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ABSTRACT Cadmium (Cd) and high molybdenum
(Mo) are injurious to the body. Previous research has sub-
stantiated that Cd and Mo exposure caused testicular
injury of ducks, but concrete mechanism is not fully
clarified. To further survey the toxicity of co-exposure to
Cd and Mo in testis, 40 healthy 8-day-old Shaoxing ducks
(Anas platyrhyncha) were stochasticly distributed to 4
groups and raised with basic diet embracing Cd (4 mg/kg
Cd) or Mo (100 mg/kg Mo) or both. At the 16th wk, tes-
tis tissues were gathered. The characteristic ultrastructural
changes related to apoptosis and ferroptosis were observed
in Mo or Cd or both groups. Besides, Mo or Cd or
both repressed nuclear factor erythroid 2-related factor 2
(Nrf2) pathway via decreasing Nrf2, Heme oxygenase-1
(HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1),
Glutamate-cysteine ligase catalytic subunit (GCLC) and
Glutamate-cysteine ligase modifier subunit (GCLM)
mRNA expression of and Nrf2 protein expression, then

stimulated apoptosis by elevating Bel-2 antagonist /killer-1
(Bak-1), Bcl-2-associated X-protein (Bax), Cytochrome
complex (Cyt-C), caspase-3 mRNA expression, cleaved-
caspase-3 protein expression and apoptosis rate, as well as
reducing B-cell lymphoma-2 (Bcl-2) mRNA expression
and ratio of Bcl-2 to Bax, and triggered ferroptosis by
upregulating Acyl-CoA Synthetase Long Chain Family
Member 4 (ACSL4), transferrin receptor (TFR1) and
Prostaglandin-Endoperoxide Synthase 2 (PTGS2) expres-
sion levels, and downregulating ferritin heavy chain 1
(FTH1), ferritin light chain 1 (FTL1), ferroportin 1
(FPN1), solute carrier family 7 member 11 (SCL7A11)
and glutathione peroxidase 4 (GPX4) expression levels.
The most obvious changes of these indexes were observed
in co-treated group. Altogether, the results announced
that Mo or Cd or both evoked apoptosis and ferroptosis
by inhibiting Nrf2 pathway in the testis of ducks, and
co-exposure to Mo and Cd exacerbated these variations.
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INTRODUCTION

Molybdenum (Mo) holds a substantial importance as
a metal element with characteristics such as elevated
melting point, exceptional strength, and effective corro-
sion resistance. Additionally, it is also a vital trace min-
eral for humans, animals and plants (Novotny and
Peterson, 2018). However, an excess of Mo is detrimen-
tal to physiological health. Mo is extensively applied in
industrial and agricultural production and animal feed,
which increases its risk of entering the environment.
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Permissible level of Mo in potable water, as stated by
the World Health Organization (WHO), was reported
to not exceed 70 pug/L (Organization, 1996). Mo content
of drinking water in some areas of China, Argentina and
the United States reached 113 pg/L, 90 ng/L and 211
ung/L, respectively (Chen et al., 2020; Lawson-Wood
et al., 2021; Arienzo et al., 2022). Some literatures have
substantiated that high Mo can cause damage in
kidneys, livers, spleens, and ovaries (Cao et al., 2016; Shi
et al., 2017; Dai et al., 2018a; Guo et al., 2022). Besides,
testicle is also target organ of Mo toxicity, and excessive
Mo could cause its structural changes, decrease sperm
quantity and quality, unbalance sex hormone levels, and
weaken reproductive capacity (Asadi et al., 2017). Mao
et al., (2022) reported that high Mo inhibited cancer cell
proliferation by evoking ferroptosis and apoptosis.

Cadmium (Cd), a metal element with harmful
properties, pervades environment widely (Lamraoui
et al., 2022). Tts pollution sources mainly include the
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development of mineral resources, industrial “3 wastes”
and automobile exhaust and so on. Cd pollution has
become a worldwide environmental problem. The inci-
dence of severe pollution, the rate of exceeding estab-
lished standards and average concentration of Cd in
Chinese paddy soils reached 8.6, 33.2, and 0.23 mg/kg,
respectively (Liu et al., 2016). A large amount of indus-
trial wastewater containing high concentration of Cd is
discharged into the water, which poses a considerable
risk to animal health via the food chain (Gong et al.,
2022). The increasing evidence attested that reproduc-
tive organ, especially testicle, is extremely sensitive to
Cd toxicity (Shi and Fu, 2019; da Silva et al., 2021). Cd
could lead to sperm count reduce and abnormal morpho-
logical structure in testicles (Venditti et al., 2021; Zhou
et al, 2022). Zeng et al, (2021) showed that Cd
impaired testicular function by promoting ferroptosis.
Besides, some studies borne out that Cd could cause oxi-
dative stress, apoptosis and ferroptosis in testicles
(Zhang et al., 2012; Wang et al., 2023).

As a regulated cell death process, apoptosis is triggered
through organism in response to external stimuli (Newton
et al., 2024). Oxidative stress is a principal factor of trig-
gering apoptosis. As a protective antioxidant transcrip-
tion factor, the nuclear factor erythroid 2-related factor
2 (Nrf2) has a crucial action in antioxidant defense
response during oxidative stress (Yamamoto et al., 2018).
Study demonstrated that Nrf2 signaling pathway had a
strong anti-apoptotic effect (Ma et al., 2022). It could
inhibit B-cell lymphoma-2 (Bcl-2) expression and pro-
mote Bcl-2-associated X-protein (Bax) expression (Deng
et al., 2021; Hu et al., 2021). Previous study confirmed
that Cd exposure evoked apoptosis through inhibiting
Nrf2 signaling pathway in the testicle of rats (Kassab et
al., 2020). Additionally, Mo exposure was found to cause
hepatotoxicity in ducks by disrupting Nrf2 signaling
pathway(Wang et al., 2022b).

Ferroptosis constitutes a novel variant of programmed
cellular demise, characterized by its reliance on iron
(Dixon et al., 2012). Its primary cause is the excessive
build-up of lipid peroxidation dependent on iron. Charac-
teristic morphological attributes of ferroptosis encompass
contraction of mitochondrial membrane, augmented den-
sity of the same, and diminishment or vanishing of mito-
chondrial cristae. It is regulated by many genes, such as
glutathione peroxidase 4 (GPX4), solute carrier family 7
member 11 (SCL7A11), ferritin light chain 1 (FTL1),
ferritin heavy chain 1 (FTH1), transferrin receptor
(TFR1) and ferroportin 1 (FPN1). Besides, Nrf2 signal-
ing pathway is of utmost importance in the regulation of
ferroptosis (Dodson et al., 2019). Study has found that
both SCL7A11 and GPX4 can be upregulated by activat-
ing Nrf2 signaling pathway, which can directly decompose
lipid peroxidation products (Dong et al., 2023). Many pro-
teins participate in iron storage and transport, such as
FTH1, FTL1, TFR1 and FPN1, are also regulated by Nrf2
(Wang et al., 2022¢). Therefore, activating Nrf2 pathway
may reduce excessive iron accumulation and prevent fer-
roptosis. Cd caused ferroptosis in the testicle of mice by
restraining Nrf2 signaling pathway (Xiong et al., 2022).

As modern industry continues development, the wide-
spread emission of heavy metals has emerged as a global
environmental concern. The common occurrence of
heavy metals joint entering the environment has elicited
serious impacts on both the ecological environment and
human health. Therefore, the research of combined
heavy metals’ toxicity has captured the interest of many
researchers. Mo and Cd are often associated with other
minerals such as tungsten ores. During the mining pro-
cess of tungsten ores, incomplete processing can result in
the environment experiencing the simultaneous release
of Mo and Cd, which eventually leads to combined pollu-
tion. Compared with other mammals, a large portion of
waterfowl primarily feed in paddy fields and rivers, and
it is more prone to the external environment and more
susceptible to diseases. Shaoxing duck (Anas platyrhyn-
cha) is the main breed in Southern China, which is also
the main breed in the areas polluted by Mo and Cd. The
duck has many advantages such as high laying rate, long
egg production peak duration, high feed utilization rate,
and strong life force. It ranks as one of the most favored
breeds within China. Consequently, this species was
used in the experiment. Recent investigations have dem-
onstrated that the toxicity of Cd and Mo are far higher
than the toxicity of their single pollution (Zhang et al.,
2021; Chu et al., 2023). Previous results have certifi-
cated that combined exposure to Cd and Mo leads to
testicular damage in ducks (Pu et al., 2023), but toxic
mechanism has not been well assessed. Therefore, sub-
chronic poisoning models of ducks that were exposed to
either Mo, Cd, or both were established in this research,
and the united toxic impacts of Cd and Mo on testes
were discussed from the perspectives of Nrf2 signaling
pathway, apoptosis and ferroptosis. The intent of this
study was to heighten awareness regarding ecological
understanding and the perils heavy metals pose to birds,
offering a theoretical basis for reproductive toxicological
research on co-exposure to Cd and Mo.

MATERIALS AND METHODS
Animals and Treatment

All animal contracts and manipulations were con-
firmed by Institutional Animal Care and Use Committee
of Jiangxi Agricultural University (NO. JXAULL-2020-
23). In this study, a total of 40 Shaoxing ducks (Anas
platyrhyncha) aged 1-d were purchased from a local
hatchery (Jiangxi, China) and were acclimated for 1 wk.
Four groups were established from the population of 8-
day-old ducks and distributed randomly. Each group
had a different dietary intake, with varying amounts of
Cd or Mo or both added to their basal feed per kilogram:
a control group (receiving no Mo or Cd), a group given
100 mg of Mo (labelled as the Mo group), a group given
4 mg of Cd (the Cd group), and a group receiving both
(the Mo + Cd group). In this research, 3CdSO,4-8H,0
(Aladdin, China) and (NH4)Mo7;054-4H,0 (Aladdin,
China) were picked as the sources of Cd and Mo, respec-
tively. The dosages of Mo and Cd were chosen according
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to previous researches (Cui et al., 2021; Guo et al.,
2022). The Table S1 enumerated the fundamental con-
stituents of the diet. The ducks were housed in separate
cages and allowed to eat and drink freely.

Sample Collection

After the culmination of the 16 wk of rearing, the
ducks were slaughtered. Posteuthanasia, the testes from
each individual duck were carefully extracted. Subse-
quently, both testes were rinsed 2 to 3 times with 0.9%
NaCl. One testis was kept at -80 °C for RNA isolation
and total protein extraction. The other testis was fixed
in 2.5% glutaraldehyde and 4% formalin for ultrastruc-
tural histopathological, and immune-histochemical
studies, respectively.

Ultrastructural Observation

Referring to former method (Liu et al., 2014), after
fixed with 2.5% glutaraldehyde, testis tissues were
stained with methanolic uranyl acetate and lead citrate.
At last, the changes of testicular ultrastructure were

assessed with a transmission electron microscope
(TEM) Zeiss 900 (Zeiss, Germany).

TUNEL Assay

The method of TUNEL detection referred to Guo et
al. (1 2022) study. DAPI was employed to label the
nucleus, which consequently appeared blue. Apoptotic
cells exhibited positive results that showed a green hue.
Subsequently, the average proportion of apoptotic cells
was computed for every group.

Ferrous Iron Assay in Testes

The ferrous iron level was assessed in testes according to
ferrous iron colorimetric test kit (Elabscience, Wuhan).
Testicular tissues (0.1g) were homogenized with 10 mL of
iron assay buffer and then spun at 10,000 rcf for 10 min to
collect the supernatant. The 300 uL sample and standard
were added to 1.5 mL EP tubes respectively, followed by
the addition of 150 uL of color development solution to
each EP tube. The contents of the EP tubes were thor-
oughly mixed and maintained at 37°C for 30 min. After-
ward, the tubes were spun at 12,000 rcf for 10 min.
Utilizing a microplate reader, the absorbance of every
individual well was recorded at a wavelength of 593 nm.

Real-Time Quantitative PCR analysis

According to previous method (Dai et al., 2019), total
RNA was extracted, then reverse transcribed to cDNA
using TaKaRa (Japan) kit. 2 x SYBR Green qPCR
Master Mix (None ROX, Servicebio, Wuhan) was used
in real-time quantitative PCR (RT-qPCR) on Bio-
Rad’s CFX Connect System. Glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH) was applied as

endogenous control and relative mRNA levels were
computed by applying 2 2ACT ethod. The Table S2
presented primer sequences.

Western Blotting Analysis

A previously established method was employed to
extract total protein from testis tissues (Liu et al.,
2022a). Testicular tissues were homogenized in a homoge-
nizer after the addition of protein lysate. Following lysis
at 4°C for 30 min, the mixture was centrifuged and the
supernatant was aspirated as a total protein sample.
Additionally, nuclear proteins were extracted using a
Nucleoprotein Extraction Kit (Solarbio Biotechnology,
Beijing, China). The protein concentration was then
determined using the BCA protein assay kit (Solarbio
Biotechnology, Beijing, China). The volume of the sample
was determined based on the total amount of protein.
Finally, the protein samples underwent electrophoresis and
western blot analysis. The primary antibodies were GPX4
(1:1,000), FTH1 (1:2000), SCL7A11 (1:1,000), Acyl-CoA
Synthetase Long Chain Family Member 4 (ACSL4)
(1:1,000), TFR1 (1:1,000), FPN1 (1:1,000), Prostaglandin-
Endoperoxide Synthase 2 (PTGS2) (1:1,000), cleaved-
caspase-3 (1:500), Nrf2 (1:500) and GAPDH (1:5,000).
GPX4, FTH1, SCL7A11, ACSL4, TFR1, and FPN1 came
from Abmart (China). PTGS2, cleaved-caspase-3 and
Nrf2 were sourced from Wanleibio (China). GAPDH was
obtained from Proteintech (China). The GAPDH band
was utilized for standardized quantitative analysis.

Statistical Analysis

The experimental results were presented as mean +
standard deviation. Statistical analysis was executed by
using one-way analysis of variance (ANOVA) method
of SPSS 25.0 software. To draw diagrams, GraphPad
Prism 7.0 (GraphPad Software, San Diego, CA) and
Image J software (National Institutes of Health, DC)
were utilized. And Origin 2022 software (OriginLab,
Northampton, Massachusetts, USA) was used to do cor-
relation analysis. Statistical significance was determined
as P < 0.05. * ** and *** indicated significant differen-
ces at P < 0.05, P < 0.01 and P < 0.001 compared with
the control group. 7, ¥ and ##7 indicated significant
differences at P < 0.05, P < 0.01 and P < 0.001 between

corresponding groups.

RESULTS

Cd or Mo or Both Injured the Ultrastructure
of Testes

Testicular ultrastructure was showed in Figure 1. The
control group did not exhibit any significant pathologi-
cal changes, with intact nuclei and organelles. In the sin-
gle treatment group, mitochondrial cristae rupture and
ridge reduction occurred. The most severe pathological
damage was revealed in the Mo + Cd group, which
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Figure 1. Mo or Cd or both caused ultrastructural damage of testis in ducks. Red arrow: rupture of mitochondrial membrane; white arrow:

disappearance of mitochondrial cristae, scale bar = 2 pm and 0.5 pm.

showed mitochondrial vacuolization, rupture of outer
membrane, and an apparent increase in the number of
cristae reduction compared with the single groups.

Cd or Mo or Both Inhibited Nrf2 Pathway in
Testes

As presented in Figures 2A and 2B, the mRNA levels
of Nrf2, NAD(P)H quinone oxidoreductase 1 (NQO1),
Heme oxygenase-1 (HO-1), Glutamate-cysteine ligase
modifier subunit (GCLM)and Glutamate-cysteine
ligase catalytic subunit (GCLC) in Mo or Cd or both
groups were reduced (P < 0.05) compared with the con-
trol group. The mRNA levels of aforementioned genes of
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the co-treated group showed a decrease (P < 0.05) com-
pared with the single-treated groups, except for GCLC
and GCLM mRNA levels in the Cd group. Total Nrf2
protein level and nuclear Nrf2 protein level in the Mo or
Cd or both groups were reduced (P < 0.05) compared
with the control group (Figure 2C and 2D). The
co-treatment group exhibited the most significant
alterations among these observed changes.

Mo or Cd or Both Triggered Apoptosis in
Testes

Figures 3A and B illustrated the results of TUNEL
staining and showcased the differences in the number of
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Figure 2. Mo or Cd or both inhibited Nrf2 pathway in the testis of ducks. (A) The mRNA expression levels of Nrf2 pathway-related genes; (B)
Heatmap analysis of Nrf2 pathway-related genes mRNA expression levels; (C, D) The protein expression level of Nrf2. Note: *, ** and *** indicate
significant differences at P < 0.05, P < 0.01 and P < 0.001 compared with the control group. #, *# and ### indicate significant differences at P <
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(B) Apoptosis rate; (C) The mRNA expression levels of apoptosis-related genes; (D) Heatmap analysis of apoptosis-related genes mRNA expression

levels; (E, F) The protein expression level of cleaved-caspase-3.

apoptosis cells between treated groups and control
group. Compared with the control group, increased (P <
0.05) apoptosis cell numbers in the Mo or Cd or both
treated groups were observed. Furthermore, a higher
number of apoptosis cells were observed in the combined
group.

As described in Figure 3C, in comparison with control
group, there was a upregulation (P < 0.05) in Bax, Bcl-2
antagonist/killer-1 (Bak-1), caspase-3 and Cytochrome
complex (Cyt-C) mRNA expression of Mo or Cd or
both groups. Conversely, Bcl-2 mRNA expression and
ratio of Becl-2 to Bax exhibited downregulation (P <
0.05). The biggest alterations were presented in the co-
treated group. In addition, the genes mRNA expression
was visualized and analyzed using heatmap (Figure 3D).
Compared to control group, cleaved-caspase-3 protein

level was upregulated (P < 0.05) in the 3 treated groups
(Figures 3E—3F). The alterations of these indicators in
combined group were most evident.

Cd or Mo or Both Triggered Ferroptosis in
Testes

As illustrated in Figure 4A, compared to control
group, the treated groups showed an elevation (P <
0.05) in the concentration of ferrous iron in testes, and it
was pronounced (P < 0.001) in united group. Figure 4B
displayed mRNA transcript levels of genes associated
with ferroptosis. Compared to control group, ACSL4,
TFR1, and PTGS2 mRNA levels were elevated (P <
0.05) in the 3 treated groups, except for the PTGS2
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Figure 4. Mo or Cd or both induced ferroptosis in the testis of ducks. (A) The level of ferrous ion; (B) Ferroptosis-related genes mRNA expres-
sion levels; (C) Heatmap analysis of ferroptosis-related genes mRNA expression levels; (D, E) The expression levels of ferroptosis-related proteins.

mRNA level in Mo group. Except for the PTGS2 mRNA
level in the Cd group, these genes mRNA levels were the
highest in Mo + Cd group. In contrast, compared with
control group, FTH1, FTL1, FPN1, SCL7A1l and
GPX4 mRNA levels in Mo or Cd or both groups were
decreased (P < 0.05), and reduced (P < 0.05) in
Mo + Cd group compared with alone treated groups,
except for FTL1 mRNA expression in the Cd group. In
addition, Figure 4C depicted the heatmap analysis of
the genes. In accordance with the Figures 4AD—4E, west-
ern blotting analysis was performed to assay ferroptosis
markers protein levels. Except for ACSL4 protein level
in the Mo group, PTGS2, ACSL4 and TFR1 protein lev-
els in all the treated groups were upregulated (P < 0.05)
compared to control group, GPX4, FTH1, SCL7A11l
and FPN1 protein levels were downregulated (P < 0.05).
Furthermore, the most pronounced changes in these pro-
tein levels were presented in Mo + Cd group.

Correlation Analysis

The relationship between Nrf2 pathway, apoptosis, and
ferroptosis was further confirmed through correlation
analysis. As depicted in Figure 5, an obvious negative cor-
relation was observed between mRNA transcription levels
of Nrf2 pathway (Nrf2, NQO1, HO-1, GCLM, GCLC)
and the mRNA transcription levels of apoptosis pertinent
gene (Bcl-2) and ferroptosis related genes (GPX4, FTHI,
FTL1, FPN1, SLC7A11), while it was markedly posi-
tively related to mRNA transcriptional levels of apoptosis
pertinent genes (caspase-3, Bax, Cyt-C, Bak-1) and fer-
roptosis related genes (ACSL4, TFR1, PTGS2).

DISCUSSION

In recent years, combined pollution of heavy metals
has emerged as a significant environmental problem
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and threatens public health. Among these, the concur-
rent contamination by Cd and Mo represents a quintes-
sential instance. Dozens of studies have attested that
Nrf2 signaling pathway, apoptosis and ferroptosis play
important roles in the toxic mechanism of heavy metals
(Qu et al., 2019; Irkin and Oztirk, 2022; Hu et al.,
2023a). Testis is one of the important organs damaged
by high Mo and Cd. Ducks often live and forage in the
water, and are more susceptible to the external environ-
ment. Therefore, the toxic mechanism of Cd and Mo on
duck testis was discussed from the perspectives of Nrf2
signaling pathway, ferroptosis and apoptosis. In the
study, ultrastructural changes presented specific mor-
phological characteristics related to apoptosis and fer-
roptosis in Cd or Mo or both exposure groups in duck
testes, including mitochondrial cristae disappearance
and even vacuolation, mitochondrial membrane rup-
ture, and uniform round-shaped mitochondria, which
indicates that apoptosis and ferroptosis may be key
contributive testicular toxic mechanisms caused by Cd
or Mo or both in ducks. Hence, their molecular mecha-
nisms were further studied.

Nrf2 is an important nuclear transcription factor
related to antioxidant responses. Under conditions of
oxidative stress, the activation of Nrf2 prompts its trans-
location into the nucleus, initiating the transcriptional
regulation of downstream antioxidant related factors
such as HO-1, GCLC, NQO1, and GCLM, thereby
renewing the redox balance of cells. HO-1 is a protective
heme metabolism rate-limiting enzyme with various bio-
logical functions, including antioxidation, suppression of
cell inflammation and apoptosis. NQO1 is pivotal in

detoxification and metabolism, functioning to eradicate
various oxidants. Maintaining cellular GSH homeostasis
is reliant on GCL, which comprises GCLC and GCLM
subunits. GCLC regulates GSH binding within cells,
thereby activating the cellular detoxification mecha-
nism. The efficacy of GCLC is doubled due to the direct
interaction between GCLM and GCLC factors. Heavy
metals have complex impacts on Nrf2 expression level,
with effects varying by exposure duration and concen-
tration (Buha et al., 2021). Short-term or low-dose expo-
sure may transiently activate Nrf2 signaling pathway as
a cellular defense (Cheng et al., 2022). However, pro-
longed or high-dose exposure can suppress Nrf2 signaling
pathway, thereby compromising antioxidant defenses
and increasing oxidative stress and cellular damage (Hu
et al., 2023b). Study demonstrated that Mo or Cd or
both inhibited Nrf2, HO-1, GCLC, GCLM, and NQO1
mRNA expression levels in duck livers (Wang et al.,
2022b). The outcomes of this study were in line with the
aforementioned results, suggesting there is a correlation
between the toxicity of Cd or Mo or both and inhibition
of Nrf2 signaling pathway in duck testes.

Apoptosis is an orderly cell death controlled through
many genes and proteins (Bertheloot et al., 2021). Key
proteins involved in the apoptosis by mitochondrial
pathway include Bax and Bak-1. They promote the
release of Cyt-C, which is a pivotal event that triggers
the apoptotic cascade. Once Cyt-C enters the cytosol, it
leads to the activation of caspase-3 through a series of
reactions. Activated caspase-3, also called cleaved-cas-
pase-3, is a critical executioner enzyme in apoptosis,
which is responsible for the cleavage of various cellular
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substrates, finally leading to apoptosis. On the other
hand, Bcl-2 is an anti-apoptotic protein that helps main-
tain mitochondrial integrity and prevents the release of
Cyt-C. It exerts its effect by inhibiting the activities of
pro-apoptotic proteins like Bax and Bak-1. Thus, the
ratio of Bcl-2 to Bax is often considered a determinant
of cell survival or death. The data from this experiment
revealed that treatment with Cd or Mo or both could
increase Bak-1, Bax, caspase-3, and Cyt-C mRNA
expression levels, cleaved caspase-3 protein expression
level and apoptosis rate, and decrease Bcl-2 mRNA
expression level and ratio of Bcl-2 to Bax. Previous stud-
ies have already disclosed that apoptosis activated by
Mo or Cd or both is accompanied by an elevation in
cleaved caspase-3 protein level and a decrease in ratio of
Bcl-2 to Bax (Guo et al., 2022), which is consistent with
the results of this experiment. Thus, these findings
implied that both Cd and Mo independently could lead
to mitochondrial pathway apoptosis in duck testes, and
their combined exposure intensified these effects.

Ferroptosis is a cell death mechanism that depends on
iron and lipid peroxidation. During ferroptosis, the
interplay of some iron related factors contributes to the
initiation and progression of this form of cell death(Jiang
et al., 2021). FTH1 and FTL1 are involved in iron stor-
age, whereas FPN1 and TFR1 regulate iron uptake and
export. The balance of iron within the cell is critical,
given that iron plays a role in generating reactive lipid
peroxides, central to the induction of ferroptosis. GPX4,
an antioxidant enzyme, protects against lipid peroxida-
tion. SLCTA11 promotes glutathione synthesis to allevi-
ate oxidative stress. ACSL4 and PTGS2 promote lipid
peroxidation and exacerbate ferroptosis. An escalating
body of research suggested that heavy metals induced
ferroptosis (He et al., 2022; Ye et al., 2023). The data
from this study suggested that Cd or Mo or both ele-
vated ferrous ion content and expression levels of
ACSL4, TFR1, and PTGS2 in testicular tissues, and
reduced the expression levels of FTH1, FTL1, FPNI1,
SLC7A11, and GPX4. These findings are consistent
with previous studies. In summary, Cd or Mo or both
induced ferroptosis in duck testes, and their co-exposure
intensified the impacts.

Numerous investigations have demonstrated a close
association between the occurrence of apoptosis and fer-
roptosis with the Nrf2 signaling pathway (Dodson et al.,
2019; Lian et al., 2023). According to some researches,
the inhibition of Nrf2 signaling pathway could reduce
the of Bcl-2 expression level and upregulate caspase fam-
ily members’ activities, thereby promoting the process of
apoptosis (Dai et al., 2018b; Li et al., 2019; Cui et al.,
2020). Many scholars found that Mo or Cd could induce
apoptosis, which is highly relevant to restraining Nrf2
pathway (Koto et al., 2011; Guan et al., 2022). Addi-
tionally, study showed that Nrf2 assumed a vital role in
modulating ferroptosis by regulation of some iron
related factors’ expression (Dodson et al., 2019). Acti-
vated Nrf2 promoted expression levels of FTH1, FTL1,
GPX4, and SLC7A11, thus balancing iron level, reduc-
ing oxidative stress, preventing lipid damage, ultimately

inhibiting ferroptosis (Wang et al., 2022a). Nrf2 also
controlled iron transport through TFR1 and FPN1, and
mitigated lipid peroxidation by modulating expression
levels of ACSL4 and PTGS2 (Zhao et al., 2022).
Growing evidence suggested that heavy metals might
influence ferroptosis through Nrf2 signaling pathway
(Liu et al., 2022b; Ouyang et al., 2023; Lan et al., 2024).
In the present study, the correlation analysis of Figure 5
substantiated that Mo or Cd or both triggered ferropto-
sis and apoptosis via inhibiting Nrf2 signaling pathway
in duck testes.

CONCLUSIONS

In summary, this study revealed that Cd- and Mo
-induced apoptosis and ferroptosis were related to the
inhibition of Nrf2 signaling pathway in the testes of
ducks. Co-exposure to Mo and Cd exacerbated these
changes.
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