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Genome-wide association studies (GWAS) have identified several common

variants associated with polycystic ovary syndrome (PCOS). However, the

etiology behind PCOS remains incomplete. Available evidence suggests a

potential genetic correlation between PCOS and type 2 diabetes (T2D). The

publicly available data may provide an opportunity to enhance the

understanding of the PCOS etiology. Here, we quantified the polygenic

overlap between PCOS and T2D using summary statistics of PCOS and T2D

and then identified the novel genetic variants associated with PCOS behind this

phenotypic association. A bivariate causalmixturemodel (MiXeRmodel) found a

moderate genetic overlap between PCOS and T2D (Dice coefficient = 44.1%

and after adjusting for body mass index, 32.1%). The conditional/conjunctional

false discovery rate method identified 11 potential risk variants of PCOS

conditional on associations with T2D, 9 of which were novel and 6 of which

were jointly associated with two phenotypes. The functional annotation of

these genetic variants supports a significant role for genes involved in lipid

metabolism, immune response, and the insulin signaling pathway. An

expression quantitative trait locus functionality analysis successfully repeated

that 5 loci were significantly associated with the expression of candidate genes

in many tissues, including the whole blood, subcutaneous adipose, adrenal

gland, and cerebellum.We found that SCN2A gene is co-localized with PCOS in

subcutaneous adipose using GWAS-eQTL co-localization analyses. A total of

11 candidate genes were differentially expressed in multiple tissues of the PCOS

samples. These findings provide a new understanding of the shared genetic

architecture between PCOS and T2D and the underlying molecular genetic

mechanism of PCOS.
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1 Introduction

Polycystic ovary syndrome (PCOS) is the most common

endocrine disorder in women of reproductive age, with an

adulthood prevalence estimated at 5.5–19.9% (Saei Ghare Naz

et al., 2019). Extensive research suggests that hyperandrogenism

and hyperinsulinemia, the two most important etiologies of

PCOS, are related to dermatological abnormalities, metabolic

dysfunction, and further irreversible clinical deterioration (Azziz

et al., 2016). However, the main drivers of PCOS and biological

mechanisms behind its etiology are not well-defined, posing

unignorable challenges that continue to present for a clear

diagnosis and precise management. Twin studies have

demonstrated that PCOS is a heritable disease with heritability

estimates of 38–71%, highlighting the polygenic genetic pattern

(Vink et al., 2006). In a family study involving 29,736 daughters

(age range 13–41 years), the female offsprings of mothers with

PCOS had a 5-fold increased risk of developing PCOS (Risal

et al., 2019). Moreover, utilizing human genotyping arrays,

genome-wide association studies (GWAS) involve identifying

associations of genotypes with phenotype individuals, leading to

a better understanding of the genetic architecture of PCOS.

However, the known genetic loci identified by current GWAS

account for about 10% of the observed heritability of PCOS,

which may, in part, be due to the limitations to GWAS, such as

population stratification and extreme polygenicity of many traits

(Stener-Victorin and Deng, 2021; Uffelmann et al., 2021). More

risk loci with small effect sizes on PCOS remain to be discovered.

Leveraging the phenotypic and molecular information of co-

morbid PCOS and type 2 diabetes (T2D) may improve the

discovery of novel PCOS susceptibility loci. PCOS is the

common co-morbidity experienced by adult women with

T2D, with its prevalence over 30.0% (Conn et al., 2000;

Kelestimur et al., 2006). Prospective studies have indicated

that PCOS patients younger than 40 years have a 4–10 fold

increase in risk for T2D (Kazemi Jaliseh et al., 2017; Liao

et al., 2022). On the other hand, some research studies

available have observed that insulin resistance and

hyperinsulinemia involved in T2D can lead to overstimulation

of the recruitment and growth of preantral and small antral

follicles and the increasing risk of ovarian dysfunction, which

contributes to PCOS, indicating an underlying pathophysiology

association between PCOS and T2D (Thong et al., 2020). In

addition, the significant clustering of T2D in the parents and

siblings of PCOS probands from a family suggests a pivotal role

of shared genetic factors in the two diseases (Yilmaz et al., 2018).

However, evidence of the genetic association between PCOS and

T2D is conflicting. The linkage disequilibrium (LD) score

analysis showed a significant positive genetic correlation

between PCOS and T2D (rg � 0.31), whereas a Mendelian

randomization study demonstrates that PCOS has a negative

impact on T2D (OR = 0.88) (Day et al., 2018; Zhu et al., 2021).

Significantly, the genetic correlation between PCOS and T2D,

reported in previous studies, might not reflect the true pleiotropic

action of genes on two phenotypes because it fails to capture the

mixed directions of the effect across shared genetic loci (Frei

et al., 2019). Pleiotropy between two traits, also called shared

genetic architecture or genetic overlap, is a less stringent

condition than genetic correlation, and it represents many

variants that affect both traits simultaneously, regardless of

their allelic effect directions (Bulik-Sullivan et al., 2015).

However, no genetic study has explored the shared genetic

architecture between PCOS and T2D.

In this study, to determine the shared polygenic architecture

between PCOS and T2D with or without the adjustment of body

mass index (BMI), we employed a bivariate causal mixture model

(MiXeR) based on GWAS summary statistics of T2D and PCOS.

Next, we applied the conditional/conjunctional false discovery

rate (condFDR/conjFDR) method to identify novel genetic loci

associated with PCOS. To explain the genetic variants associated

with a gene expression phenotype, we assessed the expression

quantitative trait locus (eQTL) functionality of the discovered

loci. Finally, we performed a co-localization analysis with eQTL

data and a differential gene expression analysis to detect the

target genes in different tissues for a set of identified single

nucleotide polymorphisms (SNPs).

2 Materials and methods

2.1 Participants

The GWAS summary statistics came from the most recently

published large-scale GWAS meta-analysis for T2D and

PCOS(Day et al., 2018; Mahajan et al., 2018). Data on PCOS

were collected from seven cohorts of European descent. The

PCOS sample consisted of 5,209 cases and 32,055 controls,

excluding the self-report sample from the 23andMe database

(n = 87,943) due to data availability. All PCOS cases were

diagnosed based on the National Institute of Health (NIH)

criteria or the Rotterdam criteria (Zawadzki et al., 1992;

ESHRE and Group, 2004). After the quality control

procedures for each study, genotypic data for the remaining

SNPs were used by researchers to perform association analyses.

Estimates of genetic variants across these studies were combined

via a fixed-effect inverse-weighted–variance meta-analysis which

was performed adjusting for age. Summary statistics on T2D,

with and without adjustment for BMI, were obtained from the

Diabetes Genetics Replication and Meta-Analysis (DIAGRAM)

consortium. GWAS data from 32 cohorts comprised 74,124 cases

and 824,006 controls of European ancestry. The case status was

defined by an inclusive T2D diagnosis (e.g., diagnostic fasting

glucose or HbA1c levels, hospital discharge diagnosis). With each

study, all variants were tested for association with T2D in a

regression framework under an additive model of the effects of

the risk allele, and the results were merged using fixed-effects
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meta-analysis with the inverse-variance weighting of log ORs.

More details can be found in the supplementary material.

2.2 Statistical analysis

2.2.1 Quantification of the polygenic overlap
between PCOS and T2D

To quantify the polygenic overlap between PCOS and

T2D, we performed a MiXeR analysis using the GWAS

data on both traits (Frei et al., 2019). First, we applied a

univariate causal mixture model to generate two key

parameters using the effect sizes, βi, for SNPs in PCOS and

T2D (with and without adjustment of BMI) summary

statistics: polygenicity (the proportion of non-null variants,

π) and discoverability (the phenotypic variance of non-null

variant effect sizes, σ2β) (Frei et al., 2019). Second, three

scenarios for the association of each SNP and both of the

traits were assumed: 1) SNP affects both traits (shared SNP);

2) SNP affects only one of two traits (trait-specific SNP); 3)

SNP has no effect on either trait (null SNP). Third, a bivariate

causal mixture model was built under the assumption that all

non-null variants followed the concordant distributions of the

effect size to calculate the estimated number of shared and

trait-specific causal variants, which explains 90% of SNP

heritability in each trait. Dice coefficients for each pair of

traits, an estimated percentage of the number of shared SNPs

against all non-null SNP for both traits, were computed. We

also assessed genome-wide genetic correlation (rg) across all

SNPs between PCOS and T2D using the MiXeR model.

Finally, to serve as a complement to rg estimation, cross-

trait linkage-disequilibrium score regression (LDSC) for each

pair of traits was employed under the hypothesis that the

directions of the effect size of shared SNP are consistently

aligned (Bulik-Sullivan et al., 2015). Additional information

about the MiXeR model and the LDSC model can be found in

the supplementary material.

2.2.2 Data quality control and pre-processing
Prior to cond/conj FDR calculation, the data quality control

and pre-processing procedures were implemented, as

recommended by the authors who developed cond/conj FDR

software Pleiofdr (Andreassen et al., 2013). We excluded the

SNPs in the human major histocompatibility complex (MHC)

region (hg19 as chr6: 25,119,106–33,854,733) and the

8p23.1 region (hg19 as chr8: 7,200,000–12,500,000) due to the

characteristic high LD of SNPs withinMHC regions and the large

inversion polymorphisms harboring in the 8p23.1 region which

is one of the characteristics in this extended block of LD

(Antonacci et al., 2009; Bosch et al., 2009; Trowsdale and

Knight, 2013). Including SNPs from two genetic regions may

lead to bias in the subsequent analysis. We also applied a genomic

control procedure to correct all p-values by the genomic inflation

factor λGC because it can minimize the impact of global variance

inflation due to polygenic effects and provide a robust estimate of

the null effects (Schork et al., 2013).

2.2.3 Visualization of genetic pleiotropy
enrichment

Using the summary statistics from PCOS and T2D GWAS

without adjustment of BMI, we constructed quantile–quantile

(Q–Q) plots for one phenotype based on varying levels of

association with another phenotype under the null hypothesis

to intuitively assess for pleiotropic enrichment of SNP

association (Smeland et al., 2020). Specifically, we estimated

the empirical cumulative distribution of nominal p-values

obtained from GWAS summary statistics of one trait for all

SNPs and the subsets of SNPs determined by significance

levels below the indicated threshold for another trait

(−log10P> 0, −log10P> 1, −log10P> 2, and −log10P> 3
corresponding to P< 1, P< 0.1, P< 0.01, andP< 0.001,
respectively). Q–Q plots of SNPs with nominal

−log10P< 7.3 (corresponding to P > 5 × 10−8) were focused

on assessing polygenic effects below the standard GWAS

significance threshold. Pleiotropic enrichment exists if the

Q–Q curve was plotted as successive leftward deflections from

the null distribution, corresponding to a larger proportion of

SNPs with a nominal −log10P value greater than or equal to a

given threshold. To mitigate spurious enrichment resulting

mainly from the LD structure across the human genome, we

constructed all conditional Q–Q plots after random pruning

averaged over 100 iterations. Random SNP in every LD block

(defined by r2 > 0.1) was selected, and the empirical

cumulative distribution function was computed using the

corresponding p-values at each iteration.

2.2.4 Identification of PCOS-associated loci
To improve the detectability of genetic variants with smaller

effect sizes that modulate the PCOS risk, we applied a condFDR

statistical method using the GWAS summary statistics of PCOS

and T2D without the adjustment of BMI (Smeland et al., 2020).

As an extension of the standard FDR framework, the condFDR

method integrated genetic association test statistics of one

phenotype with another. Specifically, SNPs from the GWAS

data on the primary phenotype were stratified based on

different p values of the conditional trait. The posterior

probability that a given SNP is null (has no association), given

that its p-values for that SNP are less than or equal to the

observed ones, was calculated. Next, we evaluated the per-SNP

condFDR values of the PCOS conditioned on T2D. To further

discover the SNP that is associated with PCOS and T2D

simultaneously, the conjFDR procedure was further applied.

The conjFDR framework is based on condFDR and is

determined by the maximum condFDR values for PCOS,

given T2D and vice versa. It calculates the posterior

probability that a random SNP is null for either trait or both
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simultaneously, given that the observed p-values for both traits

are less than or equal to the given p-values for each trait.

In order to include more candidate loci for further analysis,

the thresholds of condFDR and conjFDR were both set to 0.05.

Manhattan plots were also constructed based on ranking

condFDR and conjFDR values to position the PCOS risk loci

and the shared genetic risk loci. condFDR and conjFDR analyses

were performed after random pruning for all SNPs across

100 iterations by selecting one random SNP per linkage

disequilibrium block (defined by r2 > 0.1). For more details,

see the supplementary material.

2.2.5 Functional annotation of PCOS-associated
loci

We further used the SNP2GENE function of functional

mapping and annotation (FUMA) protocol version 1.3, to define

the lead SNPs and SNPs having a comparatively high LD (r2 ≥ 0.6)
with corresponding lead SNP based on positional and chromatin

interaction information of SNPs from 18 biological data repositories

and tools (http://fuma.ctglab.nl/) (Watanabe et al., 2017). SNPs

having a condFDR or conjFDR <0.05 and independent of each

other at LD r2 < 0.6 were identified as significant independent

SNPs. Those SNPs independent of each other at LD r2 < 0.1 were

then selected as lead SNPs (or pleiotropic SNPs). The border for a

genomic locus was defined as a region containing all candidate SNPs

in LD (r2 ≥ 0.6) with at least a lead SNP. Candidate SNPs were

merged into a genomic locus if the distances between themwere less

than 250 Kb. In addition, a novel risk variant associated with PCOS

was defined as the lead SNP that 1) condFDRor conjFDR is less than

0.05; 2) p-value is greater than 5 × 10−8 in original PCOS GWAS

and other PCOS GWAS research; and 3) independent of reported

SNPs at LD r2 < 0.6 and separated with reported SNPs by at least

250 Kb.

Gene mapping: two methods were performed to map SNPs

to genes. First, positional mapping was performed using the

SNP2GENE function of FUMA. Candidate SNPs in each

genomic risk locus were assigned to their nearest genes

based on functional annotations, namely, the combined

annotation dependent depletion (CADD) score, probability

of regulatory functionality (RegulomeDB score), and

transcription/regulatory effects from chromatin states (the

minimum chromatin state) (Boyle et al., 2012; Kircher et al.,

2014; Roadmap Epigenomics Consortium et al., 2015). The

CADD framework scores the deleteriousness of candidate SNPs

by integrating 63 functional annotations by training a support

vector machine, and the CADD score of an SNP greater than

12.37 indicates that the SNP is potentially deleterious (Kircher

et al., 2014). RegulomeDB serves to predict whether candidate

SNPs affect transcription factor binding and gene expression,

and each SNP was assigned a rank score ranging from 1 to 7

(Boyle et al., 2012). A lower score for a candidate SNP

represents stronger evidence of regulatory function. SNPs

with RegulomeDB score ≤ 2 were defined as SNPs being

functional. The minimum chromatin state was generated by

using a multivariate hidden Markov model with 15 categorical

states on the basis of five histone modification marks for

127 epigenomes to predict the accessibility of chromatin

regions (every 200bp bin) (Roadmap Epigenomics

Consortium et al., 2015). A lower score indicates higher

accessibility of chromatin regions. Scores 1–7 refer to open

chromatin states, representing that the genomic region where

candidate SNPs are located is the open chromatin region which

reflects the DNA regulatory potential of a genomic region.

Second, we also utilized a variant-to-gene (V2G) tool developed

by Mountjoy et al. (2021) to perform a mapping of lead SNPs

(https://genetics.opentargets.org/). Specifically, the information

from molecular phenotype quantitative trait locus experiments,

chromatin interaction experiments, in silico functional

predictions, and the distance between the variant and each

gene’s canonical transcription start site was combined and then

aggregated by taking the mean weighted-quantile to give an

overall V2G score for each SNP–gene pair. The gene with the

highest V2G score in a list of genes associated with a given SNP

was considered as the mapped gene of it.

2.2.6 Validation of expression quantitative trait
locus functionality

eQTL analyses can help identify the associations between

genetic variants and their corresponding gene expressions. It also

facilitates the isolation of causal genes affecting PCOS. Therefore,

we assessed the eQTL functionality of the identified PCOS loci in

49 tissues using publicly available data from the

Genotype–Tissue Expression database version 8 (GTEx

Release V8) (Lonsdale et al., 2013; Aguet et al., 2020). The

fastQTL method was used to generate the candidate gene set

associated with PCOS loci. The FDR threshold of less than

0.05 was applied to identify all significant cis-eQTLs, which

were generally classified as variants within 1 Mb pairs of the

gene transcription start site of the interested gene. Furthermore, a

cis-eQTL analysis for identified PCOS loci was repeated using the

whole-blood eQTL data from BIOSQTL and eQTLGen

consortiums (Zhernakova et al., 2017; Võsa et al., 2021).

2.2.7 Co-localization of GWAS and eQTL data
To advance the identification and prioritization of causal

genes for PCOS, genetic co-localization analyses were conducted

using the R package COLOC, based on combining PCOS GWAS

meta-analysis data with eQTL data (https://cran.r-project.org/

web/packages/coloc/). COLOC is a Bayesian-based method that

produces the posterior probabilities of all possible configurations

between two traits by performing an approximate Bayes factor

computation (Giambartolomei et al., 2014). SNP associations for

two traits were used to generate the posterior probability of five

mutually exclusive hypotheses at a specific locus: 1) H0: neither

trait has a causal SNP in the region; 2) H1: only the first trait,

disease, has a causal SNP in the region; 3) H2: only the second
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trait, gene expression, has a causal SNP in the region; 4) H3: both

traits are associated with different causal SNPs in the region; and

5) H4: two traits share a causal SNP in the region. For each co-

localization, we extracted genetic variants available in both eQTL

summary statistics of a testing gene and within 500 Kb of

pleiotropic loci (250 Kb on each side of the pleiotropic SNPs)

on four types of human tissues: whole blood, ovary, subcutaneous

adipose, and visceral adipose (omentum) tissues. These single-

tissue eQTL summary statistics were obtained from the GTEx

and eQTLgen consortium (Aguet et al., 2020; Võsa et al., 2021).

In the present study, we tested the nearest/mapped genes of

pleiotropic SNPs and the genes (eGenes) whose significant

eQTLs were overlapping with at least one of the pleiotropic

SNPs. We used default prior (prior probabilities = 1 × 10−4) to
PCOS associations (p1) and eQTLs (p2). As for the prior that a

random SNP is associated with either GWAS or eQTL (p12), we
selected 1 × 10−5 as prior probabilities. However, in sensitivity

analyses, p12 of 5 × 10−6 was chosen to repeat the analysis, as

recently proposed (Wallace, 2020). A posterior probability

of ≥80% was considered sufficient to support one of the

hypotheses.

2.2.8 Differential gene expression analysis for
PCOS-associated loci

Using the publicly available gene expression data provided by

the Gene Expression Omnibus (GEO) database, we examined

whether the nearest/mapped genes and eGenes of pleiotropic

SNPs were differentially expressed in PCOS cases. Differential

gene expression analyses of the four datasets, including

GSE10946 (cumulus cells) (Kenigsberg et al., 2009), GSE98595

(granulosa cells) (Ferrero et al., 2018), GSE8157 (skeletal muscle)

(Skov et al., 2008), and GSE48301(proliferative phase

endometrium) (Piltonen et al., 2013), were performed using

LIMMA. LIMMA is an R package for performing multiple

linear regression models using microarray data (Smyth, 2004).

The genes with p-values lower than 0.05 were considered as

FIGURE 1
Flow diagram of the overall study design. GWAS summary statistics on PCOS and T2D with or without adjustment of BMI were collected from
publicly available databases and open literature reports. We quantified the polygenic overlap between PCOS and T2D. Then, we visualized the
genetic pleiotropy enrichment between both traits and identified the genetic loci associated with PCOS or/and T2D. Finally, four bioinformatics
approaches were applied to explore the potential function of the identified genetic loci.
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nominally differential expression genes. Further details about

sample selection and statistical analysis can be found in the

supplementary material.

A flow diagram presents an overview of the study design

(Figure 1).

3 Results

3.1 Polygenic overlap between PCOS
and T2D

A MiXeR analysis was performed between PCOS and T2D

with and without adjustment for BMI. The results were shown as

Venn diagrams, providing preliminary evidence of the polygenic

overlap between PCOS and T2D (Figure 2). In the unadjusted

scenario (Figure 2A), of the 1.6 K causal variants linked to PCOS,

0.9 K (standard error(se) � 0.2) are shared with T2D (3.1K,

overall). The overall measure of the polygenic overlap, quantified

by the dice coefficient on a 0–100% scale, is 44.1%. The genome-

wide level genetic correlation (rg) between PCOS and T2D is

0.41, according to MiXeR, or 0.31 according to cross-trait LDSC

(Supplementary Table S1). In the scenario of adjusting for BMI in

original T2D GWAS data (Figure 2B), MiXeR estimated a much

lower number of causal SNPs, but it still indicates a moderate

polygenic overlap between PCOS and T2D. Of the 1.5 K causal

variants of PCOS, 0.4 K (se � 0.2) are shared with T2D (2.0K,

overall), with a dice coefficient of 32.1%.We also found a positive

genetic correlation between PCOS and T2D: (rg � 0.21

according to MiXeR, or rg � 0.12 according to cross-trait

LDSC rg � 0.12 (Supplementary Table S1)). In addition, the

positive AIC (Akaike information criterion) value, a model

selection criterion that evaluates the quality of the MiXeR

model compared with each of the other models, indicates that

the summary statistics of PCOS and T2D had enough statistical

power to fit the MiXeR model (Supplementary Table S1).

3.2 Enrichment of PCOS conditional on
T2D and vice versa

The stratified conditional Q-Q plot shows a successive

increment of SNP enrichment for PCOS conditioned on

association p-values for T2D and vice versa (Figure 3).

Successive leftward shifts for the strata of SNPs with higher

significance in T2D indicate that the proportion of PCOS-

associated SNPs increases considerably with higher levels of

association with T2D, suggesting an underlying shared genetic

architecture between PCOS and T2D (Figure 3A). The reverse

stratified and conditional Q–Q plots also display genetic

enrichment for T2D, given PCOS (Figure 3B).

3.3 PCOS-associated loci identified by the
condFDR and conjFDR methods

Based on the polygenic overlap between PCOS and T2D, we

identified specific SNPs related to PCOS by combining the

information on SNP associations available in PCOS and T2D

GWAS summary data. The results of condFDR and conjFDR

FIGURE 2
Venn diagrams of shared causal variants (gray). (A) T2D unadjusted by BMI (red) and PCOS (blue); (B) T2D adjusted by BMI (red) and PCOS (blue).
The estimated numbers of causal variants are shown in thousands, explaining 90% of SNP heritability in each phenotype, followed by the standard
error. The Dice coefficients, an overall measure on a 0–100% scale of the polygenic overlap, are 44.1% (A) and 32.1% (B), respectively. The genetic
correlations (rg) estimated by the MiXeR model are 0.41 (A) and 0.21 (B), respectively.
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were visualized in two Manhattan plots, in which all SNPs

without pruning are shown (Figure 4). Using condFDR＜
0.05 and after pruning the SNPs for LD at r2 ＞ 0.1, we

identified 11 loci associated with PCOS conditioned on T2D

(Table 1; Figure 4A). At conjFDR ＜0.05 and after pruning the

SNPs, 6 of the 11 loci detected by condFDR are associated with

both PCOS and T2D (Figure 4B). By comparing the directions of

the allelic effects, as denoted by the sign of the z-scores, of lead

SNP at detected PCOS-associated loci, we discovered that 6 lead

SNPs (namely, rs1509096, rs13061415, rs12808938, rs7190396,

rs2432581, and rs1474758) have consistent effect directions in

PCOS and T2D, and 5 lead SNPs (namely, rs4234212,

rs138484257, rs804274, rs7929660, and rs5030174) have

opposite effect directions (Table 1). Of the 11 PCOS-

associated loci, 9 were novel whose lead SNPs contain

rs1509096, rs13061415, rs12808938, rs7190396, rs2432581,

rs1474758, rs4234212, rs138484257, and rs5030174 (Table 1).

3.4 Gene definition and functional
annotation

The functional annotation of all candidate SNPs in the

11 pleiotropic loci (n = 405; Figure 5) demonstrates that the

majority are mostly intronic (64.8%) or intergenic (26.3%), while

no SNP was found in any exons (Figure 5A and Supplementary

Table S2). For the 11 top lead SNPs in the pleiotropic loci

associated with PCOS conditioned on T2D, we mapped the

nearest gene to them based on positional information and

functional annotation and found that six lead SNPs are

located inside a protein-coding gene and five lead SNPs

between the genes (nearest gene in Table 1). Specifically,

rs13061415, rs4234212, rs138484257, rs5030174, rs12808938,

and rs7190396 are located within the PPARG (OMIM

601487), ADCY5(OMIM 600293), NNT (OMIM 607878),

WT1(OMIM 607102), DLG2(OMIM 603583), and FTO

(OMIM 610966), respectively. On the other hand, rs1509096

(nearest gene: RNA5SP111; HGNC 42909), rs804274 (nearest

gene: NEIL2; OMIM 608933), rs7929660 (nearest gene:

ARL14EP; OMIM 612295), rs2432581 (nearest gene: CMIP;

OMIM 610112), and rs1474758 (nearest gene: PCK1; OMIM

614168) occur between genes (Table1 and Supplementary

Table S2).

Considering that the positional mapping of pleiotropic loci

using FUMAmight not be the best strategy to select the potential

causal genes of diseases, the V2G tool was also applied to identify

the most probable causal genes having a biological effect on

PCOS. By integrating multiple sources of information produced

by different experimental methods, eight pleiotropic loci are

assigned to eight candidate genes identical to the results

generated from the positional mapping method (mapped gene

in Table 1). However, rs1509096, rs4234212, and rs804274 were

assigned to SLC38A11 (OMIM 616526), SEC22A (OMIM

612442), and CTSB (OMIM 116810) using the V2G tool.

FIGURE 3
Genetic pleiotropy enrichment of PCOS conditional on T2D (without adjustment for BMI) and vice versa. Stratified conditional Q–Q plot of
nominal versus empirical and negative log10-transformed p-values in the primary phenotype as a functional significance of association with the
secondary phenotype at the level of p < 1(All SNPs, blue), p < 0.1 (orange), p < 0.01 (green), and p < 0.001 (purple) corresponding to
−log10P >0, −log10P > 1, −log10P > 2, and − log10P > 3, respectively. (A) PCOS conditioned on T2D; (B) T2D conditioned on PCOS. Dotted lines
demonstrate the null hypothesis. The summary statistics of T2D without adjustment of BMI were selected for plotting those conditional Q–Q plots.
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No lead SNP has a CADD score above 12.37. However, of the

405 candidate SNPs, 17 SNPs in strong LD (r2 ≥ 0.8) with four

lead SNPs (rs13061415, rs5030174, rs7190396, and rs7929660)

have CADD scores above the 12.37 threshold, suggestive of high

deleteriousness (Supplementary Table S2). In addition, 7.4% of

candidate SNPs (n = 30, RegulomeDB scores ≤ 2) are likely to

affect binding (Figure 5B and Supplementary Table S2). A lead

SNP (rs13061415) reports a RegulomeDB score of 1f, indicating

that it possibly affects transcription factor binding. The

distribution of the minimum chromatin state showed that

95.6% of candidate SNPs (n = 387) are located in open

chromatin state regions (Figure 5C and Supplementary Table

S2). In total, 8 lead SNPs(rs1509096, rs13061415, rs804274,

rs7929660, rs12808938, rs7190396, rs2432581, rs1474758)

scored 5 separately, representing that they may be involved in

weak transcription of genes. rs4234212 and rs138484257 (score

4) are associated with a strong transcription and rs5030174

(score 2) to flanking active transcriptional start sites (TSS)

(Supplementary Table S2).

3.5 eQTL functionality of pleiotropic SNPs

We investigated the gene regulatory effects of the 11 lead

SNPs using the GTEx database. The results showed that eight

lead SNPs are significantly associated with the expressions of

multiple genes (eGenes) and were defined as eQTL

(Supplementary Table S3). For example, rs1509096 is

associated with the expressions of SCN2A and SLC38A11

genes in the subcutaneous adipose, thyroid, and skeletal

muscle tissue; rs13061415 is associated with the expressions of

PPARG, TIMP4, and HMGCS1 genes in the human brain and

transverse colon tissues (Supplementary Table S3). Next, we

replicated the investigation of eQTL functionality of lead

FIGURE 4
Manhattan plot showing 11 genetic loci associated with PCOS or/and T2D. Manhattan plots showing the negative log10-transformed condFDR
values (A) and negative log10-transformed conjFDR values (B) for each SNP on the y axis and chromosomal positions along the x axis. The most
significant SNP lead in each LD block is enlarged and encircled in black, whereas the small points represent other SNPs. Labels correspond to lead
SNPs previously reported for published loci (black) and for newly identified loci (red).
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TABLE 1 Genetic susceptibility loci associated with PCOS identified by the conditional FDR and conjunctional FDR methods.

Loca CHRPOSb SNP Ref/Altc Functional
category

Nearest
gene

Mapped
gened

FDRPCOS|T2Dg FDRPCOS&T2D
h GWAS P-valuef GWAS Z-scorei

T2D PCOS T2D PCOS

1 2:165,737,889 rs1509096 G/A intergenic RNA5SP111 SLC38A11 9.43E-03 9.53E-03 1.80E-05 1.40E-05 −4.34 −4.29

2 3:12,349,924 rs13061415 C/T intronic PPARG PPARG 3.09E-02 3.09E-02 6.60E-09 5.60E-05 4.03 5.80

3 3:123,010,775 rs4234212 C/T intronic ADCY5 SEC22A 4.64E-02 4.64E-02 5.80E-05 9.30E-05 3.91 −4.02

4 5:43,618,391 rs138484257 G/T intronic NNT NNT 1.46E-02 9.69E-01 5.30E-01 9.80E-08 −5.33 0.63

5 8:11,625,205 rs804274 C/A intergenic NEIL2 CTSB 6.60E-03 7.47E-01 7.30E-02 2.10E-07 −5.19 1.79

6 11:30,339,461 rs7929660 G/A intergenic ARL14EP ARL14EP 9.72E-03 5.65E-01 2.70E-02 6.80E-07 −4.97 2.21

7 11:32,449,098 rs5030174 G/A intronic WT1 WT1 1.67E-02 1.67E-02 1.50E-05 2.70E-05 −4.20 4.33

8 11:83,562,895 rs12808938 G/T intronic DLG2 DLG2 2.43E-02 6.11E-01 3.50E-02 1.60E-06 4.80 2.11

9 16:53,822,502 rs7190396 G/T intronic FTO FTO 1.97E-03 1.97E-03 7.60E-74 2.50E-06 −4.71 −18.18

10 16:81,463,967 rs2432581 G/A intergenic CMIP CMIP 1.56E-02 3.32E-02 1.00E-04 2.50E-05 4.21 3.89

11 20:56,125,891 rs1474758 C/A intergenic PCK1 PCK1 2.49E-02 9.17E-01 3.50E-01 2.50E-07 −5.16 −0.93

Note:
aLoc, locus.
bCHRPOS, chromosome position in the human reference genome build37 (or hg19).
cRef/Alt, reference allele/alternative allele.
dMapped gene, gene that is most likely to be associated with lead SNP, defined by the V2G score.
eFDRPCOS|T2D, conditional FDR of PCOS conditioned on T2D.
fFDRPCOS&T2D, conjunctional FDR of PCOS and T2D.
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SNPs using eQTLGen and BIOSQTL databases. Among the

eGenes identified by the GTEx database, 8 of 15 genes were

repeatedly reported, and their expressions were associated with

five pleiotropic SNPs (rs1509096, rs4234212, rs13061415,

rs7929660, and rs804274) in the whole blood tissue. In total,

eQTL analyses identified 23 eGenes whose expressions were

significantly associated with eight lead SNPs.

3.6 Co-localization of eQTLs at
11 pleiotropic loci

We examined the overlap between eQTLs and pleiotropic

loci and performed a genetic colocalization analysis to explore

whether pleiotropic loci co-localized with 27 candidate genes

containing the nearest/mapped genes of pleiotropic SNPs and

the eGenes. Of the 11 pleiotropic loci, one locus, whose lead

SNP is rs1509096, has high support (PP4 � 89.60%) for co-

localization with SCN2A gene in the subcutaneous adipose

tissue (Supplementary Table S4). Additionally, in the genomic

region of 9 pleiotropic loci, the causal variants of PCOS are

inconsistent with the causal variants that regulate the gene

expression (PP3≥ 80.00%) in the whole blood, ovary, and

adipose tissues (FDFT1, BLK, FAM167A, NEIL2, CTSB,

FAM86B, RP11-297N6.4, ARL14EP, and FTO). After

applying a more stringent prior (p12 � 5 × 10−6), those

pleiotropic loci with high support for hypothesis 3 or

hypothesis 4 (PP3≥ 80% or PP4≥ 80%) remained

(Supplementary Table S4).

3.7 Differential expression of the
candidate genes

After accessing the gene expression profile data from the GEO

dataset, we extracted the mRNA expression values for 26 candidate

genes except forRP11-297N6.4 gene and performed differential gene

expression analyses. In total, 11 candidate genes were identified as

significantly differentially expressed between PCOS-associated

tissues and normal tissues (P< 0.05) (Supplementary Table S5).

Specifically, seven genes, namely, CMIP, CTSB, C8orf49, DLG2,

FTO, NNT, and TIMP4 are significantly downregulated in PCOS-

associated tissues, while other genes were significantly upregulated

in PCOS-associated tissues (Supplementary Table S5).

4 Discussion

In recent years, GWAS have identified some unique

associations between SNPs and PCOS, but several SNPs with

minor genetic effects remain to be identified. By leveraging

information on the GWAS summary data from PCOS and

T2D, we estimated the polygenic overlap between two

phenotypes using MiXeR models and LDSC models. We

observed a moderate polygenic overlap between PCOS and

T2D, regardless of whether the SNP associations of T2D were

adjusted by BMI. Stratified Q–Q plots further support the

evidence for the polygenic overlap between PCOS and T2D.

In the LDSC model, the estimate of the genetic correlation

between PCOS and T2D is significant and positive, similar to

FIGURE 5
Distribution of the functional annotation for candidate SNPs. (A) Distribution of the functional consequences of independent SNPs. (B)
Distribution of RegulomeDB scores, with a lower score indicating a higher likelihood of having a regulatory function. (C) Minimum chromatin state
across 127 tissue and cell types for SNPs in a shared genomic region, with lower states indicating higher accessibility and states 1–7 referring to open
chromatin states.
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the results from the MIXeR model, implying that genes that

increase PCOS also increase the risk of diabetes. The cond/

conjFDR framework is a powerful method to explore novel

genetic susceptibility loci associated with PCOS by integrating

two genetically correlated traits. We successfully detected

11 PCOS-associated loci conditional on T2D with a mixture

of allelic effect directions. Of those, nine loci were novel, and six

loci were jointly associated with PCOS and T2D. These findings

strengthen prior genetic evidence (Hayes et al., 2015; Day et al.,

2018). We discovered five cis-eQTLs near 15 candidate genes in

multiple human tissues and successfully validated eight eQTL

associations in other eQTL data. A co-localization analysis

detected that 1 locus (rs1509096) has strong evidence for co-

localization with the SCN2A gene in the subcutaneous adipose

tissue. Furthermore, the differential gene expression analysis found

that 11 of all the candidate genes were significantly differentially

expressed in PCOS women compared with those of controls. These

findings support the importance of abnormal gene expression in

shared etiological mechanisms between PCOS and T2D.

For a pair of traits, a polygenic overlap refers to the fraction of

genetic variants affecting both traits simultaneously over the total

number of causal variants across the two traits observed

regardless of their allelic effect directions. Few studies have

estimated the degree of genetic overlap or the number of

shared underlying causal variants between PCOS and T2D

despite some metrics used to compute the genetic correlation.

We reported a moderate polygenic overlap between PCOS and

T2D. Using cross-trait LDSC, PCOS shows a moderate positive

genetic correlation with T2D, in agreement with previous studies

(Zhu et al., 2021). It should be noted that genetic correlation may

be statistically significant only if plenty of shared causal variants

for both traits reveal consistent directions of effect sizes (same or

opposite) (Frei et al., 2019). These findings suggest that the bulk

of the shared causal variants are positively associated with PCOS

and T2D and provide a complete understanding of the shared

genetic architecture between PCOS and T2D, spanning

numerous susceptibility genes of the two phenotypes that

remain unknown. However, after adjusting for BMI in the

original T2D GWAS data, the estimated number of shared

causal SNPs simultaneously associated with PCOS and T2D

decreased by approximately half, and the percentage of shared

causal SNPs (Dice coefficient) decreased by one-third according

to the MIXeR analysis. Notably, PCOS GWAS data collected in

this study are not adjusted for obesity-related traits (BMI, etc.)

because of data availability. If adjusted for BMI, these parameters

may further decrease. These results reveal that a portion of the

shared genetic architecture between PCOS and T2D may be

associated with obesity. A study by Liu et al. (2022) has supported

our results: rs2432581, identified as SNP shared between PCOS

and T2D in the present study, was found to be a causal variant

simultaneously associated with PCOS andWHR (waist-hip rate).

The mapped genes (FTO, SLC38A11, and RNA5SP111) of the

identified PCOS SNPs in our study were also associated with

obesity-related traits, including WHR, WHR adjusting for BMI,

and childhood BMI (CBMI), suggesting the shared genetic

architecture of PCOS, T2D, and obesity (Liu et al., 2022). It

partly explains why overweight or obese women with PCOS are

more likely to experience T2D (Kakoly et al., 2019).

PCOS is a complex disease resulting from a complicated

combination of genetic, epigenetic, and maternal-fetal

environmental factors. Hyperandrogenism, which is the most

prominent and heritable phenotypic trait, may be involved in the

abnormal response to negative feedback regulation in the

hypothalamic-pituitary-ovarian (HPO) axis and follicular

follicle-stimulating hormone (FSH) resistance (Legro et al.,

1998; Azziz et al., 2016). Hyperinsulinemia may impair the

negative feedback regulation on the hypothalamic-pituitary-

adrenal (HPA) axis and lead to further imbalance of HPO

axis regulation by promoting an adrenal secretion of androgen

(Wang et al., 2019b). However, questions remain as to the

biological mechanisms underlying these symptoms. Two lead

SNPs have not been reported in previous PCOS GWAS but were

mapped to ARL14EP (rs7929660) and NEIL2/CTSB (rs804274),

three candidate genes for PCOS(Hayes et al., 2015; Day et al.,

2018; Tyrmi et al., 2022). rs7929660 is an eQTL for ARL14EP in

20 types of human tissues and is highly correlated with

rs11031005 (LD r2 � 0.81) and rs11031006 (LD r2 � 0.80).

The 11p14.1 locus harboring the ARL14EP gene has been

related to endometriosis (Sapkota et al., 2017).

rs11031005 and rs11031006 are known to be associated with

reproduction-related phenotypes, including the length of the

menstrual cycle and sex hormone levels [FSH](Ruth et al.,

2016; Laisk et al., 2018). rs804274 is also an eQTL for NEIL2

and CTSB genes. The CTSB gene encodes cathepsin B, a

lysosomal cysteine protease. It has been reported that a high

activity CTSB gene serves as proapoptotic in mouse ovarian cells,

inhibiting the granular cell proliferation via inhibition of the

p-Akt and p-ERK1/2 pathways (Chen et al., 2021). Mendelian

randomization analysis has discovered that the NEIL2 gene was

potentially causally associated with PCOS (Sun et al., 2022).

Statistical evidence, including the differential gene expression

analysis we carried out in our research, suggests that NEIL2 and

CTSB could play an essential role in PCOS, although the

underlying biological functions are still unclear.

In this study, the strongest novel signal of shared genetic

effects between PCOS and T2D is rs7190396, located at FTO.

FTO is an obesity susceptibility gene and encodes 2-oxoglutarate

and Fe (Ⅱ)-dependent demethylase catalyzing the 3-

methylthymine in single-stranded DNA and 3-methyluracil

and 6-methyladenosine in RNA for repairing and modifying

multiple nucleic acids (Loos and Yeo, 2014). rs7190396 is an

eQTL for FTO in the skeletal muscle and was reported to be

strongly associated with menarche in the United Kingdom

Biobank GWAS (P � 3 × 10−35), which might partly explain

the late menarche phenotype in PCOS patients in a prospective

cohort study (Bycroft et al., 2018; Tabassum et al., 2021). FTO
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gene plays an essential role during the evolution of many

reproductive phenotypes, such as ovarian aging. An in vitro

model showed that FTO knockdown could induce the faster

aging process of granular cells by increasing the total amount of

multifunctional N6-methyladenosine, indicating a key effect of

FTO in abnormal ovulation processes (Jiang et al., 2021). However,

the evidence that FTO is related to PCOS appears contradictory. A

study showed that FTO upregulation could induce the dysfunction

of ovarian granular cells by upregulating FLOT2 (Zhou et al.,

2021). However, the functional mechanism of how rs7190396 or

FTO affects PCOS is unknown, which can be explored in follow-up

functional studies.

rs1509096 was assigned to RNA5SP111 or SLC38A11

according to two mapping methods. RNA5SP111 is a 5S

ribosomal pseudogene (Cunningham et al., 2021), while

SLC38A11 encodes solute carriers that transport amino acids as

their primary substrate to engage in amino acid sensing and

signaling in cells (Hellsten et al., 2018). In the present study,

rs1509096 shows a strong eQTL effect on SLC38A11 and

SCN2A. A transcriptomic study showed that a low expression of

SLC38A11 could inhibit the regeneration of the endometrium

cycle-to-cycle (Spitzer et al., 2012). Abnormal endometrial cell

proliferation is more likely to be observed in PCOS women,

probably resulting from the dysfunction of the HPO axis

(Spitzer et al., 2012). In addition, we found that the SCN2A gene

is co-localized with PCOS in subcutaneous adipose. A previous

study showed that the expression of SCN2A might have positive

effects on activating Na + channels in the human nervous system,

but the relationship between SCN2A and PCOS is unclear (Sanders

et al., 2018). The effect allele A of rs2432581 near CMIP (C-Maf-

inducing protein, a negative regulator of T cell signaling) was

positively associated with PCOS and T2D. CMIP could decrease

the reactivity of T cells in response to CD3-CD28 stimulation and

impede an appropriate T-cell activation in response to pathogens,

which may explain the low-grade chronic inflammation in PCOS

(Bannigida et al., 2020; Oniszczuk et al., 2020).

More importantly, rs13061415, a novel SNP located at PPARG

and jointly correlated with T2D and PCOS, may affect transcription

factor binding because of its low RegulomeDB score. PPARG

(PPAG-γ) encodes a member of the ligand-dependent nuclear

hormone receptor family of nuclear receptors, regulating

adipogenesis through its interaction with several co-activators

(Grygiel-Górniak, 2014). PPARG has been reported to be closely

associated with PCOS in the European population (Zaki et al., 2017).

Previous studies have showed that Pro12Ala and His447His

polymorphisms of the PPARG might be protective factors of

insulin resistance in PCOS women (Yilmaz et al., 2006; Shaikh

et al., 2013). In fact, reduced fertility is more likely to be observed in

mice with a specific deletion of PPARG in granular cells, which is a

critical regulator of reproduction and development (Cui et al., 2002;

Yang et al., 2008). DLG2, where rs12808938 is located, encodes a

protein that forms a heterodimer with a related family member that

may interact at postsynaptic sites for clustering of receptors, ion

channels, and associated signaling proteins (Ali et al., 2018). There is

limited evidence for the association between DLG2 and PCOS.

However, a study on markedly delayed puberty reported that

variants in DLG2 decrease the gonadotropin-releasing hormone

expression of the hypothalamic cell line in vitro experiment,

indicating that DLG2 may be associated with the regulation of

the HPO axis (Jee et al., 2020).

In addition, we identified a novel pleiotropic SNP, rs1474758,

which was mapped to the PCK1 gene. In the liver and kidney,

PCK1 encodes the gluconeogenic enzyme (PEPCK-C) that

catalyzes the limiting-velocity step of the hepatic

gluconeogenic pathway and functions in adipocytes of the

glyceroneogenesis pathway (Beale et al., 2004). PCK1 might

influence specific FSH-related processes, which could occur in

PCOS. Some research studies indicated that PCK1 was involved

in the fructose-1,6-bisphosphatase 1 signaling pathway and was

highly expressed after the stimulation of a high level of FSH or

testosterone (Perlman et al., 2006; Liu et al., 2017). The SNPs

contributing to the risk of PCOS and T2D with opposite

directions of effects cannot be ignored. We discovered three

interesting novel loci with discordant directions of the effect for

PCOS and T2D. The alleles T of rs138484257 and A of

rs5030174 were associated with a decreased risk of T2D and

an increased risk of PCOS. NNT, where rs138484257 is located

at, encodes nicotinamide nucleotide transhydrogenase which

produces high concentrations of NADPH for radical

detoxification (Meimaridou et al., 2012). In animal

experiments, NNT mutations could modulate the effect of

Gclm gene deletion on the fertility of female mice (Nakamura

et al., 2011). Although the relationship between NNT and PCOS

is unknown, the NADPH pathway might play an essential role in

granular cells. The results from a study suggest a harmful effect of

overactive NADPH oxidase on the oocyte quality of PCOS

women (Lai et al., 2018). WT1, where rs5030174 is located at,

encodes Wilms’ tumor gene 1 protein that influences cellular

development and cell survival as a transcription factor (Hamilton

et al., 1995). A previous study has demonstrated that

WT1 activation is necessary to reduce the premature

apoptosis of granular cells in follicles via the activation of the

β-catenin signal pathway (Wang et al., 2019a). The expression of

WT1 was moderately correlated with testosterone, luteinizing

hormone levels, and the antral follicle counts in a case control

study (Wang et al., 2018). Last, the allele T of rs4234212, mapped

to ADCY5 or SEC22A, was associated with an increased risk of

T2D and a decreased risk of PCOS. rs4234212 is an eQTL for

both ADCY5 and SEC22A. ADCY5 encodes membrane-bound

adenylyl cyclase enzyme-5 that converts adenosine triphosphate

to the cyclic adenosine monophosphate and pyrophosphate and

regulates glucose-induced insulin secretion (Lin et al., 2020).

Horikoshi et al. (2013) reported that variants in ADCY5 were

associated with lower birth weight in the European population,

implying that ADCY5 may be linked to a poor maternal–fetal

environment. Furthermore, SEC22A, also known as a vesicle-
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trafficking protein SEC22 homolog B, is involved in vesicle

trafficking and regulates multiple signaling and transportation

pathways (Sun et al., 2020). In an animal model, SEC22A was

found to be over-expressed in immature oocytes compared to

matured counterparts, indicating a potential effect of SEC22A in

oocyte growth and maturation (Mamo et al., 2011).

Our study has several strengths. It is worth noting that the

prior pleiotropic approach (such as LD-score–based partitioned

heritability) cannot capture the authentic shared genetic

architecture if the shared SNPs with mixed effects exist in two

traits. Therefore, we introduced the MiXeR tool. The advantage

of this tool is that it extends the cross-trait LD score regression by

incorporating a causal mixture model, capturing the mixture of

the effect directions across shared genetic variants rather than

measuring the overall genetic correlation (Frei et al., 2019).

Second, to the best of our knowledge, this is the first study to

report the results of cond/conj FDR, and we identified nine

genetic variants associated with PCOS, which have never been

reported in previous studies. Our results partly underpin the

missing heritability of PCOS. Combining GWAS data from two

traits using the cond/conjFDR approach increases the power to

detect SNPs associated with common biological mechanisms and

elucidates the shared pathophysiological relationships between

the phenotypes. Furthermore, the application of the eQTL

analysis, co-localization analysis, and differential gene

expression analysis not only partly validates our results but

also provides us with statistical evidence to verify the causal

effect of pleiotropic loci on PCOS and T2D.

Several limitations need to be acknowledged. First, the self-

report samples from the 23andMe database were removed, owing to

data availability. Hence, the sample size of PCOS was comparatively

small compared to T2D (PCOS n = 37,264 versus T2D n = 898,130),

underpowering the MiXeR analysis and condFDR/conjFDR. More

shared loci between PCOS and T2D are expected to be discovered

when larger samples fulfilling the NIH or Rotterdam diagnostic

criteria are available in PCOSGWAS. Second, PCOS consists of four

phenotypes according to three clinical features: hyperandrogenism

(either biochemical or clinical), ovulatory dysfunction, and

polycystic ovarian morphology (Azziz et al., 2016). The results

reported in our study represent the combined genetic effect of

identified variants. A stratified analysis by the four subtypes

mentioned previously cannot be performed, owing to data

availability. Moreover, categorizing PCOS using clinical features

may ignore the heterogeneity caused by different biological

pathways. In the future, additional information such as different

levels of omics information should be collected and combined to

identify PCOS subtypes and determine their subtype-specific genetic

variants. Third, the identified SNPs are probably not causal variants

but tagged ones located in specific genomic regions, although the co-

localization method was performed to detect potential causal SNPs

for both traits. Fourth, all participants included in this study were of

European ancestry, which did not reflect the trans-ancestry groups’

differential genetic backgrounds. Fifth, these loci identified by cond/

conj FDR remain subjected to the same scrutiny as regular GWAS

and sex-specific GWAS. Therefore, larger sample sizes are required

inGWAS to achieve an adequate statistical power and determine the

sex-specific genetic effect of identified loci, providing additional

information on the pathophysiology of PCOS and its association

with T2D. Finally, the underlying mechanism by which these loci

play a role in PCOS development is still unclear. Functional

mechanistic studies will be employed to determine the clinical

significance of these loci in the future.

5 Conclusion

In conclusion, we reported a moderate polygenic overlap

between T2D and PCOS, extending the current understanding of

the common genetic variants influencing the two diseases. Present

results also imply an essential role of BMI in two diseases. More

importantly, we successfully improved the identification of

pleiotropic genetic variants of PCOS and T2D, including nine

novel loci. The results of the eQTL analysis, colocalization

analysis, and differential gene expression analysis suggested that

most loci are potential regions that regulate PCOS and T2D

simultaneously. Our study may provide us with an improved

understanding of the potential genetic mechanisms in PCOS.
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