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Abstract: Bacteriophages (“phages”) infect and multiply within specific bacterial strains, causing lysis
of their target. Due to the specific nature of these interactions, phages allow a high-precision approach
for therapy which can also be exploited for the detection of phage-sensitive pathogens associated
with chronic diseases due to gut microbiome imbalance. As rapid phage-mediated detection assays
becoming standard-of-care diagnostic tools, they will advance the more widespread application of
phage therapy in a precision approach. Using a conventional method and a new cloning approach to
develop luminescent phages, we engineered two phages that specifically detect a disease-associated
microbial strain. We performed phage sensitivity assays in liquid culture and in fecal matrices and
tested the stability of spiked fecal samples stored under different conditions. Different reporter gene
structures and genome insertion sites were required to successfully develop the two nluc-reporter
phages. The reporter phages detected spiked bacteria in five fecal samples with high specificity. Fecal
samples stored under different conditions for up to 30 days did not display major losses in reporter-
phage-based detection. Luminescent phage-based diagnostics can provide a rapid co-diagnostic tool
to guide the growing field of phage therapy, particularly for a precision-based approach to chronic
diseases treatment.
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1. Introduction

Pro-inflammatory microenvironments are triggered by microbial colonization and
immune responses to bacteria. The gut microbiome has thus emerged as a significant
factor in the management or prevention of chronic inflammatory diseases. For example,
Helicobacter pylori is known to induce inflammation and cause a spectrum of gastric diseases
including gastritis, ulcers, and gastric cancer [1]. Klebsiella pneumoniae causes a wide
range of infections such as urinary tract infections, and is also thought to be involved in
inflammatory bowel and liver diseases [2–4].

Although antibiotics have been used for decades as a powerful treatment modality for
infections in both human therapy and animal husbandry, antibiotic use not only promotes
the development of antibiotic-resistant bacterial strains but also leads to adverse outcomes
such as alteration of the population of beneficial commensal gut microbiota and host
immunity, making this therapeutic modality inappropriate for use in bacterial-pathogen-
associated chronic inflammatory diseases. Because of the recognition of the harms that
these broad-spectrum therapeutics exert on the beneficial commensal microbiome, and
because of the effect of prolonged antibiotic use on antibiotic resistance, scientists have
resumed their efforts in the search for alternative approaches to treating diseases and
chronic conditions associated with pathogenic bacterial colonization, with a particular
interest in methods that allow precise targeting of the culprit bacteria [5–10].
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One such alternative treatment option is bacteriophage therapy, which was previously
overshadowed by antibiotic therapy. Bacteriophages (“phages”, viruses that infect specific
bacteria) are considered natural enemies of bacteria with high species and even strain
specificity and the ability to self-amplify precisely where required [11]. Due to their or-
thogonal mode of action, they are impervious to the antibiotic-resistant state of their target
bacteria. Additionally, their narrow host range and minimal off-target effects ensure that
the integrity of the beneficial commensal microbiome is preserved [12]. The specific nature
of phage–host interactions allows for a precision-medicine approach while optimizing
the efficacy of phage therapy. However, the precision approach necessitates the prior
evaluation of the phage susceptibility of the target pathogenic bacterial strain or strains
found in the patient in order to determine their suitability for the proposed treatment.

Currently, the most common methods of determining bacterial susceptibility to a
specific phage require isolation of the bacteria of interest followed by screening for the
phage sensitivity of the isolate using either the classic double-layer overlay assay (the
current gold standard) or liquid infection assays [13–15]. Although both methods are
easy to implement in any laboratory setting at a low cost, they are very time-consuming—
both because of their reliance on the isolation of the pathogenic bacterial strain and the
requirement for long incubation times to yield a measurable response. These factors make
them less suitable for use as standard procedures [13].

Bacteriophage genome engineering offers the possibility of streamlining the process
for determining the phage sensitivity of a target bacteria by making the bacterial isolation
step redundant [16,17]. In this approach, currently being implemented primarily in the food
industry to detect the presence of microbial contamination, engineered bioluminescence-
based reporter bacteriophage assays offer the best available method for determining the
presence of specific bacteria with a fast turnaround time and without the need for bacterial
isolation [18,19]. Accordingly, reporter phage assays are good candidates for serving
as diagnostic tools in the clinical setting. In this approach, nluc, a gene encoding the
NanoLuc luciferase bioluminescent protein, is cloned into the bacteriophage genome in
such a manner that it is expressed only after phage infection of its target bacteria. At that
time, with the addition of substrate, the infected bacterium emits a bioluminescent signal,
verifying the expression of the nluc gene encoded in the phage genome [20].

NanoLuc-based reporter phages have demonstrated a faster turnaround time than
standard culture-dependent approaches by enabling the direct identification of bacterial
infection within an unprocessed sample without the need for tedious steps of bacterial iso-
lation (Figure 1) [18,21]. These characteristics also make the approach potentially amenable
to the development of a point-of-care kit facilitating the on-site evaluation of patient suit-
ability for phage-enabled precision therapy. In the precision therapy approach, a fixed
cocktail of approximately three to eight phages is designed against a pathobiont bacterial
strain or collection of clinical strains and is administered to patients found to be colonized
with microbes that are susceptible to the designed cocktail. This phage therapy approach
offers the advantages of providing an “off the shelf” product that easily fits into the present
regulatory framework and readily addresses a broad patient population, in contrast to a
personalized phage therapy approach in which a large panel of phages are tested against an
individual patient’s bacteria to identify a therapeutic phage, which sometimes necessitates
the isolation of new phages. In addition, current methods describing the insertion of the
luminescence gene into a phage genome are not always successful in yielding the required
sensitivity. Extending the toolkit for the engineering of reporter phages will assure that
this approach can be applied to many more potentially therapeutic phages.

In this report, we describe different methods used in the engineering of two phages
that comprise part of a phage cocktail targeting a specific pro-inflammatory Klebsiella
pneumoniae (KP) strain, KP2H7, found in the feces of many inflammatory bowel disease
(IBD) patients. The luminescent phages will enable the direct assessment of patient fecal
samples for the presence of this strain without the need for bacterial isolation. This will
support a precision-medicine approach for the treatment of IBD patients that are colonized
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with KP2H7 shown to exacerbate the symptoms of IBD. Additionally, we examine the
sensitivity of the bioluminescent assay using the engineered reporter phages—specifically,
the lowest target bacterial count in fecal samples that are detectable by this assay. We also
demonstrate the stability of the fecal bacterial population under different fecal storage
conditions. This observation supports the possibility of delayed testing, as is likely to be
required in clinical settings, and thereby makes a precision approach to phage treatment
more feasible.

Figure 1. A schematic model of phage-based diagnostics. The biological sample is incubated with the
luminescent phage cocktail; the detection of a luminescent signal validates the presence of the target
bacteria in the sample. This ensures that the administration of the cocktail will result in phage activity
within the patient. If no luminescence signal is detected, the target bacteria are not present in the
sample (and therefore in the patient), hence the cocktail is considered not to be suitable for treatment.

2. Results

Phage engineering can be accomplished by various methods, such as using cell-free in-
vitro transcription translation systems that also enable the assembly of phage genomes [22]
or phage “rebooting” using Saccharomyces cerevisiae [23] or L-form bacteria [24]. In this
study, we used the traditional approach of homologous recombination to knock-in the nluc
gene into the genome of wildtype phages in such a way that it is expressed only upon
target bacteria infection [20].

2.1. Molecular Cloning of NanoLuc into Mcoc and 8M7 Bacteriophages

For engineering, we used two therapeutic phages from different families: Mcoc (a
Drulisvirus phage within the family Podoviridae with a 44 kb genome) and 8M7 (a phage
within the family Siphoviridae with a 115 kb genome). These two phages are included in
the BiomX BX002 phage cocktail for the treatment of IBD, targeting KP2H7. Engineering of
these phages has been carried out to allow screening for the presence of phage-sensitive
KP2H7 in candidates for inclusion in a planned clinical trial and subsequent treatment.

The first step in the engineering of a bioluminescence-based reporter phage is to
identify a highly expressed phage protein so that its promoter can be used to drive the
expression of the introduced nluc gene. The major capsid protein is known to be highly
expressed; therefore, using genome annotation algorithms and confirmation by liquid
chromatography/mass spectrometry (LC/MS) [25–27], the major capsid proteins of Mcoc
and 8M7 were determined.

For the Mcoc phage, the cloning strategy was to insert the Reporter Brick, comprised of
nluc under the control of a strong ribosome binding site (RBS), directly downstream of the
stop codon of the major capsid protein open reading frame (ORF). To promote successful
homologous recombination in approximately 1% of phages, the phage targeting vector
(PTV) was designed with roughly 500 bp of flanking sequences both 5’ (in the upstream
homologous region (UHR)) and 3’ (in the downstream homologous region (DHR)) to the
phage sequences of the insertion point (Figure 2A) [20,28–31]. The PTV was transformed
into wildtype (WT) KP2H7 strain and KP2H7 bearing PTV plasmids were infected with
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wildtype phages, generating a mixture of recombinant and wildtype phage genomes. The
mixture of recombinant and wildtype phages was enriched on WT KP2H7 again to ensure
a detectable NanoLuc signal and determine the signal-to-noise ratio (SNR). This procedure
yielded an SNR of >10 and the engineered phage was isolated by further enrichment steps,
leading to progressive increases of the ratio of engineered phage to wildtype phage until
the isolation of a single luminescent phage was possible [20].

Figure 2. The Reporter Brick and Reporter Operon phage engineering design and workflow. (A) The overall workflow of
the engineering method. Mcoc phage represents the standard approach in which adding the Reporter Brick after the major
capsid protein is sufficient to attain a luminescent phage of high sensitivity. Phage 8M7 represents the alternative strategy
employed when the standard approach does not produce a highly sensitive luminescent phage. In this strategy, a Reporter
Operon consisting of a promoter, RBS–reporter gene and terminator is inserted in several different phage genome locations
and the optimal location is determined by the signal-to-noise ratio. (B) Strategy of Reporter Operon cloning leading to
the isolation of 8M7 luminescent reporter phages. Different phage genome locations were selected for the insertion of the
Reporter Operon by homologous-recombination-based cloning with phage targeting vectors (PTVs). Transformed KP2H7
bacteria carrying the PTVs are infected with 8M7 wildtype (WT) phages. Recombinant phages which carry the luminescent
reporter operon emit a detectable signal upon phage interaction with the target bacterium.
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The above method did not yield the desired result of an SNR > 10 with phage 8M7.
Therefore, an alternative cloning strategy was employed. In this strategy, a strong promoter
of the major capsid protein ORF was added upstream to the Reporter Brick unit followed by
the major capsid protein ORF terminator. We called this unit Reporter Operon (Figure 2A).
Because the Reporter Operon is an independent unit, the best genomic cloning location was
determined by inserting this operon into five different genomic locations (Figure 2B). At
each location a single ORF was used, inserting the Reporter Operon directly downstream
of the stop codon while taking into account operon polarity [32]. The chosen regions
encode the pore-forming tail tip protein, homing endonuclease, DNA polymerase, aerobic
ribonucleoside diphosphate reductase large subunit, and a hypothetical protein. Upon
comparison of the signal obtained at each of the five genomic locations, it was found that
insertion of the Reporter Operon downstream of the homing endonuclease resulted in
the highest SNR value of 290. This phage lysate was selected for further isolation of the
engineered luminescent phage by an iterative process of enrichment until the luminescent
phage was isolated (Figure 2B) [20].

2.2. Activity of Reporter Phages in Liquid Culture

To demonstrate the sensitivity of the engineered Mcoc and 8M7 phages to their
bacterial host strain, luminescence was tested in liquid bacterial cultures of KP2H7. Liquid
cultures were inoculated with different numbers of bacterial cells per well (1, 10, and
100) in 200 µL BHIS and immediately infected with 103 PFU of the luminescent phage
8M7 or Mcoc, followed by incubation for 3 h at 37 ◦C. After the incubation period, the
luminescence signal was measured. The results demonstrated that as few as 10 initial
bacterial cells was sufficient to achieve a median luminescence signal of 106 arbitrary units
(AU; Figure 3A). Since the cutoff for a positive signal was >104 AU, this suggests a high
level of sensitivity by both engineered reporter phages.

2.3. Activity of Reporter Phages in Fecal Matrices

Following the achievement of high sensitivity (>104 AU) in liquid media measure-
ments, the minimal number of KP2H7 cells that could be identified in fecal samples
was determined.

Five fecal samples of 100 mg/mL BHIS were spiked with different numbers of target
bacteria cells (1, 10, 100, and 1000). To overcome fecal inhibition of phage infection, a 1:10
dilution of the spiked fecal samples in BHIS was necessary. The results showed that a
positive luminescence signal of >104 AU was attained from 100 bacteria in 100 mg of fecal
material homogenized in 1 mL of BHIS, which indicates a sensitivity of ≥1000 bacteria
per 1 g of fecal matter (Figure 3B). This can be translated into a sensitivity above 1 part
per million when taking into consideration the presence of another 1011 bacteria in 1 g of
feces [33].

2.4. Stability of the Signal in Spiked Fecal Samples Stored under Different Conditions

To estimate the potential stability of fecal samples under different storage conditions,
samples were spiked with a known number of bacteria and either tested immediately
or following storage at 4 ◦C for 48 h or one month at −80 ◦C. We found that samples
containing more than 1000 bacteria/g feces displayed a stable luminescence signal of
>104 AU across all conditions (Figure 3C), similar to the results found upon immediate
testing (data not shown).

In conclusion, these results demonstrate that engineered luminescent phages are able
to detect their target bacteria in fecal samples with high sensitivity. Furthermore, the
ability to store the fecal samples while maintaining bacterial load integrity enables parallel
detection across multiple samples that were acquired at varying times, thus offering a
promising tool to advance the application of phage therapy in a precise manner.
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Figure 3. Limit of detection (LOD) assays. (A) Determination of the LOD of KP2H7 in liquid culture.
Mcoc or 8M7 engineered luminescent phages were introduced into wells with 0–100 bacteria/well.
Both phages successfully produced a high luminescence signal with 10 bacteria/well. Error bars
represent standard error of the mean (S.E.M.) of nine independent experiments. (B) Luminescence
detection in fecal samples spiked with KP2H7 bacteria. Fecal samples free of endogenous KP2H7
were spiked with known amounts of KP2H7 and infected with luminescent engineered Mcoc phage,
followed by the detection of luminescence intensity. An amount of 100 bacteria in 100 mg feces was
sufficient to produce a positive luminescence signal after phage infection. The trendline indicates
the median results for each sample set. (C) Luminescence detection in fecal samples spiked with
KP2H7 and stored under different conditions. Fecal samples that were spiked with defined amounts
of KP2H7 bacteria were either stored at 4 ◦C for 48 h, −80 ◦C for one month, or examined when fresh.
Mcoc engineered luminescent phages were then introduced to the samples and the luminescence
signal was measured. Under all different storage conditions, 100 bacteria per 100 mg of feces was
sufficient to produce a positive signal.
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3. Discussion

Despite being crucial for effective diagnosis and disease management by phage ther-
apy, the rapid detection and reliable identification of phage-sensitive bacterial pathogens
remain challenges for the clinical laboratory. Rapid, potentially on-site, bacterial diagnostic
testing using luminescent engineered phages is a culture- and isolation-free approach to
detect the presence of phage-sensitive bacterial colonization in clinical samples, including
feces. The rapid evaluation of target bacteria susceptibility could guide physicians in
decision-making and provide a realistic path for precision treatment that will ensure a high
level of efficacy with phage therapy and overcome one of the greatest challenges in treating
microbiome-related diseases.

Luminescent phages have previously been engineered to detect bacterial cells ranging
from Escherichia coli to Yersinia pestis present in different matrices (Table 1). The reporter
phage assays use different quantification methods to measure system sensitivity, so com-
parisons between the different approaches are not straightforward. Zhang et al. reported
the insertion of NanoLuc into the lysogenic bacteriophage φV10 for the detection of E.
coli O157:H7 [34]. Hinkley et al. described the development of an assay to detect E. coli
using engineered T7 bacteriophages with NanoLuc [35]. Both research groups focused
on the detection of contaminants in food and drinking water matrices. Studies that have
been described in the published literature using different luminescence systems to examine
different matrices, including clinical samples such as blood and serum, are listed in Table 1.

Table 1. Reporter phages described in the literature compared with the here-described phages.

Publication Target Bacteria Matrix
Reporter Phage
and Detection

Method
Sensitivity Stability of Signal

Present
Klebsiella

pneumonia strain
(KP2H7)

Feces (requires
dilution of 1:10 to

overcome presence
of inhibitors)
which allows

diagnostics of gut
microbiome in

chronic diseases

Mcoc and 8M7
NanoLuc

100 cells per
100 mg feces

Possibility of both
on-site POC

diagnostics and
diagnostics by a

central laboratory.
Useful diagnostic

assay with the
potential for field

application

Zhang et al. [34] E. coli O157:H7 Food matrix incl.
ground beef

φV10
NanoLuc

Detection of a very
low quantity of

contaminating E.
coli O157:H7 (5–6

cells) in 7–9 h

N/A

Hinkley et al. [35] E. coli ECOR13 Drinking water T7
NanoLuc

Identification of
less than 20 colony

forming units
(CFU)

E. coli in 100 mL
drinking water

within 5 h
(0.2CFU/mL)

N/A

Gupta et al. [36] Brucella abortus;
Brucella melitensis

Clinical
samples—aborted

cattle fetus
stomach contents

Brucella phage
Luciferase

Average increase
of luminescence
was 10.03 fold

Useful diagnostic
assay with the

potential for field
application

Schofield et al. [37] Bacillus anthracis Blood samples Wβ
luxAB 105 CFU/mL N/A
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Table 1. Cont.

Publication Target Bacteria Matrix
Reporter Phage
and Detection

Method
Sensitivity Stability of Signal

Schofield et al. [38] Yersenia pestis

Rapid diagnostic
detection of

cultivated Y. pestis
isolates or infected

clinical serum
specimens

ϕA1122
luxAB

103 CFU/mL
within 60min

Willford et al. [39] Shiga toxin
producing E. coli

Food; drinking
water

Phazyme
Enzyme-labeled

phage

105–106 CFU/mL
in pure culture

In a simple and
rapid

manner, with
minimal need for

instrumentation to
interpret the test

result

Franche et al. [40] Enterobacteriaceae Water
HK620;
HK97;
GFP

104 bacteria/mL in
1.5 h

Neither
concentration nor
enrichment step

required

The present study describes the cloning of the luciferase gene nluc into the genomes
of two phages, Mcoc and 8M7, comprising part of a therapeutic cocktail for the treatment
of IBD caused by a pro-inflammatory KP bacterial strain, KP2H7. The resulting reporter
phages are intended to detect target bacteria sensitive to infection by at least one of these
phages to determine patient eligibility for treatment. In this work, two different cloning
strategies employing different reporter gene structures and genome insertion sites were
required to successfully develop the two reporter phages.

While initial studies (unpublished data) demonstrated very high sensitivity by both
reporter phages to detect target bacteria in culture media, the current studies were focused
on examining the activity of the assay in a relevant clinical matrix. The relevant clinical
sample for detecting the presence of the pro-inflammatory KP2H7 in the gut of IBD patients
is fecal matter. As fecal samples are not constant in composition and do not constitute
a defined matrix due to the variation in their physiochemical and bacterial composition,
studies using this matrix were carried out with five different fecal samples known to be free
of endogenous KP2H7 [41]. The reporter phages were able to detect spiked KP2H7 in all
five fecal samples with very high specificity, as they did not produce a signal in unspiked
samples. These results confirm the potential of using similarly engineered reporter phages
to sensitively detect the presence of target bacteria directly in fecal samples and are clinically
relevant when interrogating bacteria in the gut.

In order to understand the need for immediate performance of the assay on fresh fecal
samples, we investigated the effects of different fecal storage conditions on the KP2H7
signal obtained with the reporter phage. An amount of 1000 bacteria/1 g feces was shown to
result in a detectable luminescence signal under all storage conditions and durations tested.
This number is 100-fold less than the average bacterial load of KP2H7 observed in IBD
patients who were shown to be colonized by this bacteria using a proprietary double qPCR
method (not shown), thus making this assay clinically relevant. The ability to store fecal
samples without major losses in the reporter-phage-based detection of bacterial pathogens
is advantageous, as it enables sample transfer and collection to allow simultaneous high-
throughput sample processing.

These combined results demonstrate the potential of luminescent reporter phages
and the need for flexibility in carrying out the engineering of different phages to achieve
the greatest sensitivity. The reported findings expand the possibilities for the use of
luminescent reporter phages in phage-susceptibility diagnostics by providing additional
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engineering methods for deriving sensitive reporter phages. They also demonstrate the
feasibility of directly testing fecal samples, provided that the fecal matter is diluted. One
limitation of this study is that the number of different fecal samples that were tested was
relatively small. Larger sample size could better determine the reliability of the described
method in multiple fecal matrices. Another constraint is the requirement in the current
methodology of two incubation periods. Future optimization of the assay should enable
faster turnaround time, which will further enhance the promise of this approach to provide
rapid on-site or point-of-care co-diagnostics as an integral method to guide the growing
field of chronic disease treatment, particularly of diseases associated with gut microbiome
imbalances, using phage therapy in a precision medicine approach.

4. Materials and Methods
4.1. Stool and Sewage Samples

Stool samples were collected at the Tel Aviv Sourasky Medical Center under approval
of the Institutional Review Board dated September 2019 (IRB approval number 0367-15-
TLV) and iSpecimen, Inc. (Lexington, MA, USA).

Reporter phages Mcoc and 8M7 were isolated in-house from sewage samples. Phages
sequences can be found in the Supplementary Material Section, Mcoc sequence File S1,
8M7 sequences File S2.

4.2. Klebsiella pneumonia Bacterial Strain

KP strain KP2H7 was kindly provided by Dr. Kenya Honda (Department of Microbi-
ology and Immunology, Keio University School of Medicine, Tokyo, Japan) [4].

4.3. Polymerase Chain Reaction (PCR)

Primers were synthesized by Sigma-Aldrich (Rehovot, Israel), Primers list used in this
study can be found in the Supplementary Materials Section- Supplementary File S3. The
NanoLuc gene fragment was synthesized de novo by Integrated DNA Technologies, Inc.
(Belgium). PCR was performed using PrimeSTAR Max DNA Polymerase (Takara, Japan).
Cloning procedures were designed using Clone Manager 9 Professional Edition (Scientific
& Educational Software, USA). pCR™-Blunt plasmid (ThermoFisher Scientific, USA) was
used as the template for PCR reactions. Gibson Assembly® Master Mix (NEB, USA) was
used for the DNA assembly reaction. The resulting recombinant NanoLuc phage targeting
vectors were purified from E. coli DH5α cultures using the Presto™ Mini Plasmid Kit
(PDH300) (Geneaid Biotech Ltd., New Taipei City, Taiwan) and transformed into KP2H7
by electroporation [42].

4.4. Recombinant Phage Mixture Generation

KP2H7 bacteria bearing the phage targeting vector (PTV) were grown to mid-log
phase in lysogeny broth (LB) with 50 µg/mL kanamycin (Sigma-Aldrich, Rehovot, Israel)
until an optical density (OD) of 0.2 was achieved. At OD ~0.2, recombinant KP2H7 were
infected with wildtype phages at a multiplicity of infection (MOIinput) of 0.01 and incubated
for 16 h at 37 ◦C to allow for phage amplification [43]. The lysate was then centrifuged at
9000× g and syringe filtered (0.22 µm; Merck, Germany). This resulted in a mix of wildtype
and recombinant phages that were used in further enrichment steps.

4.5. Recombinant Phage Isolation

KP2H7 bacteria were grown to mid-log phase (OD ~ 0.2) and infected with the mixture
of recombinant and wildtype phages (first enrichment). Phages were enriched until a pure
recombinant phage culture was obtained following the protocol of Brownell et al. [20].
Luminescence was measured as previously described [20]. The ratio of engineered phages
expressing the bioluminescent reporter gene nluc to wildtype phages was determined using
the Nano-Glo® assay (Promega, WI, USA) and SPARK® Multimode Microplate Reader
(Tecan, Switzerland) according to the manufacturer’s instructions. For clone sequence
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confirmation we used the outsourcing services of Hy Laboratories Ltd. (Israel). The
Illumina MiSeq technology (paired-end, 250 base pair runs, 50×) and the Illumina Nextera
protocol were applied [44]. Phage genome sequences were assembled de novo using
plasmid SPAdes [45]. Enrichment cycles were carried out until the ratio between wildtype
phage and engineered phage was about 10:1 [20]. From these enriched populations, a single
luminescent plaque was picked and propagated to form the luminescent bacteriophage
working stock.

4.6. Signal-To-Noise Ratio (SNR) Determination

To calculate the signal-to-noise ratio, we compared the luciferase signal between
the lysate of the recombinant phage mixture and the phages that are obtained after the
first enrichment. Despite the lack of bacterial promoter, the recombinant phage mixture
had a luminescent signal due to the background expression of NanoLuc from the PTV
plasmid. Therefore, this luminescent signal was defined as the baseline, or “noise”, and
any luminescent signal that was at least 10 times higher was indicative of the presence of
engineered luminescent phages with sufficient NanoLuc expression.

4.7. Bacterial Preparation for Fecal Spiking

The starter culture was prepared by inoculating 2 to 3 cell colonies of KP2H7 into 4 mL
Gibco™ Bacto™ Brain Heart Infusion Supplement (BHIS) (Life Technologies Cooperation,
MI, USA) and incubating aerobically overnight (O/N) in a shaking incubator at 37 ◦C.
The bacterial starter cultures were diluted 10−1 to 10−9 in filtered BHIS in preparation
for spiking into fecal samples. Colony forming units (CFU) were measured to determine
bacterial number in each dilution and the values obtained were rounded up to the next
round number value, thus sometimes underestimating actual sensitivity.

4.8. Phage Sensitivity Assay in Liquid

Bacteria were prepared as described above. Dilutions of 10−4, 10−5, 10−6, 10−7, and
10−8 were prepared. An amount of 200 µL of each dilution was transferred into 9 wells of
a 96-well plate. Mcoc or 8M7 reporter phages at a titer of 103 PFU in phage buffer (10 mM
Tris, pH 7.5, 10 mM MgCl2, 68 mM NaCl, 1 mL CaCl2) were added to the bacteria. To
promote a better infection rate, divalent ions MnCl2, CaCl2, and MnCl2 were added to a
final concentration of 1 mM each. Plates were incubated for 3 h in a shaking incubator at
37 ◦C. After the incubation, the samples were centrifuged at 2200× g for 20 min at 4 ◦C;
100 µL from each sample was transferred and mixed with 100 µL of Nano-Glo® assay
mix. The luminescence signal was detected using SPARK® Multimode Microplate Reader.
Values of the signal for each sample can be found in Supplementary File S4.

4.9. Sample Processing and Phage Sensitivity Assay in Fecal Matrices

Fecal samples from five different healthy donors were shown by specific qPCR not to
contain endogenous KP2H7 sequences (not shown) and then spiked with known numbers
of the target bacterial strain and infected with Mcoc reporter phages to examine their ability
to detect KP2H7. All samples were run in biological and technical triplicates. Five aliquots
were prepared per sample, each containing 100 mg of feces. Each aliquot was resuspended
in 1 mL of filtered BHIS and added into 1 mL BHIS in a homogenization tube (total of
2 mL per sample). Each aliquot was spiked with a known amount of KP2H7 bacterial cells
ranging from 1 to 1000 cells. To promote a better infection rate, divalent ions were added as
above. All dilutions were homogenized using gentle MACS™ Octo Dissociator (Miltenyi
Biotec, Germany) to obtain a homogeneous distribution of spiked bacteria. Following
homogenization, each tube was further diluted 1:10 with BHIS to reduce fecal inhibition of
phage infection. Bacterial samples were incubated under aerobic conditions in a shaking
incubator at 37 ◦C for 5–7 h. Mcoc reporter phages at a titer of 104 PFU were added to the
sample in phage buffer and incubated O/N in a shaking incubator at 37 ◦C. Samples were
centrifuged at 2200× g for 20 min at 4 ◦C. Samples of 100 µL each were mixed with 100 µL of
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Nano-Glo® assay mix. The luminescence signal was detected using a SPARK® Multimode
Microplate Reader. Values of the signal for each sample can be found in Supplementary
file S4.

4.10. Determination of Arbitrary Unit Cutoff for Positive Signal

To determine the cut-off value for a positive signal, a training set consisting of
108 positive (spiked) and 108 known negative samples was generated. From lumines-
cent measurements carried out on this dataset, two ranges of values were obtained, one
for the negative samples and one for the positive samples. These ranges were observed
to overlap. A value within this overlap region was selected such that it gave the smallest
number of false positives and false negatives. A threshold of 10,000 arbitrary units was
obtained, in which the false negative ratio was 0.204 and the false positive ratio was 0.111.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph14040347/s1, File S1. Mcoc phage sequence, File S2. 8M7 phage sequence, File S3 Primers
list used in this study, File S4. luminescence data.
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