investigated by many research groups [10–14]. In
the first experimental validation of online adaptive proton therapy [15], the application
was limited to the head to avoid deforming structures and manual contour corrections.
Other proposed online adaptive proton therapy workflows include structure deformations
using deformable image registration (DIR) [16]. However, the uncertainty introduced by
using DIR for structure propagation or dose restoration has not been well-quantified, and
the impact on dose adaptation has not been studied.

In current clinical workflows, online adaptation requires manual structure approval,
which is often resource- and time-consuming. DIR [17] or auto segmentation [18] can
be used to generate structures on daily images, but the structures generated by these
algorithms must be manually reviewed and corrected before plan optimization. This step
takes about 5 to 10 min [19] and is currently one of the main bottlenecks for the clinical
implementation of online adaptive therapy.

This study investigates whether uncertainties from propagating structures with DIR
can be integrated directly into the optimization of adaptive plans. Different automatable
adaptive strategies were compared to avoid manual contour correction for online adaptive
proton therapy that combine the information of multiple DIR algorithms. The proposed
strategies were compared with a simplified adaptation strategy that uses uncorrected
deformed structures, adaptive plans optimized with manually defined and corrected
structures, as well as non-adapted plans.

2. Materials and Methods
2.1. Patient Data and Treatment Planning

The different adaptation strategies were tested on a cohort of 16 patients with 3 dif-
ferent disease sites. All patients included in this study received some form of adapted
radiotherapy. All images used for adaptation for these patients were also used in this study.
The CTV volumes cover a wide range and are given in Table 1.

Table 1. Average (minimum and maximum) CTV volumes in cm3 of all patients by indication.

Pancreas CTV Liver CTV HN High-Risk CTV HN Low-Risk CTV

63.3 (14.7–125.1) 113.6 (20.7–340.1) 105.1 (61.2–192.3) 353.7 (243.3–469.2)

CTV: clinical target volume; HN: head and neck.

Six pancreatic cancer and five liver cancer patients, previously treated in breath hold
with online adaptive photon therapy at an MRI linac, were replanned for multi-field
optimized intensity-modulated proton therapy (IMPT) plans in Raystation version 8.99
(Raysearch, Stockholm, Sweden). Similar to the original MR linac treatment, the original
treatment plans were calculated on deformed planning CTs, which were registered to the
planning MRI using MIM (MIM Software Inc., Cleveland, OH, USA). The daily replanning
CTs for adaptation were generated by applying the ViewRay (ViewRay, Oakwood Village,
OH, USA) DIR vectors from the registration of the daily MRI to the planning MRI, to the
planning CT that was deformed to match the planning MRI. Air and soft tissue that differed
on the deformed CT with respect to the planning MRI were overwritten, with mass densities
of 0.0012 g/cc and 1.02 g/cc, respectively. Areas containing density overwrites were
avoided in the IMPT beam angle selection. For the proton plans, the original stereotactic
prescription (50Gy-RBE in 5 fractions; RBE = 1.1) and the original organ constraints were
used (Table 2). The treatment plans consisted of 3 beams (Figure 1, left).
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Furthermore, treatment plans for 5 head and neck (HN) cancer patients, previously
treated by adaptive standard fractionated VMAT, were optimized for IMPT using the
original planning CT image. Each HN patient had one repeated CT during the course of
treatment. The dose prescription of 70 Gy-RBE to the high-risk clinical target volume (CTV)
and 54 Gy-RBE in 30 fractions to the low-risk CTV was optimized with 4 beams (Figure 1,
right). All proton plans were optimized with robust optimization on the CTV, with a 3%
range uncertainty and 3 mm setup uncertainty. The organ constraints are given in Table 2.

Table 2. Planning constraints for pancreas, liver, and HN cancer patients.

Structure Constraint Importance

Li
ve

r
an

d
pa

nc
re

as

CTV V47.5Gy > 95% Soft constraint
Stomach V33Gy < 1 cc Hard constraint

Small bowel V33Gy < 1 cc Hard constraint
Large bowel V33Gy < 1 cc Hard constraint
Duodenum V33Gy < 1 cc Hard constraint
Spinal Cord V25 < 0.5 cc Hard constraint

Kidneys mean < 10Gy Hard constraint
Liver (-GTV) mean < 20Gy Hard constraint

Vtot-V15 > 700 cc Hard constraint

H
N

High-risk CTV V66.5Gy > 95% Hard constraint
V74.9 < 1 cc Hard constraint

Low-risk CTV V51.3 > 95% Hard constraint
V57.8 < 1 cc Soft constraint

Brainstem max < 54Gy Hard constraint
Spinal cord max < 45Gy Hard constraint
Constrictors mean < 42Gy Hard constraint

Larynx mean < 40Gy Hard constraint
Parotids mean < 26Gy Hard constraint

CTV: clinical target volume; HN: head and neck.

Cancers 2022, 14, x FOR PEER REVIEW 3 of 11 
 

 

overwritten, with mass densities of 0.0012 g/cc and 1.02 g/cc, respectively. Areas 

containing density overwrites were avoided in the IMPT beam angle selection. For the 

proton plans, the original stereotactic prescription (50Gy-RBE in 5 fractions; RBE = 1.1) 

and the original organ constraints were used (Table 2). The treatment plans consisted of 3 

beams (Figure 1, left). 

Furthermore, treatment plans for 5 head and neck (HN) cancer patients, previously 

treated by adaptive standard fractionated VMAT, were optimized for IMPT using the 

original planning CT image. Each HN patient had one repeated CT during the course of 

treatment. The dose prescription of 70 Gy-RBE to the high-risk clinical target volume 

(CTV) and 54 Gy-RBE in 30 fractions to the low-risk CTV was optimized with 4 beams 

(Figure 1, right). All proton plans were optimized with robust optimization on the CTV, 

with a 3% range uncertainty and 3 mm setup uncertainty. The organ constraints are given 

in Table 2. 

Table 2. Planning constraints for pancreas, liver, and HN cancer patients. 

 Structure Constraint Importance 

L
iv

er
 a

n
d

 p
an

cr
ea

s 

CTV V47.5Gy > 95% Soft constraint 

Stomach V33Gy < 1cc Hard constraint 

Small bowel  V33Gy < 1cc Hard constraint 

Large bowel  V33Gy < 1cc Hard constraint 

Duodenum V33Gy < 1cc Hard constraint 

Spinal Cord V25 < 0.5cc Hard constraint 

Kidneys mean < 10Gy Hard constraint 

Liver (-GTV) mean < 20Gy Hard constraint 
 Vtot-V15 > 700cc Hard constraint 

H
N

 

High-risk CTV  V66.5Gy > 95% Hard constraint 
 V74.9 < 1cc Hard constraint 

Low-risk CTV  V51.3 > 95% Hard constraint 
 V57.8 < 1cc Soft constraint 

Brainstem max < 54Gy Hard constraint 

Spinal cord max < 45Gy Hard constraint 

Constrictors mean < 42Gy Hard constraint 

Larynx mean < 40Gy Hard constraint 

Parotids mean < 26Gy Hard constraint 

 

Figure 1. Example treatment plans for pancreas, liver, and HN patients. The red arrows depict the 

beam directions. 

2.2. Structure Propagation 

Three DIR algorithms were included in this study: Raystation Anaconda and two 

open-source registration algorithms from Plastimatch (www.plastimatch.org (accessed on 

1 June 2022)), one using B-spline and one using Demons registration. For the structure 

propagation of pancreas and liver patients, the 5 daily MRI images were registered to the 

planning MRI with each DIR algorithm. The inverse registration vector was used to 

propagate the structures. The propagated contours were copied rigidly to the 

corresponding replanning CTs from the original MR linac treatment. 

Figure 1. Example treatment plans for pancreas, liver, and HN patients. The red arrows depict the
beam directions.

2.2. Structure Propagation

Three DIR algorithms were included in this study: Raystation Anaconda and two
open-source registration algorithms from Plastimatch (www.plastimatch.org (accessed on
1 June 2022)), one using B-spline and one using Demons registration. For the structure
propagation of pancreas and liver patients, the 5 daily MRI images were registered to
the planning MRI with each DIR algorithm. The inverse registration vector was used to
propagate the structures. The propagated contours were copied rigidly to the corresponding
replanning CTs from the original MR linac treatment.

For HN patients, a single additional CT was available for one-time replanning during
the course of treatment. This repeated CT was first rigidly pre-registered and then registered
with all three DIR algorithms to the planning CT. Structures were propagated from the
planning to the replanning CT using the inverse registration vectors. The adaptive plans
were optimized directly on the rigidly registered replanning CT.

www.plastimatch.org
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2.3. Adaptive Strategies

The propagated structures with different DIR algorithms show differences between
each other and the clinical contours. As manual structure corrections require a lot of re-
sources and time, it is desirable to integrate the potential DIR-related structure propagation
uncertainties directly into the optimization of the adaptive plan. To make plans more
robust against DIR-induced structure uncertainties, different strategies to mitigate contour
propagation uncertainties were compared. The beam angles, planning constraints, and
weights were identical to those used for the initial proton treatment plan. A schematic of
how the different structures were generated and used for optimization is given in Figure 2.
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Figure 2. Scheme of the workflow. Doses were calculated on rigidly pre-registered repeated images.
Three different DIRs were applied for structure propagation between this repeated image and
the planning images. The structures propagated with these DIRs were used for ‘single-DIR plan
adaptation’. Information from all 3 DIRs was combined by using their union (for organs and HN
target) and intersection (liver and pancreas target) structures for the conservative plan adaptation
approach, and substructures were defined according to the frequency that each voxel was defined as
belonging to a certain structure for the probabilistic optimization. All adaptive plans were evaluated
using the clinical structures drawn by a physician.

• Single-DIR adaptation: DIR-propagated structures were directly used for optimization
without any manual corrections. Therefore, 3 different single-DIR adaptive plans were
optimized on all replanning CTs, with structures deformed with Raystation, Plastimatch
Demons, and Plastimatch B-spline.

• Multi-DIR adaptation: The same replanning CTs with the 3 different structure sets
used for single-DIR adaptation described above were combined using the Raystation
robust optimization function on multiple images and structure sets. This is the worst-
case optimization [20], optimizing the plan using multiple images and structure sets
in parallel.

• Conservative adaptation: Structures from the 3 different DIRs were combined. For
pancreas and liver cancer patients, a stereotactic prescription was used, i.e., all organ
constraints must be fulfilled, while target coverage is only the second priority. Therefore,
for the conservative adaptation of these stereotactic prescriptions, the intersection of
all propagated structures was used as the target structure, and the union for organs.
In contrast, for HN patients with this prescription, the target coverage had a higher
priority; therefore, the union of all propagated structures was used for the target and
organs. The union and intersection of structures were calculated in Plastimatch and
imported into Raystation for optimization.

• Probabilistic adaptation: Substructures were defined for each structure depending on
how often a voxel was classified as part of the structure. If all 3 DIRs agreed that a
voxel was a target, this voxel was included in the 100%-target substructure; if only two
DIRs classified a voxel as a target, it belonged to the 67%-target substructure; if only
one algorithm defined it as a target, it belonged to the 33%-target substructure. The
100%, 67%, and 33% substructures were calculated in Plastimatch and imported into
Raystation. The optimization constraints of each structure were identical to those used
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for the planning CT, but the weights of these substructures varied according to the
frequency that voxels were classified as a target or organ amongst the DIRs [21].

• Reference adaptation: All replanning CTs had “clinical” structures, manually contoured
by a physician. These structures were directly used for the optimization of reference
adaptive plans. These reference adaptive plans should result in the best possible
treatment plan.

• No adaptation: To compare the effect to that of a non-adaptive approach, which can
be seen as the worst case, treatment plans were recalculated on the replanning CTs
without plan re-optimization.

All plans were optimized and calculated in Raystation using different optimization
structures, and all evaluations were performed using the clinical structures. If voxels were
assigned to multiple structures, they were kept in both and handled by the optimizer in
the objective function without supervision. Indeed, one of the aims of this study was to
compare the handling of uncertain voxel assignments directly by the different optimizations
(e.g., probabilistic optimization or multiple DIR optimization) compared with manual voxel
assignment (e.g., by a physician or one DIR algorithm).

2.4. Plan Quality Scoring

To simplify and standardize the comparison of multiple plans, the following scoring
system was used: if the prescribed constraint Cre f (listed in Table 2) was not fulfilled, the
difference of constraint C to reach the prescription Cre f was summed: score = C1 − C1re f +
C2 − C2re f + . . . + Cn − Cnre f .

Similar to an objective function during plan optimization, this scoring system adds
absolute values with different units. Therefore, the resulting score has arbitrary units (au)
and depends on how many constraints are applied, specific to the anatomical site. For
example, if, for HN patients, the dose to the brainstem exceeded 54 Gy by 1 Gy, it would
contribute ‘1’ to the score; if the high-risk CTV V74.9 exceeded 1cc by 0.1cc, that would
contribute ‘0.1’ to the score. As HN patients have more constraints than liver or pancreas
cancer patients, the calculated scores were higher. Scores were calculated for each plan
using the clinical structures. To reduce the patient dependency (e.g., some patients having
larger tumors that were closer to organs than others), the difference between the score and
the reference score of the plan adapted with clinical structures was calculated.

The scoring only provided a relative ranking between different adaptive plans. The
mean and range of all scores for all patients and fractions with the same adaptive strat-
egy were reported. The lower the score, the better clinical constraints and prescriptions
were fulfilled.

3. Results

The different deformed structures generally had a good agreement with the clinical
structures. However, some voxels were defined as part of a certain structure by the
physician, but not by any of the deformed structures. Therefore, there was a risk that, even
when multiple DIR algorithms were applied, the optimization may not have included all
voxels encompassed by physician-drawn structures, potentially risking target underdosage
or organ overdosage. This is especially relevant for maximum or minimum constraints, as
already small structural differences can lead to higher maximum doses in certain organs
or leave parts of the target uncovered. Examples of the propagated structures are given
in Figure 3.
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Figure 4 shows how the adaptive strategies performed compared with the reference
adaptive plan optimized with clinical structures. For each adaptive strategy, the score
difference with the reference adaptation plan is reported, averaged over all patients and
adaptive images with the same indication. The scores differed between the different
locations depending on the tumor position, e.g., the liver tumors were either close to the
duodenum or the large bowel, the pancreas was surrounded by multiple gastro-intestinal
(GI) organs, and HN tumor treatments involved more constraints and dose levels and,
therefore, higher scores.
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Figure 4. Minimum, maximum (crosses), and mean (dots) of the score differences from the reference
plan score optimized on clinical structures. Score units are arbitrary and depend on the tumor location
and the number of constraints.

Overall, plan adaptation improves the dose distribution compared with no adaptation.
Adaptation with the clinical structures, which were also used for evaluation and scoring,
performed best. No adaptation generally resulted in the worst scores, especially for HN
patients. The average score difference without adaptation to the reference adaptation
was 54 au for pancreas, 33 au for liver, and 115 au for HN. Adaptation with a single DIR
improved the scores compared with no adaptation (pancreas 19–39 au/liver 17–27 au/HN
15–34 au). The best performing algorithm was patient-dependent. The probabilistic and
conservative adaptations were very effective for HN patients, as both strategies showed a
score difference down to 5 au, but not for pancreas and liver patients. This was due to the
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stereotactic prescription, where organ constraint optimization weights were higher than
the target constraint weights.

4. Discussion

In this study, different strategies to include structure uncertainty in the adaptive plan
optimization (three single-DIR adaptations, multi-DIR adaption, conservative, probabilistic,
adaptation with clinical structures, and no adaptation) were implemented and evaluated
for a cohort of pancreas, liver, and HN cancer patients. In principle, online optimization
based on physician-corrected or manually redrawn structures is the most accurate solution.
However, if the required time and personnel resources for contour correction would
prevent online adaptation in clinical practice, automatic structure QA and correction-free
optimization can be valuable alternatives to manual structure definition and correction.
For the HN cancer patients, including the structure propagation uncertainties with the
probabilistic or conservative strategies improved the adaptation quality over a single-
DIR adaptation. For the abdominal indications, we observed no additional benefit of
the probabilistic or conservative strategy over single-DIR adaptation. However, with
the good image contrast of these abdominal MRI images and HN CTs, adaptation on
uncorrected propagated structures improved plan quality compared with no adaptation
at all. The acceptable results of optimization on uncorrected deformed structures with a
single-DIR algorithm agreed with previous studies, for example, those by Elmahy et al.
and Qiao et al. [22,23] for prostate cancer, or that by Nenoff et al. [24] for lung cancer.

In this study, the propagated structures were all reasonable and did not show extreme
deviations from the clinical structures. To avoid outliers, a short visual check and/or
automatic ‘plausibility checks’, for example those proposed in [15], are recommended for
all structures.

Online adaptive therapy improves the treatment conformity and enables dose es-
calation for pancreatic cancer patients [9,25], given that, in the abdomen, the anatomy
changes daily and the GI organs can have large position differences relative to the tumor.
However, DIR algorithms can also have considerable uncertainties [17]. For the GI patients
investigated here, all five fractions were delivered within 1 week. The large weight losses
and ascites that often occur in abdominal cancer patients did not take effect in such a short
time frame; therefore, the effect on the non-adapted plan was limited.

In contrast, for the investigated HN patients, the adaptive replanning CTs were ac-
quired multiple weeks after the planning image. The patients showed weight loss, resulting
in changes in the outer contours. All DIR algorithms showed a good agreement with the
manually corrected structures, since this anatomical area is dominated by bony structures
and the shrinkage of the external contour. Therefore, the effect of adaptation was also larger
than that for the investigated abdominal patients.

In this study, structural uncertainties were considered representative of the inter-
algorithm variability between different DIR algorithms. The DIR algorithms used in this
study used different optimization methods, but they were all based on image intensity
and had smoothing parameters to restrict the differences between neighboring voxels
(sliding surfaces); therefore, they might be systematically closer to each other than to clini-
cal structures. The use of a biomechanical algorithm, such as Raystation Morpheus [26],
was not considered, given that it requires structure sets to be defined on both registra-
tion images, which requires a similar effort to manual correction and is not suitable for
structure propagation.

The proposed strategies of including structure propagation uncertainty in the plan
optimization could also be applied to other structure uncertainty definitions, not only
adaptive planning, but also initial planning. For example, differences between multiple
auto segmentation contours or inter-observer variabilities in contouring [27] could be
included in the optimization.

The probabilistic optimization showed very good results for HN patients, but not
for the abdominal indications. The poor performance in the abdominal patients might
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be due to the stereotactic prescription, where the weights of the organ constraints were
more important than the constraints to ensure target coverage. The stereotactic prescription
was also the reason for the different definitions of the target in the conservative planning
approach. In stereotactic GI treatments, organ constraints are the most important, even if
they come at the cost of target coverage. Therefore, conservative adaptive plans for the
pancreas and liver were optimized on the smallest possible target with the largest possible
organs. For HN patients, target coverage has higher importance, and the largest possible
target was used in the conservative optimization.

The structural changes in the pancreas and liver patients are mostly caused by in-
terfractional bowel and GI movement, combined with some residual daily breath hold
variations. Due to the prescription of five times 10 Gy, the treatment takes place within
one week; therefore, the tumor and OAR volumes mostly shift around, but do not change
volumes. In contrast, the HN adaptive images were acquired some weeks after the planning
image, and the patients showed relevant weight loss. Because of these larger changes, the
non-adaptive plans for HN patients show a severely decreased plan quality, resulting in a
large benefit of adaptation.

For liver cancer patients, the adaptive scenarios showed slightly better average scores,
but worse maximum scores, than no adaptation. The maximum points all resulted from
one fraction of one patient. For this fraction, there were some voxels of the target defined as
‘stomach’ by all three DIR algorithms that were, therefore, spared in the adaptive scenarios.
In this fraction, the non-adapted plan had better target coverage and, despite the increased
stomach dose, resulted in better scores. This case shows one of the limitations of the
proposed scoring system.

The plans were compared using a scoring system, which simplified the comparison of
multiple plans with different planning constraints. It is understood that a single scoring
number can never provide the full picture of a complex plan comparison. However, it is a
useful tool to standardize the comparison of multiple plans and rank them relative to each
other. The calculation of the scores is, therefore, crucial for interpreting the results. In this
case, a linear scoring system was used with equal scoring weights between all clinically
used constraints. To test the stability of the results against the influence of individual
constraints, the scoring weights of the individual constraints were modified. The weight
of the constraint varied between all being weighted equally (as used in this study) and
the target or organs being weighted up to 10 times more relative to other structures. The
resulting score variations were small and did not change the conclusion of this study.

5. Conclusions

We investigated different strategies to include structure uncertainties in adaptive plan
optimization. Adaptation with the clinical structures used for evaluation resulted in the
best adaptive plan quality. If the time required for manual correction would prevent or
degrade online adaptation in clinical practice, it could be replaced by a fast planning ap-
proach using correction-free adaptation. Adaptation on propagated, uncorrected structures
showed a benefit over no adaptation. Including structure propagation uncertainties in
the optimization further improved the optimized plan over optimizing with single-DIR
propagated structures for the investigated HN patients. This has the potential to overcome
manual structure correction and make online adaptation more automatable, reduce the
required resources, and, therefore, make it more widely accessible.
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