
Citation: Jansook, P.; Loftsson, T.

Aqueous Prostaglandin Eye Drop

Formulations. Pharmaceutics 2022, 14,

2142. https://doi.org/10.3390/

pharmaceutics14102142

Academic Editors: Francisco

Javier Otero-Espinar and Anxo

Fernández Ferreiro

Received: 24 August 2022

Accepted: 7 October 2022

Published: 9 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Review

Aqueous Prostaglandin Eye Drop Formulations
Phatsawee Jansook 1,* and Thorsteinn Loftsson 2

1 Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai Road, Pathumwan,
Bangkok 10330, Thailand

2 Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
* Correspondence: phatsawee.j@chula.ac.th; Tel.: +66-2-218-8273

Abstract: Glaucoma is one of the leading causes of irreversible blindness worldwide. It is charac-
terized by progressive optic neuropathy in association with damage to the optic nerve head and,
subsequently, visual loss if it is left untreated. Among the drug classes used for the long-term treat-
ment of open-angle glaucoma, prostaglandin analogues (PGAs) are the first-line treatment and are
available as marketed eye drop formulations for intraocular pressure (IOP) reduction by increasing
the trabecular and uveoscleral outflow. PGAs have low aqueous solubility and are very unstable
(i.e., hydrolysis) in aqueous solutions, which may hamper their ocular bioavailability and decrease
their chemical stability. Additionally, treatment with PGA in conventional eye drops is associated
with adverse effects, such as conjunctival hyperemia and trichiasis. It has been a very challenging
for formulation scientists to develop stable aqueous eye drop formulations that increase the PGAs’
solubility and enhance their therapeutic efficacy while simultaneously lowering their ocular side
effects. Here the physiochemical properties and chemical stabilities of the commercially available
PGAs are reviewed, and the compositions of their eye drop formulations are discussed. Furthermore,
the novel PGA formulations for glaucoma treatment are reviewed.

Keywords: ocular hypertension; prostaglandin analogues; aqueous solubility; chemical stability;
drug delivery; intraocular pressure

1. Introduction

Glaucoma is a group of eye diseases that causes the progressive degeneration of
the retinal ganglion cells and the retinal nerve fiber layer. The most common type of
glaucoma is primary open-angle glaucoma (POAG), representing 74% of all glaucoma
cases [1]. POAG is caused by the obstruction of the aqueous humor outflow within the
trabecular network which increases the intraocular pressure (IOP) with consequent optic
nerve damage [1,2]. Prostaglandins (PGs) are eicosanoids derived from arachidonic acid
and other polyunsaturated fatty acids which have diverse biological activities, including
the relaxation of smooth muscles. In general, PGs are lipophilic, chemically unstable,
and poorly water-soluble compounds composed of a cyclopentane ring with two side
chains [3,4].

In 1977, Camras, Bito and Eakins [5] showed that PGF2α lowered the IOP in rabbits. It
was discovered that PGs reduce the IOP by enhancing the aqueous humor outflow, and
the first antiglaucoma prostaglandin analog (PGA), latanoprost, received the Food and
Drug Administration’s approval between August 2000 and March 2001 [6]. Now PGAs are
considered the drugs of choice for the treatment of POAG [7,8]. Currently there are five
PGAs marketed as aqueous eye drops. These are 0.01% bimatoprost ophthalmic solution
(Lumigan®, Allergan, Irvine, CA, USA), 0.005% latanoprost ophthalmic solution (Xalatan®,
Pfizer, New York, NY, USA) and emulsion (Xelpros®, Sun Ophthalmics, Cranbury, NJ,
USA), 0.024% latanoprostene bunod ophthalmic solution (Vyzulta®, Bausch & Lomb,
Bridgewater, NJ, USA), 0.0015% tafluprost ophthalmic solution (Taflotan®, Santen, Osaka,
Japan, and Zioptan®, Akron, Lake Forest, IL, USA/Merck, Kenilworth, NJ, USA), 0.004%
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travoprost ophthalmic solution (Travatan®, in Europe) and Travatan Z® (in the USA,
Novartis, Cambridge, MA, USA). All these PGA are PGF2α derivatives; four are ester
prodrugs of the corresponding acids, while one, bimatoprost, is an amide prodrug (Table 1).
For example, latanoprost is an isopropyl ester (i.e., a prodrug) of latanoprost acid, which
is a PGF2α analog. Likewise, tafluprost and travoprost are isopropyl ester prodrugs of
tafluprost acid and travoprost acid, respectively. Latanoprost is hydrolyzed by the corneal
esterase to yield the biologically active agent latanoprost acid [6]. Bimatoprost is also
rapidly hydrolyzed by ocular esterase to the biologically active bimatoprost acid [9].

Table 1. Structure and physicochemical properties of prostaglandin F2α and its analogs, which are
currently used in ophthalmology.

Prostaglandin
Analog Structure

Molecular
Weight

Calculated Values a

LogP(o/w)
b Solubility in Water c

Prostaglandin F2α
(pKa 4.76)
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Latanoprost 
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Table 1. Cont.

Prostaglandin
Analog Structure

Molecular
Weight

Calculated Values a

LogP(o/w)
b Solubility in Water c

Tafluprost
(Taflotan®,
Zioptan®)
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Bimatoprost, latanoprost, tafluprost and travoprost appear to have very comparable
efficacy regarding IOP reduction in patients with primary open-angle glaucoma [10]. La-
tanoprostene bunod is a prodrug of two active entities, latanoprost acid and butanediol
mononitrate, which yields nitric oxide [11]. Nitric oxide lowers the IOP and improves the
ocular blood flow, both of which can result in neuroprotection [12]. Thus, latanoprostene
bunod might have some therapeutic advantages over the other PGAs, although the differ-
ence was shown to be insignificant with regard to the reduction in IOP [13]. An enhanced
therapeutic efficacy has been obtained by combining the PGAs with non-prostaglandin
IOP-lowering drugs. Examples of such combinations are 0.005% latanoprost with 0.02% ne-
tarsudil (Roclanda®, Aerie Pharmaceuticals, Durham, NC, USA), 0.005% latanoprost with
0.5% timolol (Xalacom®, Pfizer, New York, NY, USA), 0.03% bimatoprost with 0.5% timolol
(Ganfort®, Allergan, Irvine, CA, USA), 0.004% travoprost with 0.5% timolol (DuoTrav®,
Novartis, Basel, Switzerland) and 0.0015% tafluprost with 0.5% timolol (Taptiqom®, Santen,
Osaka, Japan).

The monographs for latanoprost, latanoprost compounded topical solution, travoprost
and travoprost ophthalmic solution are in the USP43-NF38, while the Ph. Eur. 10.3 only has
a monograph for latanoprost. The following is a review of the physiochemical properties
of the PGAs currently used in ophthalmology, their solubilization and stability in aqueous
solutions and the composition of their eye drop formulations.

2. Physicochemical Properties and Eye Drop Formulations

PGAs reduce the IOP by ciliary muscle relaxation and increased aqueous humor
outflow [14]. Thus, when applied topically to the eye, the PGA molecules must permeate
the cornea into the aqueous humor to access their receptors. Po/w is the partition coefficient
(i.e., the concentration ratio at equilibrium) of an uncharged molecule between 1-octanol
and water, while Do/w is the partition coefficient of an ionizable compound at some fixed
pH or ionization. Compounds with low Po/w are hydrophilic and, in general, water-soluble,
while compounds with high Po/w are lipophilic and poorly soluble in water. The optimal
LogPo/w value (i.e., 10-logarithm of Po/w) for drug permeation from the aqueous tear fluid,
through the cornea and into the aqueous humor is between 1 and 3, in which the drugs with
LogPo/w values less than 1 or greater than about 3 display a decreased ability to permeate
the lipophilic cornea [15]. Prostaglandin F2α and latanoprost acid are fully ionized in the
tear fluid with a LogDo/w value much less than unity, while their PGAs (i.e., ester prodrug
analogues) have LogPo/w values between 3.8 and 4.8, except bimatoprost (i.e., the amide
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prodrug analog) which has a LogPo/w value of 2.8 (Table 1). Accordingly, bimatoprost has
the optimal LogPo/w value for transcorneal permeation, while the acids are too hydrophilic
at a physiologic pH and the other PGAs a bit too lipophilic.

All the PGAs in Table 1 are practically insoluble in water, although bimatoprost
appears to be slightly more soluble than the other PGAs in the table. The more optimal
lipophilicity and slightly greater solubility increases the ability of bimatoprost to permeate
from the aqueous tear fluid into the eye and can explain the slightly greater efficacy of
bimatoprost compared to the other PGAs [10,13]. The PGAs are very potent drugs with low
aqueous solubility which are administered topically to the eye in close to PGA saturated
aqueous eye drop solutions. In other words, the dissolved PGA molecules will possess a
high level of thermodynamic activity in the aqueous exterior and, thus, the molecules will
have the maximum tendency to partition from the aqueous tear fluid into the lipophilic
cornea [16,17]. This enhances their ability to permeate into the eye in spite of their greater
than optimum LogPo/w value.

The PGs are derivatives of long chain fatty acids containing a substituted cyclopentane
ring which are rapidly dehydrated in aqueous solutions and known to form epimers under
strong acidic and alkaline conditions [18–20]. Additionally, PGs and their analogs contain
one or more double bonds and, thus, are sensitive towards oxidation. While PGE2 and
related PGs are very unstable in aqueous environment, PGF2α and its derivatives are, in
general, less susceptible to chemical degradation. The major degradation pathways of
PGAs in aqueous media are hydrolysis to form the PG acids (i.e., the active form of the
PGAs), epimerization, trans isomerization and oxidation. For example, known degradation
products of latanoprost in aqueous solutions are latanoprost acid, the latanoprost 15-epi
diastereomer and the latanoprost 5,6-trans isomer, as well as oxidation products, such as the
latanoprost 5-keto and 15-keto derivatives (Figure 1). Latanoprost undergoes photoinduced
degradation and the highly lipophilicity drug is absorbed into plastic containers [21–23].
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10.3, as well as reference [22]. Other degradation products have also been identified during forced
degradation under somewhat extreme conditions [22].

Xalatan® contains 0.05 mg/mL of latanoprost in an aqueous solution of benzalkonium
chloride (0.02%) as a preservative, sodium chloride for adjustment of the tonicity, a pH 6.7
phosphate buffer (sodium dihydrogen phosphate monohydrate 4.60 mg/mL and anhy-
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drous disodium phosphate 4.74 mg/mL) and water for injection. In an unopened original
package, the eye drops have a shelf-life of 36 months when stored in a refrigerator (2–8 ◦C)
protected from light. The addition of non-ionic surfactants, such as polyoxyl 40 stearate and
polyethylene glycol monostearate 25, and cyclodextrins to the aqueous eye drop media will
increase the shelf-life of the latanoprost eye drops [23–27]. It was reported that latanoprost
eye drops in the presence of 2-hydroxypropyl-β-cyclodextrin were stable at 25 ◦C and 60%
relative humidity for at least six months, while the one containing a non-ionic surfactant re-
mained stable for up to 24 months under the same storage conditions [23,24]. The proposed
mechanism is that the interaction between the ester group of latanoprost and the complex
micelle of those non-ionic surfactants results in hydrolysis being inhibited [27]. For the
role of cyclodextrin, it shields the ester group of latanoprost inside the cavity, providing
degradation protection [26].

The degradation profile of travoprost (Figure 2) is very similar to that of latanoprost,
and in aqueous solutions, travoprost is most stable at pH 6.0 ± 0.2 [28]. Travatan® contains
0.04 mg/mL of travoprost, polyquaternium-1 (0.01 mg/mL) as preservative, polyethylene
glycol 40 hydrogenated castor oil (2 mg/mL) which increases the chemical stability and
solubility of travoprost, boric acid, propylene glycol (7.5 mg/mL), mannitol and sodium
chloride in purified water. Travatan Z® contains 0.04 mg/mL of travoprost in an aqueous
solution containing polyethylene glycol 40 hydrogenated castor oil, and a pH 5.7 buffer-
preservative system (sofZia®) which is composed of boric acid, propylene glycol, sorbitol,
zinc chloride and purified water [29].
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The aqueous eye drops compositions of tafluprost and bimatoprost are also simple
aqueous buffer solutions. Tafluprost is, like latanoprost and travoprost, an isopropyl ester
with its maximum stability at pH between 5.5 and 6.7, while bimatoprost is an amide with
its maximum stability between pH 6.8 and 7.8. In general, amides are more chemically
stable than esters of comparable structures and studies have shown that bimatoprost eye
drops are more stable than, for example, latanoprost and travoprost eye drops [31,32].
Tafluprost is the first preservative-free commercially available PGA (Zioptan®) containing
0.015 mg/mL of tafluprost in an aqueous solution containing polysorbate 80 as a solubilizer,
glycerol, phosphate buffer and disodium edetate. Unopened cartons and foil pouches
should be stored in the refrigerator (2–8 ◦C). After the foil pouch is opened, the unit-dose
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containers may be stored in the opened pouch for up to 28 days at room temperature
(20–25 ◦C) [33].

Latanoprostene bunod is a double ester prodrug releasing two active drugs upon
hydrolysis (Figure 3). Thus, one would expect that this double ester would be more
chemically unstable than the other monoester prodrugs, such as latanoprost. However, the
shelf-life of Vyzulta® in unopened containers is similar to those of the other ester PGAs.
Vyzulta® contains 0.24 mg/mL of latanoprostene bunod in an aqueous solution containing
polysorbate 80, glycerol, 0.2 mg/mL of benzalkonium chloride, pH 5.5 citrate buffer and
disodium edetate. The shelf-life of Vyzulta® unopened containers is up to 3 years at 2 to
8 ◦C.
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Most of the commercially marketed PGA eye drops mentioned above contain benza-
lkonium chloride as a preservative. The concentration of benzalkonium chloride in eye
drops ranges from 0.004% to 0.02% [35]. Its bactericidal activity is effective against both
Gram-positive and Gram-negative bacteria, including fungi. It has been reported that
benzalkonium chloride can act as a penetration enhancer, increasing the penetration of
drug molecules from the surface into ocular tissues [36]. However, most in vivo studies
do not support these findings [37]. To decrease the overall adverse effects of 0.03% bi-
matoprost, mainly conjunctival hyperemia, while maintaining the IOP-lowering effect,
0.01% bimatoprost was introduced and the concentration of benzalkonium chloride was
increased from 0.005% to 0.02% [38]. However, it is well-known that the common side
effects of benzalkonium chloride are conjunctival hyperemia, superficial punctate keratitis
and a decrease in tear production which results in ocular discomfort and inflammation [39].
Consequently, the higher benzalkonium chloride concentration in the new bimatoprost eye
drops (0.01% Lumigan, Allegan, Inc.) should result in not decreased but increased side
effects, such as hyperemia, which is not the case [38]. Some studies have reported that the
preserved and preservative-free PGA eye drops do not differ significantly in IOP lowering
efficacy [40–42]. This observation might promote the marketing of novel preservative-free
PGA eye drops.

3. Novel PGA Formulations

Cyclodextrins can solubilize and stabilize PGF2α and other PGs in both aqueous
solutions and solid phases [43–47]. Likewise, cyclodextrins are known to increase both
the aqueous solubility and chemical stability of the PGAs. For example, 2-hydroxypropyl-
β-cyclodextrin forms a water-soluble complex with latanoprost without decreasing the
IOP-lowering effect of the drug in a rabbit model [24]. According to the investigators, the
eye drop solution was stable when stored at 25 ◦C for at least 6 months. 2-Hydroxypropyl-
β-cyclodextrin has also been shown to solubilize and stabilize tafluprost [48]. Through the
formation of inclusion complexes, it has been shown that propylamino-β-cyclodextrin in-
creases the solubilization and chemical stability of latanoprost. The in vivo ocular tolerance
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study in rabbits revealed that the latanoprost/propylamino-β-cyclodextrin complex eye
drop formulation decreases ocular irritation when compared to the commercially available
latanoprost 0.005% formulation (Xalatan®, Pfizer Inc., New York, NY, USA) [26]. Gon-
zalez et al. (2007) [49] investigated the efficacy, safety and chemical stability of a novel
cyclodextrin-containing latanoprost eye drop in comparison to Xalatan®. The efficacy
and toxicological profiles of the two latanoprost eye drops were comparable, but the eye
drops containing cyclodextrin displayed improved chemical stability at 25 ◦C and 40 ◦C.
Latanoprost has been formulated as an aqueous eye drop microsuspension in which the
microparticles consisted of solid latanoprost/γ-cyclodextrin complexes [25]. In vitro and
in vivo studies in rabbits showed that the aqueous eye drop microsuspension resulted in
an almost four-fold increase in topical bioavailability and a significant enhancement in the
chemical stability of the drug compared to the commercial eye drops (Xalatan®).

Biocompatible lipid-based nanocarriers have emerged as a potential alternative to
conventional ocular drug delivery systems [50,51]. These include micro- and nanoemul-
sions deliver lipophilic and poorly water-soluble drugs to the ocular surface [52–54]. The
preservative-free 0.005% latanoprost cationic emulsion (Catioprost®) is formulated us-
ing Novasorb® technology. The cationic nanoemulsion of latanoprost was as effective as
Xalatan® for lowering IOP and was well tolerated by the rabbit ocular surface. Additionally,
it was able to promote a healing process of the injured cornea which boosted the compliance
of long-term patients [55–57]. When compared to Travasan®Z in Phase II clinical data,
Catioprost® decreased the IOP to the same level as Travatan®Z and caused less conjunctival
hyperemia [58]. Ismail et al. (2020) [59] developed travoprost eye drop nanoemulsions
composed of labrafac lipophile® and tween 80 and studied the eye drops in vivo in rab-
bits. The eye drops showed prolonged IOP-lowering effects, a good level of safety and
no irritation in the rabbit ocular tissues. Recently, a novel ophthalmic latanoprost 0.005%
nanoemulsion was prepared and the cytotoxicity on human epithelial conjunctival cells
was reported by Tau et al. (2022). It revealed that the new latanoprost nanoemulsion might
cause less discomfort on the eye surface than currently available latanoprost solutions [60].

Liposomes and lipids for ocular delivery of prostaglandins have also been investi-
gated [51,61]. Latanoprost loaded unilamellar liposomes were prepared and evaluated in
eye drops. However, latanoprost could not permeate from this vehicle through the corneal
epithelium, and thus it did not show any IOP reduction in vivo in rabbits. After a single
subconjunctival injection, the resulting liposome formulation had an IOP-lowering effect
that was sustained for up to 50 days without toxic side effects [62]. Later, the same group
developed a new latanoprost-loaded egg-phosphatidylcoline liposome that resulted in the
sustained delivery of latanoprost for up to 90 days and 120 days in vivo in rabbits and
nonhuman primates, respectively, after a single subconjunctival injection [63,64]. Niosomes
are promising ocular delivery systems formed by the self-assembly of nonionic surfactants
in aqueous solutions [65,66]. A novel latanoprost niosome loaded into a poloxamer gel
system had a prolonged drug release and an effective reduction in the IOP of normotensive
rabbits for 3 days with no ocular irritation [67].

A thermosensitive latanoprost-loaded hydrogel composed of chitosan, gelatin and
glycerol phosphate demonstrated significant IOP-lowering effects in rabbits [68]. Another
thermosensitive pluronic based in situ gel for latanoprost was investigated and it was
found that the optimum formulation enhanced the transcorneal permeation, resulting in a
rapid decrease in IOP and a high therapeutic response compared to the reference eye drops.
Furthermore, latanoprost loaded in situ gelling formulation was found to be more stable
under storage conditions at 4 and 25 ◦C than the conventional eye drops [69]. Various types
of minitablets have been developed for topical drug delivery to the eye [70]. Minitablets
containing bimatoprost have been successfully developed and tested in humans (Biophta,
France; www.biophta.com, accessed on 11 July 2022). After its administration to the cul
de sac, the tablet transforms into an in-situ gel which releases the drug continuously for
7 days. The PGA-loaded nanotechnology platforms and other ocular biomaterials for the
treatment of glaucoma are summarized in Table 2.

www.biophta.com
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Table 2. Case examples of PGA-loaded nanotechnology-based formulations and ocular biomaterial
containing PGA for treatment of glaucoma.

Prostaglandin
Analog Ophthalmic Preparation Study Main Observation Refs.

Nanotechnology platforms

Latanoprost

Niosome loaded in
situ gel

In vitro release and
in vivo in rabbits

• Prolonged drug release
• Effective IOP reduction in

normotensive rabbits for 3 days with
no ocular irritation

[67]

Liposome
In vitro release, in vivo
in rabbits and in human

primate model

• Sustained drug release
• No localized inflammatory and

toxicity
• Not effective for IOP reduction after

topical administration
• Successfully decreased IOP and

sustained drug release after single
subconjunctival injection

[62–64]

Hyaluronic acid-chitosan
nanoparticles In vivo in albino rats.

• A greater IOP-lowering effect in
comparison to the plain drug and
Xalatan® eye drops

[71]

Poly(lactic-co-glycolic
acid) nanoparticles

In vitro release and
in vivo in rabbits

• Sustained drug release–
• Increasing in the drug efficacy

period after applied iontophoresis
• Extended the period of IOP

reduction for up to a week

[72]

Travoprost

DNA nanoparticles Ex vivo in porcine cornea,
in vivo in rats and mice

• A long-lasting residence time on the
cornea for over 60 min

• Enhanced the ocular drug
bioavailability

[73]

Liposome In vitro release and
in vivo in rabbits

• Faster onset, longer duration and
greater reduction in IOP than
commercial formulation

[74]

Ocular biomaterials

Latanoprost

Poly(lactic-co-glycolic
acid) film contact lens

In vitro release and
in vivo in rabbits

• Initial burst release followed by
sustained release

• Safety profile and providing a
therapeutic amount of drug into
aqueous humor for at least one
month

[75]

Niosome laden contact
lens

In vitro release and
in vivo in rabbits

• Increased the drug loading capacity
and prolonged drug release up to
48–96 h.

• Approximately three-fold
enhancement in ocular
bioavailability when compared to
conventional contact lens

[76]

PEGylated solid lipid
nanoparticle-laden soft

contact lens

In vitro release and
in vivo in rabbits

• Improved the drug-loading capacity
and sustained drug release

• High drug concentrations in lower
conjunctival sac compared to
conventional soaked lens and drug
solution

[77]
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Table 2. Cont.

Prostaglandin
Analog Ophthalmic Preparation Study Main Observation Refs.

Bimatoprost

Molecular imprinted
silicone contact lens

In vitro release and
in vivo in rabbits

• Reduced burst release and
prolonged drug release

• Improved uptake and release
kinetics of drug from the contact lens
in comparison to the conventional
soaking methodology

[78]

Chitosan polymeric
inserts

In vitro release and
in vivo in Wistar rats

• Sustained drug release
• IOP reduction for four weeks after

application
[79]

Ocular insert Phase II clinical study
• A greater sustained IOP-lowering

effect with no adverse effects up to
6 months

[80]

Travoprost Spanlastic nano-vesicles
ocular insert

In vitro release and
in vivo pharmacokinetic

in rabbits

• Sustained drug release
• Enhanced bioavailability of drug

compared to marketed eye drop
[81]

4. Conclusions

Nowadays, the only therapeutic approach to treating glaucoma is lowering the IOP.
Non-invasive methods for delivering antiglaucoma drugs are preferred, especially topical
administration in the form of aqueous eye drops. Five PGAs, i.e., latanoprost, bimatoprost,
travoprost, tafluprost and latanoprostene bunod, are currently available as topical eye
drops. Most of the PGA preparations contain preservatives that can result in side effects
and local irritation. The use of non-preservative eye drop formulations has improved the
ocular tolerance profile. Glaucoma patients are often on chronic therapies with multiple
antiglaucoma drugs prescribed by their physicians. Fixed drug combinations (i.e., more
than one active compounds in the same medication) in preservative-free eye drop formula-
tions help to reduce the number of instillations, which leads to a reduction in the adverse
reactions and an improvement the patient’s compliance. The low aqueous solubility of
PGA compounds and their chemical instability in aqueous media are the main drawbacks
of PGA eye drop formulation development. Thus, novel and patient-friendly PGA eye drop
formulations with fewer side effects, including enhanced physical and chemical stability at
room temperature, need to be developed. Among the drug delivery systems mentioned
above, aqueous cyclodextrin-based nanoemulsions and in situ gel systems are potential
nanocarriers for PGA formulations. These systems use biocompatible and biodegradable
excipients and are suitable for large-scale production, easily applied to the site of action,
and improve the ocular drug bioavailability, resulting in a greater IOP reduction compared
to conventional eye drop formulations.

The development of PGA ophthalmic formulations is still challenging. The various
PGAs possess different physiochemical properties which may require different formulation
approaches, but in general PGAs are potent drugs that possess low aqueous solubility and
poor chemical stability in aqueous-based eye drops.
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