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Stroke is one of the leading causes of death and physical disability among adults. It has been 15 
years since clinical trials of stem cell therapy in patients with stroke have been conducted using 
adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of ran-
domized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, 
underscoring the need for new stem cell therapy strategies. The primary limitations of current stem 
cell therapies include (a) the limited source of engraftable stem cells, (b) the presence of optimal 
time window for stem cell therapies, (c) inherited limitation of stem cells in terms of growth, trophic 
support, and differentiation potential, and (d) possible transplanted cell-mediated adverse effects, 
such as tumor formation. Here, we discuss recent advances that overcome these hurdles in adult 
stem cell therapy for stroke.
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Review

Introduction

Stroke is the leading cause of physical disability among adults. 
One-fourth to a half of stroke survivors are left with significant 
disabilities. Stem cell therapy is considered a potential regenera-
tive strategy for patients with neurologic deficits. This review 
presents the most recent advances in adult stem cell therapy for 
stroke, focusing on improvements in its safety and efficacy profile.

Search strategy and selection criteria

We identified references for this review by searching PubMed 
and ClinicalTrials.gov published in English up to December 2015, 
with the search terms stroke, cerebral infarction, stem cells, and 
mesenchymal stem cells (MSCs). Additionally, we searched refer-

ences from relevant articles and reviews. The final reference list 
was generated on the basis of originality and relevance to this 
topic. Because of space limitation, we are not able to discuss 
many potential regenerative strategies of adult stem cells thera-
pies in depth with critical analysis. Genetically modified stem 
cells are mentioned only briefly because they have some limita-
tions in the clinical use in stroke patients.

Mechanisms of action of adult stem 
cells in stroke

A critical limitation of adult stem cell therapy for stroke is the 
lack of complete understanding of mechanism of action mediat-
ing the observed therapeutic benefits. Embryonic stem cells 
(ESCs) and induced pluripotent stem cells (iPSCs) can replace the 
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missing brain cells in the infarcted area. However, there are hur-
dles associated with true neuronal substitution using cell re-
placement to restore neuronal function after stroke,1 and ESC/
iPSC therapy was associated with tumor formation. Moreover, 
preclinical studies showed that most transplanted cells disap-
peared within a few weeks.2 In fact, a low graft persistence of 
transplanted cells could be a positive readout for the safety of 
stem cell therapies (i.e., unregulated stem cell proliferation).

Therefore, adult stem cells such as MSCs may be a good 
choice for stroke therapy because they secrete a variety of bio-
active substances, including trophic factors and extracellular 
vesicles (EVs, 0.1–1 μm sized circular membrane fragments shed 
from the cell surface), into the injured brain, which may be asso-
ciated with enhanced neurogenesis, angiogenesis, and synapto-
genesis.3–7 In addition, MSCs are thought to play multiple roles, 
such as attenuating inflammation,8,9 reducing scar thickness,10 

enhancing autophagy,11 normalizing microenvironmental/meta-
bolic profiles,12 and possibly replacing damaged cells13 in various 
brain diseases.

Results of clinical trials 

With current advances in understanding the effects of intro-
ducing stem cells and their mechanisms of action, several clinical 
trials of stem cell therapy were conducted in patients with stroke. 
Most clinical trials used adult stem cells, such as MSCs14–18 and 
bone marrow mononuclear cells.19–24 While stem cells appeared 
to be of some benefit in several studies, there was significant bias 
in subsequent studies.25

In the STARTING (STem cell Application Research and Trials In 
NeuroloGy) trial, autologous MSCs culture-expanded with fetal 
bovine serum were applied intravenously in the subacute phase 
of stroke.15 Intravenous autologous MSC transplantation was 
safe for stroke patients through a long-term period, and may 
improve recovery. However, many patients in the MSC group re-
mained significantly disabled.15 More recently, the InveST (Intra-
venous Autologous Bone Marrow Mononuclear Cell Therapy for 
Ischemic Stroke) trial tested whether intravenous infusion of au-
tologous bone marrow mononuclear cells between 7 to 30 days 
after stroke onset could result in a reduction of the infarct vol-
ume and could improve neurological function at day 180 of fol-
low-up.24 This trial failed to show effectiveness. 

Because these randomized, observer-blinded trials were not 
pivotal efficacy trials, there can be no conclusions made regard-
ing the efficacy of this therapy. Some of the failures in clinical 
trials may be predicted on the basis that there was insufficient 
preclinical data to support a strong clinical benefit.26 Improve-
ment in the therapeutic efficacy of current stem cell therapies is 

needed before efficacy studies are conducted. Very recently, the 
results of a phase II, multicenter, double blind randomized con-
trolled trial of intravenous application of allogeneic multipotent 
adult stem cells (the B01-02 trial of MultiStem®) in acute stroke 
patients have been reported.18 MultiStem®, an allogeneic “off-
the-shelf” cell therapy, during acute phase of stroke (within the 
24-48 hour window) was safe and significantly improved recov-
ery and reduced mortality at one year.

Hurdles of current adult stem cell 
therapies 

The primary hurdles for current stem cell therapies include (a) 
the limited source of engraftable stem cells, (b) the presence of 
optimal time window for stem cell therapies, (c) inherited limita-
tion of adult stem cell potential, and (d) possible transplanted 
cell-mediated adverse effects, such as tumor formation or stroke 
(Figure 1).

First, although the optimal cell dosage and route of adminis-
tration of stem cells in cardiovascular diseases are not settled,27 
administration of sufficient cell dose is mandatory to have bene-
ficial effects of stem cells. Unlike to hematogenous stem cells, 
the number of MSCs in bone marrow dramatically decline with 
age, requiring culture-expansion.28 It was reported that MSCs 
enter senescence and are losing their stem cell characteristics 
(plasticity and homing ability) during ex vivo culturing.4,29,30 In 
addition, stroke mostly occurs in elderly people, and MSCs ob-
tained from elderly patients show the decline in proliferation, 
self-renewal, or differentiation capacity. 

Second, the optimal time point for the application of stem 
cells exists, in terms of stem cell tropism toward brain and 
mechanistic targets of stem cells. The levels of chemokines, tro-
phic factors, and relevant microRNAs (miRs) increased markedly 
in the infarcted brain during the acute phase of stroke, but de-
creased with time.31 In addition, the mechanistic targets for cell 
therapy may differ depending on temporal windows after stroke. 
The application of stem cells during acute phase of stroke may 
be needed to have a range of paracrine and immunomodulatory 
effects, which lead to a reduction in secondary injury processes 
and stimulation of brain repair after stroke.32

Third, adult stem cells may have inherited limitations. MSCs 
are heterogenous and contain many different types of progenitor 
or stem cells, in terms of growth, trophic support, and differenti-
ation potentials. The neurorestorative potential of MSCs may be 
limited in the elderly who have a limited number of neural stem/
progenitor cells (NSCs)33 and bone marrow MSCs,28 who are un-
able to receive rehabilitation therapy,34 and those with extensive 
damage to the subventricular region.15 An attenuation of the re-
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generative potential of stem cells in aged patients with stroke 
could result from aging in either the donor cells (e.g., bone mar-
row stem cells) or the recipient cells (e.g., NSCs in the innate 
neurogenesis system of the brain). However, stroke-induced neu-
rogenesis has been observed in stroke patients in their 60s and 
70s.35 Although the number of NSCs decreased with age in the 
human brain33 and basal neurogenesis was impaired in the sub-
granular and subventricular zone of aged animals, the degree of 
neurogenesis after stroke was similar in young and old animals.36 
In addition, NSCs in aged brains could be activated by applica-
tion of “younger” stem cells. One recent study showed that se-
creted factors from the young stem cell niche rescued the num-
bers of NSC colonies derived from old-age subependyma, and 
enhanced NSC proliferation in vivo in aged animals.37 On the 
contrary, age-related changes could affect certain biological fea-
tures of bone marrow MSCs, resulting in decreased proliferation 
and paracrine functions as well as increased senescence and 
apoptosis, which may decrease the neurogenic potential of 
MSCs.38–41 These findings suggest the importance of the aging/
rejuvenation of donor cells to the neurogenic potential of stem 
cell therapy.

In addition, the discrepancy in stem cell effects between pre-
clinical and clinical studies may be in part derived from differ-
ences in the regenerative potential of healthy young animals and 
aged patients with chronic disease. One study showed that 
treatment with bone marrow MSCs in type I diabetic rats in-
creased mortality and blood-brain barrier (BBB) leakage, result-

ing in brain hemorrhage, and underscored the possibility that 
stem cell therapy may not be beneficial for diabetic subjects 
with stroke.42 Preclinical and clinical studies have also shown 
that the proliferation and angiogenic capacity of endothelial 
progenitor cells and MSCs were impaired in patients with coro-
nary artery disease and metabolic disorders.43 Therefore, further 
studies are required examining the effects of stem cell therapies 
for stroke in aged animals with chronic diseases.

Lastly, a major concern with stem cell therapy is cell-mediated 
adverse effects, i.e., tumor formation of transplanted cells (i.e., 
iPSC or ESC) that may delay the recovery after stroke44 and trap-
ping of stem cells in the lung (intravenous application) or brain 
vessels (intra-arterial application).45,46

Recent advances in stem cell research 
for stroke therapy

The following issues will be addressed in order to overcome 
these hurdles (Figure 1).

Differential sources of stem cells
Although bone marrow-derived MSCs are most commonly 

used, other sources of MSCs, such as adipose tissue or the umbil-
ical cord, are increasingly utilized in clinical practice. This has re-
sulted from our current understanding of the characteristics of 
different sources of MSCs.47–50 These other sources of MSCs out-
side bone marrow or allogeneic MSCs from young donors may 

Figure 1. Hurdles of current stem cell therapy and strategies to overcome the challenges. MSC, mesenchymal stem cell; iPSC, induced pluripotent 
stem cells; ESC, embryonic stem cells; BBB, blood-brain barrier; EV, extracellular vesicle.
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address the apparent decrease in the number and function of 
bone marrow MSCs in aged persons. Both adipose tissue and 
umbilical cord are promising sources of MSCs. Adipose tissue-de-
rived stem cells (ADSCs) are reported to have several advantages 
over bone marrow-derived stem cells. Relatively large number of 
ADSCs can be separated from subcutaneous fat tissue with mini-
mally invasive procedures. ADSCs were reportedly superior to 
bone marrow MSCs in their paracrine functions51 and angiogenic 
potential.52 Moreover, ADSCs were more refractory to the effects 
of advanced donor age in a mouse model of stroke.47 MSCs can 
also be obtained from umbilical cord blood and Wharton’s jelly, 
etc. Umbilical cord MSCs expressed preferentially secreted factors 
related to neuroprotection, neurogenesis, and angiogenesis,49,50 
Umbilical cord MSCs also showed favorable differentiation capa-
bilities and low immunity. Both ADSCs and umbilical cord MSCs 
reportedly improved functional recovery in animal models of 
stroke even when administered after a delayed time.48,53

In addition, allogeneic stem cells could represent a suitable al-
ternative to autologous stem cells. The safety of allogeneic MSC 
therapy may be closely related to their short-term existence in 
the host after the application. Allogeneic stem cells have advan-
tages over autologous stem cells. Allogeneic MSCs are scalable 
from a manufacturing perspective, with standardized procedures. 
MSCs from younger healthy donors or iPSC- or ESC-derived 
adult stem cells may differ in terms of their proliferation and 
neurorestorative capacity, from those of cells obtained from el-
derly patients with chronic illness. The use of allogeneic MSCs 
reduces the time required to obtain a sufficient number of cells 
(the “off the shelf” approach). In the recent clinical trials of in-
travenous application of allogeneic stem cells (MultiStem®) in 
patients with acute stroke, stem cells were applied within the 
24-48 hours after the onset of symptoms.18 Post-hoc analysis 
showed that early treatment (≤ rl hour) was associated with a 
greater benefit at one year of treatment. 

However, conflicting results exist. After contact with serum, 
allogeneic MSCs can be injured by complement, and the viability 
of allogeneic MSCs after infusion is greatly reduced compared 
with autologous MSCs.54 Several approaches based on biomate-
rials or mimicry of antigen-specific peripheral tolerance have 
been suggested to reduce the high risk for rejection of allogeneic 
cells.55 Moreover, treatment of stroke with bone marrow stem 
cells obtained from stroke rats resulted in improved functional 
outcomes compared to treatment with cells from normal rats.56

Mode of application of stem cells
The mode of application of stem cells may significantly influ-

ence the number of cells delivered to target regions as well as 
the incidence of adverse effects. A major problem in introducing 

stem cells systemically is that cells may become trapped within 
organs that filter the blood (first-pass effect). To avoid this, strat-
egies to minimize lung adhesion and improve the homing of sys-
temically introduced cells are used, including different routes of 
administration. For example, unlike in intravenous infusions, in 
an intra-arterial approach, pulmonary circulation can be by-
passed, which results in superior delivery and sustained presence 
of stem cells in the ischemic brain.46 However, an arterial ap-
proach may cause arterial occlusion, resulting in stroke; hence, 
this approach was not found to be superior to an intravenous 
approach for recovery after stroke.46,57 More recently, several 
studies reported that intranasal delivery of MSCs improved neu-
rovascular regeneration and functional recovery after stroke.58,59 
Intranasal delivery may provide a simple, non-invasive, and 
brain-specific mode for cell therapy.

Molecules larger than 400 Da cannot pass through the BBB, 
which may affect the efficacy of cell therapy in stroke patients. 
Intravenous co-administration of stem cells and mannitol, an 
osmotic agent that can regulate the permeability of the BBB, 
may improve outcomes in stroke patients. One preclinical study 
showed that BBB manipulation using intravenous mannitol prior 
to MSC treatment resulted in increased levels of trophic factors 
in the infracted brain.60 As mannitol is already widely used in 
clinical practice, BBB manipulation using mannitol could be con-
sidered in future clinical trials.61

In terms of chemokine expression and BBB opening, chronic 
treatment could be advantageous with non-systemic routes (i.e., 
intra-arterial, intranasal, or intracerebral) and BBB manipulation. 
Few studies have directly compared the efficacy of various 
routes of delivery of MSCs, and further studies are needed.

Ex vivo manipulation of stem cells and culture 
medium

Decreased functional activity of stem/progenitor cells might 
be mediated by telomerase shortening/decreased telomerase ac-
tivity, disturbances of the cell secretome, and altered interactions 
with the microenvironment.62 Several methods of culture expan-
sion that improved the proliferation, survival, and trophic sup-
port, and reduced senescence of MSCs have been reported, in-
cluding hypoxic/ischemic preconditioning, genetic modification 
of cells, trophic factor pretreatment, isolation and use of func-
tional subpopulations of stem cells, modulation of intracellular 
signal cascades, and modification of the cell microenvironment.

The choice of medium is of importance for the end result of 
the stem cell culture. Use of human serum or human platelet ly-
sate instead of xenogenic fetal bovine serum during MSC expan-
sion enabled rapid expansion and rejuvenation of MSCs without 
adversely affecting immunophenotype.16,63 Likely, culture expan-
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sion of MSCs with serum obtained in the acute phase of stroke 
increased cell proliferation rates, increased trophic factor release, 
and decreased senescence via circulating signals from the in-
farcted brain area.64 A clinical trial (Clinical trial identifier NCT 
01716481) will determine the effectiveness and safety of autolo-
gous MSCs that are culture expanded in autologous serum ob-
tained as soon after stroke as possible.61 In addition, hypoxic 
conditions (i.e., 0.1–2% O2, conditions similar to bone marrow) 
were beneficial to MSCs and might stimulate MSCs to exhibit 
adaptive responses.65–69

Treatment with trophic factors or chemical agents may alter 
MSC characteristics. Preclinical studies of various ischemic mod-
els showed that ex vivo treatment with trophic factors or chemi-
cal agents (valproate and lithium) during MSC cultivation en-
hanced the migration of MSCs and trophic support in the isch-
emic brain.45,70,71 

Lastly, genetic modification of MSCs increased the trophic 
support of MSCs (e.g., brain-derived neurotrophic factor gene-
modified MSCs), and migration of MSCs to infarcted brain areas 
(MSCs transfected to overexpress a chemokine receptor).72–75

EVs derived from stem cells
Cell therapy using the secretome (trophic factors, cytokines, or 

chemokines produced through paracrine secretion) or EVs (e.g., 
microvesicles and exosomes) derived from stem cells could repre-
sent a new, clinically feasible, and cell-free paradigm that would 
avoid cell-related problems such as tumor formation and infarcts 
caused by vascular occlusion. Stem cells secrete EVs as well as 

soluble factors (e.g., trophic factors), and stroke in humans trig-
gers the mobilization of MSC-derived EVs.76 EVs harbor bioactive 
molecules such as lipids, proteins and miR, and EVs secreted from 
stem cells carry more complex cargos than other cellular sourc-
es.77 Encapsulation of bioactive molecules in EVs increases their 
stability and bioavailability and helps crossing the BBB.78,79 Stem 
cell EVs play a critical role in the exchange of information be-
tween stem cells and damaged cells and alter the behavior of the 
target cells (Figure 2). In recent studies, microvesicles secreted 
from MSCs promoted sciatic nerve regeneration in rats.80 On the 
contrary, astrocytes release exosomes enriched in heat shock 
proteins and synapsin I under stress conditions.81 Along with oth-
ers, we have shown that intravenous administration of EVs de-
rived from MSC culture media promotes functional recovery and 
neuro-vascular plasticity after stroke in rats.82,83 No studies have 
examined the effects of stem cell-derived EVs in stroke patients, 
but a phase 1 study of cord blood-derived MSC EVs in diabetes 
patients is ongoing (Clinical trial identifier NCT 02138331).

miRs are short, non-coding RNAs with a capacity to repress 
varied target genes.84 Caballero-Garrido et al. investigated an ef-
fect of the in vivo inhibition of miR on brain recovery after stroke 
and showed that intravenous anti-miR-155 injections in a 
mouse model of stroke improved poststroke angiogenesis and 
recovery.85 Extracellular miRs can be protected from degradation 
by RNase through encapsulation within EVs. Accumulating evi-
dence supports that stem cell-derived EVs help to repair brain 
damage after stroke via miR delivery to target cells, thereby reg-
ulating the expression of genetic information and promoting a 

Figure 2. Exchange of information between stem cells and neural cells via EVs. Stem cell-derived EVs can transfer stem cell-specific bioactive mole-
cules, including proteins, mRNAs, and miRs, to injured cells. Thus, EVs can trigger a regenerative program in injured cells in a paracrine manner. Con-
versely, injured cells may stimulate stem cells by secreting vesicles under pathological conditions. 
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therapeutic response.86 For example, MSC administration in-
creased miR-133b expression levels in rat brain after stroke and 
exosomal miR-133b transferred from MSCs to neurons and as-
trocytes regulated neurite outgrowth87 and neurovascular re-
modeling to promote stroke recovery.82 The efficacy of stem cells 
could be enhanced in principle by regulating miR expression in 
stem cells or EVs. miR-based therapies, including miR amplifiers 
and inhibitors, and artificial miRs, are currently being devel-
oped.88 Transplantation of MSCs over-expressing miR-126, pro-
motes functional angiogenesis in the ischemic myocardium.89 In 
addition, modification of EV-miRs may occur during the ex vivo 
manipulation of stem cells, e.g., preconditioning.90,91

Lastly, administration of small molecules, biomaterials, and bi-
ologics that targets the stem cell niche is a promising field in re-
generative medicine.92 Small molecules that modulate specific 
targets involved in the signaling and mechanisms of stem cells 
may be used to modulate stem cell function in vitro and in vivo. 
Compared to cell therapy, small molecules are relatively lower 
cost, more convenient to use, and offer better temporal/spatial 
control.93 However, relatively few studies have been conducted 
for stroke therapy.

Application of 3D bioprocessing techniques
To date, considerable attention has been focused on the de-

velopment of novel 3D bioprocesses that can facilitate the clini-
cal translation of stem cell research. Besides the various methods 
of biochemical and/or genetic preconditioning mentioned previ-
ously, the biological properties of stem cells can be manipulated 
by 3D bioprocessing techniques that physically mimic the natu-
ral microenvironments of the stem cells in vivo.94

It is becoming increasingly apparent that the native pheno-
type of MSCs is altered with repeated passages during culture 
expansion using conventional tissue culture flasks.95 With regard 
to this, the formation of MSC aggregates can reproduce natural 
3D interactions between cells and the extracellular matrix or 
other neighboring cells, creating an “in-vivo-like” microenviron-
ment where the phenotype and innate properties of the MSCs 
can be better preserved.96,97 Current research has shown that 
MSCs can be easily prepared as spheroid-shaped cellular aggre-
gates by simple 3D bioprocessing techniques, and that these 3D 
MSC aggregates may have advantages over MSCs from mono-
layer cultures for many therapeutic applications. For example, 
secreted anti-inflammatory, proangiogenic, and promitotic fac-
tors were highly enriched in 3D MSC aggregates.94,97–100 Further-
more, the differentiation efficiency of MSCs toward adipogenic, 
osteogenic, and potentially epithelial-like or neuronal-like phe-
notypes were also increased by these techniques. Thus, 3D cul-
turing has been proposed as a preconditioning strategy to en-

hance the therapeutic functions of the MSCs.94,98,99

Likely, the incorporation with biomaterials can also provide 
stem cells with a highly biocompatible 3D-environment. Tissue-
engineered scaffolds with engineered biochemical/physical prop-
erties could support cellular survival in a long-term transplanta-
tion to promote integration with the host tissue.101 Theoretically, 
the scaffold could serve as a therapeutic cell-delivery vehicle that 
releases neuroprotective factors in a controlled manner, which 
would further promote the regeneration and functional revival of 
damaged neuronal tissue.102 Recently, an electrically conductive 
polymer scaffold was developed as a novel NSC delivery system. 
In this study, human NSCs were electrically preconditioned in 3D 
by seeding on to the scaffold, which resulted in an improved rate 
of recovery of neurological functions after stroke.103

In addition, culture methods to expand 3D bioprocessed stem 
cells should be further studied. Traditional static culture condi-
tions limit the mass transfer of nutrients, oxygen, and metabolic 
wastes, resulting in a necrotic center of cellular mass while cells 
near the outer layer remain viable.104,105 Therefore, dynamic cul-
ture conditions are required to improve the cellular and biomo-
lecular composition of 3D stem cell-based constructs.106–111 Bio-
reactor systems can offer not only well-controlled mixing of the 
culture media but also real-time monitoring of culture parame-
ters. Continuous evaluation of critical culture parameters could 
facilitate the efficient scale-up of 3D stem cell-based con-
structs.112,113 To this end, reproducible, standardized 3D biopro-
cessing protocols could be established to customize stem cell 
therapy for stroke. Automated bioreactor systems would allow 
powerful stem cell therapies to translate to general practice, 
which might otherwise stay restricted to academic studies or se-
lect societal groups.

Conclusions 

Clinical data are still being accumulated in patients with 
stroke. It remains too early to be confident that adult stem cell 
therapy can improve functional outcomes in patients with 
stroke. More evidence from randomized trials is needed. In the 
meantime, continuing efforts are needed at the bench, to devel-
op stem cell strategies with enhanced therapeutic efficacy of 
stem cells, and at the bedside, through constant dialogues, to 
meet the Food and Drug Administration’s regulations on stem 
cell use in clinical applications. The efficacy of stem cell therapy 
will be improved with advances in our understanding of stem 
cell biology and with the advances in techniques to modulate 
stem cell characteristics, including biotechnology and bioengi-
neering (Figure 3).
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