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Background
Streptomyces are Gram-positive eubacteria that are the
major natural source of antibiotics, producing about half
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Abstract

Background: Streptomyces coelicolor is the most studied Streptomyces species and an excellent
model for studying differentiation and antibiotic production. To date, many genes have been
identified to be required for its differentiation (e.g. bld genes for aerial growth and whi genes for
sporulation) and antibiotics production (including actll-orf4, redD, cdaR as pathway-specific
regulatory genes and afsR, absA[/A2 as pleiotropic regulatory genes).

Results: A gene cluster containing six genes (SCO4126-4131) was proved to be co-transcribed in
S. coelicolor. Deletions of cmdABCDEF (SCO4126-4131) displayed defective sporulation including
formation of aberrant branches, and abnormalities in chromosome segregation and spore
septation. Disruption mutants of apparently orthologous genes of S. lividans and S. avermitilis also
showed defective sporulation, implying that the role of these genes is similar among Streptomyces.
Transcription of ¢mdB, and therefore presumably of the whole operon, was regulated
developmentally. Five of the encoded proteins (CmdA, C, D, E, F) were predicted membrane
proteins. The other, CmdB, a predicted ATP/GTP-binding protein with an ABC-transporter-
ATPase domain shown here to be essential for its function, was also located on the cell membrane.
These results indicate that CmdABCDEF proteins mainly affect Streptomyces differentiation at an
early stage of aerial hyphae formation, and suggest that these proteins may form a complex on cell
membrane for proper segregation of chromosomes. In addition, deletions of cmdABCDEF also
revealed over-production of blue-pigmented actinorhodin (Act) via activation of transcription of
the pathway-specific regulatory gene actll-orf4 of actinorhodin biosynthesis.

Conclusion: In this study, six co-transcribed genes cndABCDEF were identified by their effects on
differentiation and antibiotic production in Streptomyces coelicolor A3(2). These six membrane-
located proteins are possibly assembled into a complex to function.

of all known microbial antibiotics [1]. This genus also has
a complex life cycle, in which spores germinate to form a
substrate mycelium of branching hyphae on solid
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medium, from which branches grow into the air, such
multi-nucleoid aerial hyphae ultimately becoming sep-
tated to form chains of unigenomic spores [2,3].

Streptomyces coelicolor is the most studied Streptomyces spe-
cies and an excellent model for studying antibiotic pro-
duction and differentiation [4]. It produces several
chemically different antibiotics, including the blue-pig-
mented actinorhodin (Act), red-pigmented undecylpro-
digiosin (Red), calcium-dependent antibiotic (CDA) and
plasmid SCP1-encoded methylenomycin (Mmy). Path-
way-specific regulatory genes, e.g. actll-orf4, redD, cdaR
and mmyB, are required for initiating transcription of the
corresponding antibiotics biosynthetic gene clusters;
while pleiotropic regulators, e.g. AfsR, often affect multi-
ple secondary metabolism [5,6]. By using S. coelicolor as a
model system, two dozen genes (bld and whi), most of
them encoding regulatory proteins, important for initia-
tion of aerial mycelium formation and sporulation have
been identified [7]. More than 20 other genes from pri-
mary metabolism (e.g. citA encoding citrate synthase; [8])
and stress-response (rsrA for oxidation-sensing anti-sigma
protein; [9]) etc also affect Streptomyces differentiation,
indicating that the regulatory signaling cascades for aerial
growth and sporulation extensively interact with meta-
bolic, morphological, homeostatic and stress-related
checkpoints [10]. Recently, several key genes affecting api-
cal growth, chromosome segregation and cell division
(e.g. divlVA, sffA, ftsZ, ftsQ, ftsK and parA/B; [11-17]) have
been identified.

Here we describe identification of a cluster of six co-tran-
scribed genes cmdABCDEF (encoding five membrane pro-
teins and one membrane-located ATP/GTP-binding
protein) in S. coelicolor that affect sporulation and antibi-
otic production.

Results

Co-transcription of six genes SCO4126-4131 of S.
coelicolor

Earlier work indicated that the six co-transcribed genes
(SLP2.19-23 or pQC542.1¢-6¢) of Streptomyces linear plas-
mid SLP2 are required for plasmid conjugal transfer
[18,19]. Interestingly, three genes SLP2.21-23 resembled
SC0O4127-4129 of S. coelicolor chromosome (identities
were 33% [133/393], 29% [56/193] and 22% [97/435]
respectively), which were also located in a cluster of six
genes SCO4126-4131 (Figure 1A). The transcription direc-
tions of SCO4126-4131 were same. To see if they were co-
transcribed, reverse transcription-PCR (RT-PCR) was
employed. As shown in Figure 1B, compared with the pos-
itive (genomic DNA as template for PCR reaction) and
negative controls (total RNA as template), the expected
sizes of PCR products were detected on agarose gel from
the cDNA, reversely transcribed from the total RNA, by

http://www.biomedcentral.com/1471-2180/9/157

using primers from the neighboring genes of SCO4126-
4131. While this analysis does indicate a transcript exists
that covers the entire length of the cluster, it is possible
that other transcripts exist from other promoters within
the cluster that do not span all 6 genes.

To investigate if SCO4126-4131 were involved in plasmid
transfer, null mutants of the whole gene cluster were con-
structed by PCR-targeted mutagenesis [20]. However, no
significant difference in transfer frequencies of the SLP2-
derived linear plasmid pQC542 which contained genes
for DNA replication in linear mode and plasmid conjugal
transfer [18,19] between the mutant and the wild-type
was found (data not shown), suggesting that these chro-
mosomal genes could not substitute for the SLP2 genes
for plasmid transfer.

Null mutants of SCO4126-4131 display defective
sporulation

To study the functions of SCO4126-4131, null mutants of
the individual genes or complete gene cluster were con-
structed by in-frame replacement via PCR-targeting with
an apramycin resistance gene and then removing the
marker, excluding potential polar effects on expression of
the gene cluster. After culturing the mutants on MS
medium for 3 days, as seen in Figure 2A, the ASCO4126
strain, as well as wild-type strain M145, produced dark
grey colonies on agar plate, whereas colonies of all the
other null mutants, including a ASCO4126-4131 mutant,
were light grey, and seemed to produce fewer spores. In
time courses of M145 and null mutants of SCO4126,
SCO4127 and SCO4126-4131 on MS agar (Figure 2B), the
ASCO4127 or ASCO4126-4131 strains had a significant
delay in aerial mycelium formation, and sporulated 1 or 2
days later than the wild-type strain, while there was no
apparent difference in sporulation between M145 and the
ASCO4126 strain. Introduction into the mutants of the
corresponding genes or the whole gene cluster by deriva-
tives of the chromosomally integrating plasmid pSET152
or pFX101 could restore the timing of forming aerial myc-
elium and sporulations to the wild-type level, but intro-
duction of the SCO4127 alone could not complement the
defects in sporulation in the SCO4126-4131 mutant (data
not shown), confirming that the observed defective sporu-
lation was caused by deletions of the genes. Five of the
SCO4126-4131 genes encoded membrane proteins, while
SCO4127 encoded an ATP/GTP-binding protein. Thus,
the SCO4126-4131 gene cluster was designated cmdA-F (a
cluster of genes encoding membrane proteins for differen-
tiation).

Aberrant branches, defective spore septation and
abnormal chromosome segregation in null mutants

After harvesting, diluting and plating out spores on
medium, the numbers of spores (c. 10°/ml) obtained
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Organization and transcription of the six genes SCO4126-4131 of S. coelicolor. (A) Comparison of organization of
the SCO4126-4131 genes of the S. coelicolor chromosome and the SLP2.19-23 (or pQC542.1c-6c) genes of S. lividans plasmid
SLP2. The homologous genes are indicated by dashed lines and transcriptional directions of genes by filled arrowheads. (B) RT-
PCR of transcript overlapping the consecutive adjacent genes of the SCO4126-4131 cluster. RNA of strain M145 was isolated
and reverse-transcribed into cDNA. The cDNA, RNA and M145 chromosomal DNA were used as templates. Five paired
primers (i.e. p67, p78, p89, p90 and p01) were used to allow amplification of segments extending from each gene into its imme-
diate neighbor. PCR products were electrophoresed in 2% agarose gel at 100 v for | h.
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Figure 2

Phenotype of the null mutants of cndABCDEF on MS plates. (A) Growth of single and multiple null mutants of the cmd-
ABCDEF genes on MS for three days. The parental strain is M145. (B) A time course of culturing M145 and the null mutants.
Strains were inoculated as ~| cm? patches on MS medium. Time points of observation are shown on the right.
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from the AcmdB and especially AcmdA-F strains were obvi-
ously less than that of wide type M145 (c. 108/ml). To
characterise these aerial hyphae and spores, we employed
phase-contrast and scanning electron microscopy. Under
phase-contrast microscopy, normally long unbranched
aerial hyphae were seen in M145, whereas multiple
branching from both aerial and apical hyphae, giving rise
to unusually short spore chains, was observed in the
AcmdB and AcmdA-F strains (Figure 3A). Scanning elec-
tron microscopy revealed, in contrast to nearly complete
septation of aerial hyphae and formation of abundant
long spore chains in M145, most aerial hyphae in null

http://www.biomedcentral.com/1471-2180/9/157

mutants of cmdB and cmdA-F were collapsed and unable
to septate to become spores, while some of hyphae could
eventually develop into short spore chains (Figure 3B). To
further dissect these sporulating aerial hyphae, we
employed fluorescence microscopy. Sporulating hyphae
were fixed and then their chromosomes were stained with
4',6-diamidino-2-phenylindole (DAPI). Fluorescence
microscopy revealed that chromosomes in wide-type
M145 were distributed at regularly spaced intervals along
spore chains (Figure 3C), and anucleate spores were
observed at a low frequency (0.1%, c.1000 spores
counted). However, incomplete separation of chromo-

Figure 3

Observation of sporulating aerial hyphae by phase contrast, fluorescence and electron microscopy. (A) Abnor-
mal branches at the aerial hyphae of the mutant observed by contrast microscopy. The AcmdB and AcmdA-F mutants frequently
produced multiple branches in aerial hyphae, both low in the hyphae (indicated by white arrows), and near the tips (black
arrows). These are not common in the wide-type M145. Size bars correspond to 5 um. (B) Observation of spores in M145 and
null mutants of cmdB or cmdA-F under scanning electron microscopy. Strains were inoculated on MS medium covered with cel-
lophane at 30°C for 7 days. Samples were treated (Materials and methods) and subjected to SEM observation. The collapsed
aerial hyphae and short spore chains are indicated by white arrows. (C) Chromosomes in the aerial hyphae were stained by
DAPI, and observed by laser-scanning confocal microscopy. The chromosomes were not normally segregated in some of the
pre-spores of the mutants, some compartments receiving none and some containing more than one chromosome (indicated by

white arrows).
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somes was readily seen in the mutants, shown as unevenly
stained chromosomes along spore chains (Figure 3C);
and anucleate spores appeared at a frequency of 8% and
6% along spore chains for the AcmdB and AcmdA-F strains
(c.500 spores counted), respectively. Taken together, the
AcmdB or AcmdA-F strains showed aberrant branches,
defective chromosome segregation and abnormally
spaced spore septation.

CmdB, an ATP/GTP-binding protein with an ABC-
transporter ATPase domain, is located on the cell
membrane

cmdB encoded an ATP/GTP-binding protein and cmdA, C,
D, E and F encoded membrane proteins. To see if CmdB
protein was also located on the cell membrane, both
membrane and cytoplasmic fractions were prepared from
cell extracts, electrophoresed on a denatured poly-
acrymide gel and probed by Western-blotting with anti-
CmdB antibody. As seen in Figure 4A, CmdB protein was
only detected in membrane (precipitate) but not in
cytosolic (supernatant) fractions.

CmdB contained an ABC-transporter-ATPase domain
(from positions 44 to 427) according to Superfamily 1.69
analysis http://supfam.mrc-lmb.cam.ac.uk/SUPER FAM-
ILY/hmm_.html. This superfamily includes several families
of characterized or predicted ATPases which are predomi-
nantly involved in extrusion of DNA and peptides
through membrane pores [21]. To investigate whether
this domain was required for the function of CmdB,
lysines at conserved positions 90 or 404 were mutated to
arginines by site-directed mutagenesis (K90A or K404A).
The mutated cmdB genes were cloned into pFX101, and
then introduced by conjugation into the c¢mdB null
mutant. In contrast to the functional ¢cmdB gene, the site-
mutated cmdB genes could not complement the cmdB null
mutant to reverse its phenotype of over-production of
blue pigment (Figure 4B) and also to produce dark grey
colony to the wild type level (data not shown). These
results indicated that the mutated residues were essential
for function. It was however also possible that the muta-
tions had destabilised the protein, causing it to degrade
much more rapidly than the wild-type form.

Transcription of cndB during differentiation

To see if transcription of cmdB was regulated during differ-
entiation, strain M145 grown on MS medium was har-
vested at different times for RT-PCR and analysed using
primers specific for cmdB. As seen in Figure 4C, a small
amount of cmdB transcript could be detected from mainly
vegetative mycelium (16 h), and a larger amount (at least
five-fold) was produced at the stage of aerial mycelium
formation (26 h) and continued to increase during sporu-
lation (40-74 h). These results suggested that transcrip-
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tion of c¢mdB was
developmentally.

regulated temporally, possibly

The cmdA-F orthologues in S. lividans and S. avermilitis
also affect differentiation

By using primers from c¢mdA-F of S. coelicolor M145 and
template DNA from S. lividans ZX7, the same sizes of PCR
bands as M145 were detected (data not shown), suggest-
ing that the S. lividans genome contained similar genes.
The cosmid used in constructing the cmdA-F null mutant
of M145 was introduced by conjugation into ZX7, and the
resulting strain displayed a phenotype of very poor sporu-
lation but no visible blue pigment on MS agar plate after
culturing for 5 days. A serious block of formation of aerial
hyphae in the null mutant was observed under scanning
electron microscopy (Figure 5A).

The complete nucleotide sequence of S. avermitilis
genome reveals a highly homologous gene cluster (i.e.
SAV4098 to SAV4103) to cmdA-F [22]. A null mutant of
SAV4098-4103 was constructed in S. avermilitis
NRRL8165. Its defective sporulation was displayed on MS
medium, and blocking in development of coiled aerial
hyphae was observed under microscopy compared with
that of the wild type (Figure 5B). No over-production of
antibiotic avermectin was detected in the null mutant
(data not shown).

Several null mutants of cndABCDEF reveal over-
production of blue pigment

As seen in Figure 2A, null mutants of cmdB, D, E or cmdA-
F also produced a large amount of blue pigment on MS
medium, while little or no blue pigment was produced for
other null mutants (i.e. cmdA, C and F) and wild type
M145. Introduction of additional copies of the functional
cmdB or cmdA-F into the mutants could reduce the pro-
duction of blue pigment to the wild-type level (Figure 6A),
confirming that blue pigment over-production was
caused by mutation of the genes, and also suggesting that
these genes are involved in repression of blue pigment
production in M145.

Initiating transcription of the pathway-specific regulatory
gene actll-orf4 of actinorhodin biosynthesis at an earlier

growth stage in the cmdA-F null mutant

In S. coelicolor, pathway-specific regulatory gene actll-orf4
is essential for initiating transcription of the whole bio-
synthetic gene cluster of blue-pigment actinorhodin [23].
To study transcription of actll-orf4 in the cmdA-F null
mutant, we harvested spores/mycelium from MS plates
after different growth periods and isolated RNA for RT-
PCR. As seen in Figure 6B, transcription of actll-orf4 in the
null mutant started as early as 16 h and then reached a
maximum at 40 h, ~24 and 34 h earlier than was observed
in M145.
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Figure 4

Localization of CmdB protein, characterization of its functional domain, and detection of cmdB transcription.
(A) Localization of CmdB protein. Cell lysates of strain M145 and that were treated with 0.5 M KCl or 5 mM EDTA-Na, were
centrifuged to obtain supernatants (S) and pellets (P) for Western blotting with CmdB polyclonal antibody. Total cell lysates
was a positive control. (B) Mutations of conserved residues in domains of the CmdB protein blocked its function. Plasmid
pFX10I derivatives containing the site-mutated cmdB genes were introduced by conjugation into the cmdB null mutant. Strains
were grown on MS at 30°C for 3 days. (C) RT-PCR to detect transcription of cmdB. Total RNA was isolated from MS medium
grown for 16, 26, 40, 50, 62 and 74 h, and reverse-transcribed into cDNAs for PCR amplification. Transcription of /6S rRNA

gene was used as an internal control.
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Figure 5

Observation of the null mutants of cmdA-F orthologues in S. lividans and SAV4098-4103 genes in S. avermitilis
under scanning electron microscopy. (A) S. lividans ZX7 and its cmdA-F null mutant were cultured on MS at 30°C for 5
days, and then subjected to observation by scanning electron microscopy. The mutant produced less abundant aerial mycelium,
most of which consisted of relatively short spore chains (white arrows). (B) Observation of S. avermitilis NRRL8165 and a null
mutant of the SAV4098-4103 genes. Short aerial hyphae are indicated by white arrows.
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Observation of blue-pigment overproduction by the null mutants and transcriptional assay of actll-orf4 of the
actinorhodin biosynthetic gene cluster. (A) Blue-pigment over-production by the null mutants of cmdB or cmdA-F and
complementation by introduction of the corresponding functional genes. Strains were grown on MS for 3 days at 30°C. The
back of the plate is shown. (B) Transcription of actll-orf4 in null mutant of cmdA-F. Total RNA was isolated from solid MS cul-
tures grown for 14, 24, 50, 62, and 74 h, and reverse-transcribed into cDNA for PCR amplification. The /6S rRNA gene of the
mutant was used as an internal control. PCR products were electrophoresed in 2% agarose gel at 100 v for 0.5 h.

Page 9 of 12

(page number not for citation purposes)



BMC Microbiology 2009, 9:157

Discussion

Here, we report that an operon of six genes cmdABCDEF
(SCO4126-4131) of S. coelicolor, encoding five membrane
proteins and one membrane-located ATP/GTP-binding
protein, affects differentiation and causes increased pro-
duction of an antibiotic, actinorhodin. The AcmdABCDEF
strains reveal aberrant branches and short aerial hyphae.
Expression of ¢mdB, and therefore presumably of the
whole operon, was detectable during vegetative growth,
but increased substantially as soon as aerial growth was
detectable. Similar conserved gene clusters are also found
in other Streptomyces species, e.g. S. avermitilis (SAV4098-
4103; [22]), S. griseus (SGR3915-3920; [24]) and S. livi-
dans (Our unpublished data). Serious block in forming
aerial hyphae in S. lividans and in the development of
coiled aerial hyphae in S. avermitilis were observed when
their cmd operons were disrupted. Together, these results
indicate that CmdABCDEF proteins mainly affect Strepto-
myces differentiation early in aerial hyphae formation.

The AcmdABCDEF strains of S. coelicolor also showed
defective chromosome segregation during sporulation. In
prokaryotes, motor proteins such as FtsK and SpollIE con-
taining a conserved RecA domain are often associated
with DNA translocation during processes of cell division,
conjugation and sporulation [25]. In S. coelicolor, FtsK and
ParA/ParB are required for proper chromosome segrega-
tion during sporulation [15,16]. However, despite detect-
able levels of errors in chromosome segregation in FtsK or
ParAB mutants, the majority of chromosomes still appear
to segregate properly, suggesting that other proteins are
also involved in chromosome partition or segregation.
According to analysis using the Protein Homology/anal-
ogY Recognition Engine PHYRE http://
www.sbg.bio.ic.ac.uk/phyre/html/index.html, CmdB pro-
tein was predicted containing a RecA domain (from posi-
tions 77 to 407, expectation value 1.7 x 10-2!) or E. coli-
FtsK motor domain (3.3 x 10-12), suggesting that it might
be an ATP/GTP-dependent motor protein. CmdB displays
homology with VirB4-like proteins from Frankia, Brevibac-
terium, Geobacillus and Thermoanaerobacter (expectation
values 3 x 1042, 1 x 1032, 7 x 102 and 2 x 107, respec-
tively) etc. The VirB4, an essential component of the bac-
terial type IV system, interacts with other membrane
proteins in the vir operon to assemble a pore for transfer
of a DNA-protein complex [26,27]. Since CmdB is also
located on the cell membrane, it is likely that CmdB along
with other five membrane proteins from the same gene
cluster might form a complex on the cell membrane. Fur-
ther study will be needed to explore the existence of such
a complex and to investigate whether it could form a type
IV-like channel on cell membrane for chromosome and/
or plasmid translocation in Streptomyces.

http://www.biomedcentral.com/1471-2180/9/157

About 836 and 69 genes of S. coelicolor genome are pre-
dicted to encode membrane and ATP/GTP-binding pro-
teins, respectively  ([28]; http://www.sanger.ac.uk
Projects/S_coelicolor/classwise.html#class4.1.0). Among
these, SCO6878, SCO6880 and SCO6881, located in a
cluster of 14 probably co-transcribed genes SCO6871-
6884, highly resemble cmdB, cmdC and cmdD, respec-
tively. However, null mutants of SCO6878 or SCO6881
did not display defective sporulation or over-production
of blue pigment on MS medium (our unpublished data).
Thus, either these genes are not involved in sporulation
and antibiotic production, or their role may be masked by
functional overlap with other genes, or the phenotype
might be manifested only under particular conditions.

Conclusion

This study describes the identification of six co-tran-
scribed genes cmdABCDEF, deletions of which displayed
over-expression of blue-pigmented Act, defective sporula-
tion and especially abnormalities in chromosome segre-
gation, indicating that ¢mdABCDEF are new genes
involved in antibiotic production and differentiation of S.
coelicolor.

Methods

Bacterial strains, plasmids and general Methods

S. coelicolor M145 [28], S. lividans ZX7 [29] and S. avermi-
tilis NRRL8165 [22] were hosts for studying functions of
c¢cmdABCDEF genes. Streptomyces were cultivated on Man-
nitol Soya flour medium (MS; 30). A cellophane sheet was
placed over the agar medium when it was necessary to col-
lect mycelium/spores or when cultures were to be exam-
ined by scanning electron microscopy [31]. Manipulation
of Streptomyces DNA and RNA followed Kieser et al. [30].
E. coli strain DH5a (Life Technologies Inc) was used as
cloning host. Plasmid isolation, transformation and PCR
amplification followed Sambrook et al. [32]. DNA frag-
ments were purified from agarose gels with the Gel Extrac-
tion Master kit (Watson).

Construction and complementation of Streptomyces null
mutants

Cosmid SCD72A of S. coelicolor containing cmdABCDEF
genes was kindly provided by Professor David Hopwood.
Cosmid SAV3-17 of S. avermitilis containing the SAV4098-
4103 genes was constructed in our laboratory. PCR-tar-
geted mutagenesis was used to replace precisely the cmdA-
BCDEF or SAV4098-4103 genes with an antibiotic
resistant gene and then remove the marker but leaving an
81-bp "scar" sequence when necessary [20]. Derivatives of
the Streptomyces chromosomal-integrating plasmid
pSET152 [33] or pFX101 containing the functional cmdA-
BCDEF genes were employed for complementing the
mutated genes. PCR primers for construction and comple-
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mentation of Streptomyces null mutants are listed in Addi-
tional file 1.

Scanning electron microscopy (SEM)

Streptomyces cultures were grown on MS medium covered
with cellophane disks. After 7 days incubation at 30°C,
the cells were fixed with fresh 2% glutaraldehyde (pH7.2)
and 1% osmium tetroxide. After dehydration, ethanol was
replaced by amyl acetate. The samples were then dried
with the supercritical drying method in HCP-2 (Hitachi),
coated with gold by Fine Coater JFC-1600 (Jeol), and
examined with a JSM-6360LV scanning electron micros-
copy (Jeol).

Light microscopy

Streptomyces spores were evenly spread onto MS medium,
into which cover-slips were then inserted at an angle of
approximate 60°C. After 4 days incubation at 30°C, cells
attached to cover-slips were fixed with methanol followed
by washing with phosphate-buffered saline. Samples were
then stained with 4',6-diamidino-2-phenylindole (DAP],
25 pg/ml) at room temperature for 30 minutes. After that,
samples were observed by laser scanning confocal micro-
scope Fluoview FV1000 (Olympus). Images were proc-
essed with Image-Pro Plus 6.0.

Reverse-transcription (RT) PCR assay

S. coelicolor were cultured on MS medium covered with
cellophane disks, and RNA was isolated from cultures at a
series of incubation times. The RNA samples were treated
with DNase (RNase-free, Takara) to remove possible con-
taminating DNA and, after quantification, reverse-tran-
scribed into ¢cDNA by using "Revert Acid First Strand
cDNA Synthesis" kit (MBI Fermentas). Then equal 25-ng
products were subjected to PCR amplification (25 cycles).
Five paired primers (p67, p78, p89, p90 and p01; see
Additional file 2) were used for validating co-transcription
of the ¢mdABCDEF genes. Three paired primers, Pact,
PcmdB and P16S (Additional file 2), were used to detect
transcription levels of actll-orf4, cmdB and genes for 16S
rRNA, respectively. PCR conditions were: template DNA
denatured at 94°C for 5 min, then 94°C 30's, 60°C 30 s,
72°C 50 s, for 25 cycles.

Site-directed mutagenesis of cndB

The site-directed mutagenesis of cmdB was performed by
using the QuikChange kit (Stratagene). Plasmid pFX103
containing the intact cmdB and promoter of cmdABCDEF
was used as PCR template. Two paired primers,
PcmdBK90A  (5'-tcggtgatcaggtgtctgaccacctggacgt-3',  5'-
acgtccaggtggtcagacacctgatcaccga-3') and PcmdBK404A (5'-
Tctcgagggcecgacctgecgttecccgacte-3, 5'-Gagtcggggaacg-
gcgagtcggecctcgaga-3'), were used to change lysines of
CmdB at positions 90 and 404 into arginines.

http://www.biomedcentral.com/1471-2180/9/157

CmdB protein and Western blotting

The PCR-amplified cmdB gene was cloned between the
EcoRI and BamHI sites of E. coli plasmid pET-28a (Nova-
gen), and the resulting plasmid was introduced by trans-
formation into E. coli strain BL21 (DE3). Over-expression
of CmdB was induced by adding 1 mM isopropyl-p-D-thi-
ogalactopyranoside (IPTG) at 20°C for 12 hours. The six-
histidine-tagged CmdB was purified by Ni2+ column chro-
matography (Qiagen) and used to raise rabbit polyclonal
antibodies (the Antibody Center of the Shanghai Insti-
tutes for Biological Sciences).

S. coelicolor M145 was cultivated in Typtone-Soya-Broth
medium [30] for 24 hours. Cells were sonicated and
debris was removed by centrifugation (12,000 x g, 10
min). Then the lysate was incubated with 0.5 M KCl or 5
mM EDTA at 4°C for 30 min, prior to separation into
cytosolic (supernatant) and membrane (precipitate) frac-
tions by ultracentrifugation at 180,000 x g for 2 h [34].
Each fraction together with the cell lysate was electro-
phoresed in a 12% SDS-polyacrylamide gel, and then
transferred onto a PVDF membrane (Immobilon-P, Milli-
pore) by electrophoresis. The PVDF film was incubated
with the polyclonal antibody and horse-radish peroxi-
dase-conjugated anti-rabbit 1gG (Amersham). After 3
times washing, the signal on the film was directly detected
by HRP Substrate Reagent (Shenergy).
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