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Abstract 

Background:  The low number of patients suffering from any given rare diseases poses a difficult problem for medi-
cal research: With the exception of some specialized biobanks and disease registries, potential study participants’ 
information are disjoint and distributed over many medical institutions. Whenever some of those facilities are in close 
proximity, a significant overlap of patients can reasonably be expected, further complicating statistical study feasibil-
ity assessments and data gathering. Due to the sensitive nature of medical records and identifying data, data transfer 
and joint computations are often forbidden by law or associated with prohibitive amounts of effort. To alleviate this 
problem and to support rare disease research, we developed the Mainzelliste Secure EpiLinker (MainSEL) record 
linkage framework, a secure Multi-Party Computation based application using trusted-third-party-less cryptographic 
protocols to perform privacy-preserving record linkage with high security guarantees. In this work, we extend Main-
SEL to allow the record linkage based calculation of the number of common patients between institutions. This allows 
privacy-preserving statistical feasibility estimations for further analyses and data consolidation. Additionally, we cre-
ated easy to deploy software packages using microservice containerization and continuous deployment/continuous 
integration. We performed tests with medical researchers using MainSEL in real-world medical IT environments, using 
synthetic patient data.

Results:  We show that MainSEL achieves practical runtimes, performing 10 000 comparisons in approximately 5 
minutes. Our approach proved to be feasible in a wide range of network settings and use cases. The “lessons learned” 
from the real-world testing show the need to explicitly support and document the usage and deployment for both 
analysis pipeline integration and researcher driven ad-hoc analysis use cases, thus clarifying the wide applicability of 
our software. MainSEL is freely available under: https://​github.​com/​medic​alinf​ormat​ics/​MainS​EL

Conclusions:  MainSEL performs well in real-world settings and is a useful tool not only for rare disease research, 
but medical research in general. It achieves practical runtimes, improved security guarantees compared to existing 
solutions, and is simple to deploy in strict clinical IT environments. Based on the “lessons learned” from the real-word 
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Background
Rare Diseases affect 5% of the German population[5] and, 
albeit individually rare, constitute a major cost driver in 
health care. One challenge in medical research targeting 
those diseases is the availability of sufficient amounts of 
data to extract statistically significant insight with respect 
to causes and treatments. Strict data protection laws 
relating to medical and identifiable personal data further 
increase the difficulty of the task, especially when data 
of affected patients is spread across many health care 
facilities.

Before conducting clinical trials with data from differ-
ent clinic sites, it is usually necessary to determine the 
patient numbers that can be pooled horizontally. If the 
patient numbers at all participating sites are very small—
for example when dealing with rare diseases—and if even 
the sum of the numbers from several sites is in a criti-
cal range for the significance of the results, it makes sense 
to validate in advance that no patients were included 
twice or even more often in the analyses. This can occur, 
for example, if patients are registered not only at one 
but at several sites—a common problem in rare disease 
research due to diagnostic challenges. Before taking fur-
ther steps in study planning, it is desirable to know that 
the intersection of different sites is empty or at least very 
small.

Conversely, when planning vertical data pooling—for 
example, when considering linking differentiated but 
monotemporal patient data from hospitals with longitu-
dinal subject history data from registries—it is desirable 
to have as large an intersection of documented subjects 
as possible.

In both scenarios, challenges pertaining to data trans-
fer are a common occurrence. According to Article 6 of 
the EU General Data Protection Regulation (GDPR), 
the transfer of data from one data owner to another or 
a common database is generally prohibited as long as no 
consent has been obtained from the people described by 
the data.

To protect the sensitive patient care data, it should be 
stored separately from the medical records, which are 
used for research. In this way, a researcher can use the 
medical data without knowing the patient identity. Tra-
ditionally, both types of records are linked by pseudo-
nyms, which allow assigning additional medical data to 
the existing patient. To join distributed medical records, 
they need first to be linked to unique patients. In an ideal 

world, this could be realized using a trans-institutional 
“master patient index”, containing a unique identifier for 
each unique patient. However, this unique id is an identi-
fying field in itself and is subject to the same data privacy 
considerations as the other identifying data fields. Pri-
vacy-preserving techniques for distributed computations 
can be—and are being—used to utilize unique identifies 
for set operations, e.g.  [41]. In some countries, existing 
identifiers such as the patient’s health insurance number 
could be used as a unique identifier. In Germany, how-
ever, less than 90% of patients make use of a statutory 
health insurance [19] and are thus issued such an insur-
ance id. A solution that would nonetheless allow the link-
age, would be to use record linkage methods based on 
the full set of identifiable patient data, without disclosing 
those data.

Established record linkage implementations (e.g., [25, 
34]) are mostly based on Privacy-Preserving Record 
Linkage (PPRL) techniques using pre-processed (e.g., 
hashed) identifying data such as first and surname, 
birth date, address, etc. that is linked centrally using a 
Third Trusted Party (TTP) [50]. As with any centralized 
approach, this can turn out to be a problem if the TTP 
is compromised or becomes untrustworthy. Additionally, 
centralized Bloom filter-based systems are known to be 
vulnerable against frequency and cryptanalysis attacks [8, 
51]. Even though recent versions claim protection against 
those known attacks [46], new exploits are expected to be 
found  [55]. Alternatives to centralized PPRL are Record 
Linkage systems based on secure Multi-Party Computa-
tion (MPC) [18, 35, 48] which allow participating parties 
to perform a joined linkage calculation over distributed 
input data without the need of any central linkage com-
ponent. In particular, by ensuring that the data is not 
transferred, thus never leaving its owner’s institutional 
boundaries, the attack surface of the identifying data is 
reduced, increasing the patients’ data protection level 
and prohibiting potential re-identification. While the 
legal assessment is still pending, the possibility of using 
MPC for some distributed computations without explicit 
patient consent is worth entertaining. Error-tolerant 
record linkage has the advantage over “classical” Pri-
vate Set Intersection (PSI), as it allows “fuzzy” matches, 
increasing the linkage quality on noisy, incomplete data.

In this paper, we describe our method for determining 
record linkage based patient intersection using MPC, as 
well as its evaluation under the real clinical conditions 

testing, we hope to enable a wide range of medical researchers to meet their needs and requirements using modern 
privacy-preserving technologies.

Keywords:  Multi-party computation, Rare disease, Intersection cardinality, Record linkage, Medical informatics
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within the Collaboration on Rare Diseases project 
(CORD_MI)1. The joint research project CORD_MI is a 
use case which involves four German medical informatics 
consortia, 24 German clinical centers and partner organ-
izations, and multiple patient associations. Funded by 
the German Federal Ministry of Education and Research 
(BMBF), the main aim of the CORD project is to improve 
care and research in the field of rare diseases. We show 
that our novel method is feasible in real world medical 
contexts of rare disease research, in particular within 
the IT environments of nine German university hospi-
tals. We provide an open-source, easy to deploy, holistic 
record linkage, intersection cardinality, pseudonymiza-
tion and ID management system. Finally, we discuss the 
“lessons learned” while deploying our system in multiple 
medical institutions.

Related work
Related to the problem addressed in this work are Private 
Set Intersection Cardinality (PSI-CA) Protocols [10, 28, 
31]. However, while being highly efficient and optimized, 
PSI and PSI-CA protocols are only suited to find exact 
intersections. This is a constraint, that renders them 
unsuitable for clinical applications. Patients’ identifying 
data (IDAT) are subject to change, e.g., due to relocation, 
marriages, and errors.

The methods performing this “fuzzy” matching 
between patient records are called Record Linkage meth-
ods (RL) [14], and specifically in the context of this work 
Privacy-Preserving Record Linkage (PPRL) [15, 35]. For a 
more detailed discussion of related works in the field of 
Record linkage, please confer [18, 48], and for an over-
view of PPRL methods, including a discussion w.r.t. cryp-
tographic privacy and statistical perturbation, please 
see [24].

Methods
The aim of our research is to define and test a method 
for finding patient record intersections based on record 
linkage for data distributed over multiple medical data 
holders.

For this task it is necessary to consider the following 
real world constraints:

•	 The sensitive patient data is to be protected, no infor-
mation allowing the re-identification of the patient 
should leave the data owner’s location.

•	 For security reasons no trusted party should be used 
for record linkage. This condition will also simplify 

the patient consent process and, thus, allow recruit-
ing more patients for the research for rare diseases.

•	 Even in the case of an IT security incident in one 
of the participating party’s protected networks, the 
patients’ data of all other institutions must remain 
private.

•	 The proposed method assures high precision and 
coverage in determining the intersection set in order 
to be feasible for sparse data in the field of rare dis-
eases.

Today’s Bloom filter-based solutions fail to meet the first 
three requirements (see Sect.  ), while non-record link-
age based MPC private set intersection algorithms fail 
the last one. Our approach to tackle these challenges 
is to design a method for record linkage based patient 
intersection using full-threshold secure Multi-Party 
computation.

In the following, we explain the basic concepts of 
patient list management as well as secure Multi-Party 
Computation (MPC) that are essential for subsequent 
parts of this paper.

Record linkage
The process and techniques to compare two data sources 
(often comprising medical patient’s identifying data) to 
link duplicates is called record linkage (RL). For many 
medical applications and medical research it is either a 
first step in the analysis, or even the analysis itself (e.g., 
determining the patient intersection count, or the total 
number of unique patients in two or more data sources). 
Formally, the process can be seen as composed of two 
distinct steps: 1. calculating the similarity between two 
records, and 2. classifying those records as duplicate 
(“match”) or independent patients (“non match”) [14].

The EpiLink algorithm. This work is based on the 
EpiLink algorithm  [9], as implemented in the Mainzel-
liste pseudonymization framework  [33] for local de-
duplication. This algorithm further subdivides the first 
step above, the calculation of a similarity measure, in two 
steps. First, a similarity is calculated comparing each field 
in the record (e.g., how similar are the birthdays). Those 
field similarities are then combined to a total patient 
similarity. This combination is a (normalized) weighted 
sum, allowing to differentiate the “importance” of the 
individual fields, according to statistical factors. Both the 
individual field similarities and the total patient similari-
ties are represented as real numbers between zero (com-
pletely different) and one (identical).

In step 2, the classification, this patient similarity is 
compared to two configurable thresholds. If the simi-
larity is below the first threshold, the two patients are 
considered distinct and thus classified as non matches. 1  https://​www.​mediz​ininf​ormat​ik-​initi​ative.​de/​en/​CORD.

https://www.medizininformatik-initiative.de/en/CORD
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If the similarity is above the second threshold, the two 
patients are classified as a very likely match. If it is 
between the two thresholds, the records are marked as 
a tentative match.

Furthermore, the Mainzelliste RL algorithm, as well 
as our algorithm, uses exchange groups, a configurable 
number of fields, where all permutations are compared, 
e.g. first, sur- and birth name. These fields may be easily 
swapped during data entry in error. For more details on 
our implementation of exchange groups, see [48].

Field comparisons. To further increase the flexibil-
ity and quality of the record linkage, and in fact allow-
ing the required fault-tolerant “fuzzy” matching, the 
EpiLink algorithm allows every field similarity measure 
that produces real numbers between zero and one.

MainSEL implements two field comparison opera-
tions, one checking the identity of an entry, e.g., the 
year of birth, and a “fuzzy” string comparison. The sys-
tem can be extended with other specialized comparison 
functions, for example an edit distance comparison for 
genomic data [49].

Fuzzy string comparison. For “fuzzy” field compari-
sons, the fields content (namely, strings) are converted 
to Bloom filters [4]. The similarity measure is the Dice-
coefficient [12] of both parties’ Bloom filters. In the fol-
lowing sections, we will introduce and explain these 
concepts in more detail.

The Bloom filter Dice similarity introduced by Schnell 
et al [47] starts by converting the input data into Bloom 
filters, a probabilistic data structure often used in data-
base design to quickly estimate whether an element is 
likely included in a database. The input data are sepa-
rated into a list of n-grams, in practice often bigrams, 
i.e., groups of two characters (cf. Fig. 1). Each n-gram is 
hashed with k independent hash functions, resulting in 
k numbers. These numbers are then converted to indi-
ces for a bitfield with m bits by using the modulo opera-
tion. On those positions, the bits in the bitfield are set 
to one.

Our system uses those Bloom filters in an atypical way, 
not for a fast element lookup and not as a privacy meas-
ure, as in other PPRL systems, including  [47], but only 
as a data structure. As it can be seen in the example in 
Fig. 1, the division in n-grams yield Bloom filters, where 
small changes result in only a small change of bits (at 
most k bit per different n-gram).

The similarity measure used is the Dice coefficient. It is 
calculated by counting the number of elements, where in 
both Bloom filters the bit is set to one. This number is 
multiplied by two and divided by the total number of the 
set bits in both filters:

where x and y are the inputs, Bl the function to transform 
the inputs into a Bloom filter, Hw the Hamming Weight 
operation [22] (counting the set bits), ∧ the element-wise 
logical “and” operation and, finally, S the resulting simi-
larity score between zero and one.

For a recent overview over PPRL methods and tools, 
see Gkoulalas-Divanis et al [18].

Secure multi‑party computation
Secure Multi-Party Computation (MPC) is a crypto-
graphic technique to jointly compute a function over dis-
tributed inputs, without leaking any more information 
about the parties’ inputs than the result of the computa-
tion reveals. Being a research area within the academic 
field of cryptography, MPC ’s privacy guarantee are 
mathematically provable [20, 37].

The field of MPC was started by Andrew Yao’s semi-
nal work “How to Generate and Exchange Secrets” in 
1986 [54]. This work introduced the “Yao’s Garbled Cir-
cuits” two-party protocol. One year later Goldreich et al 
published the multiparty GMW protocol  [20], named 
after its authors. Even though the theoretical groundwork 
thus were laid in the mid 80s, MPC only achieved prac-
tical performance and usability with the publication of 
the first MPC compiler, Fairplay [38], in 2004. Since then, 
advancements in computation hardware, novel protocol 
optimizations, such as Half Gates [56], Oblivious Trans-
fer Extensions [1], or free-XOR [30], and completely new 
protocols (e.g., [29]) allowed practical run times for more 
and more complex use cases. Today, applications rang-
ing from secure contact discovery on mobile devices [28] 
to genomic analysis [49], epidemiological modeling [21], 
and privacy-preserving machine learning [40] have been 
published. However, even with the availability of a num-
ber of programming frameworks assisting the develop-
ment of MPC applications, achieving good—or at least 
acceptable—run times remains a difficult task requiring 
cryptographic expertise.

(1)S =
2Hw(Bl(x) ∧ Bl(y))

Hw(Bl(x))+Hw(Bl(y))
,

Fig. 1  Visual example of the Bloom filter-based Dice similarity 
measure. In this example, the strings “MEIER” and “MAYERS” are 
compared, using k = 2 different hash functions and a 12 bit bloom 
filter. The colors mark the differences. Note, that a change of one 
letter leads to at most 2k different set bits, that is, small changes in 
the strings lead to small changes in the bit pattern
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In the following paragraphs, we briefly describe the 
three two-party protocols used in this work. For a more 
detailed overview, survey article and textbooks should be 
consulted, e.g., [23, 36].

Yao’s Garbled Circuits. Yao’s Garbled Circuit (GC) [54] 
operates on Boolean Circuits, i.e., the function that is to 
be jointly computed must be represented in a directed 
acyclic graph with the logic operations “and” ( ∧ ) and 
“xor” ( ⊕ ) as nodes. Following the naming convention of 
electrical engineering, the nodes—containing the opera-
tions—are called gates and the edges, containing bit-wise 
values, are called wires. This representation, the algebraic 
normal form, can represent arbitrary bounded functions.

Both parties assume different roles in the protocol, 
namely the garbler and the evaluator. The garbler con-
structs the Boolean circuit and garbles it by assigning 
every possible bit value on every wire in the circuit a ran-
dom AES key. The truth tables of the gates (i.e., the input-
to-output mapping) are generated by doubly encrypting 
the output keys with the corresponding two input keys. 
The order is then permuted. After the garbling, only the 
garbler can translate any key to a corresponding logical 
value. The circuit construction and the garbling is inde-
pendent of any party’s specific input and can be prepared 
in the setup phase.

This garbled circuit and the keys encoding the garbler’s 
input values are then transferred to the evaluator. This 
first interaction between both parties marks the start of 
the online phase. The evaluator receives the keys encod-
ing his secret inputs with a cryptographic primitive called 
Oblivious Transfer (OT) [43, 52]. Using OT the evaluator 
receives his keys without learning any other key and the 
garbler learns nothing regarding the evaluator’s input. 
The evaluator proceeds to evaluate the circuit in a gate-
by-gate fashion. The final output keys are then translated 
by the garbler and distributed to both parties. A modern 
formal description, as well as the full security proof, can 
be found in [37].

Using Yao’s GC, the required communication scales 
with the and-size of the circuit, that means the number 
of and-gates in the circuit. As it is based on Boolean Cir-
cuits, it is especially efficient in evaluating bitwise opera-
tions, comparisons, and branching by multiplexing values 
based on decision bits.

GMW. The GMW protocol [20] uses Boolean circuits 
as well and works by breaking up the secret input into 
multiple fragments, called shares, such that the secret 
can only be reconstructed if a party holds all shares. The 
secret sharing is information theoretically secure, i.e., 
even an adversary with infinite time and unbound com-
putation power cannot break the system. The secret input 
bits vi are broken into n shares each, which are then one-
by-one sent to the n− 1 other parties. Note, that by this 

full-threshold construction, even if all other parties col-
lude, nobody holds all shares of the secret and the secret 
inputs remain private. For each secret bit, the shares si 
are generated in the following way: The first n− 1 shares 
are just random bits, independently drawn from a (cryp-
tographically secure) uniform distribution. The last share 
sn is generated by xor-ing all previous shares, as well as 
the secret bit v. Or more formally:

After the distribution of the secrets, every party holds 
one share of every secret. The reconstruction of a secret 
is performed by xor-ing all shares together.

The xor operation can be performed locally by every 
party, simply by xor-ing the shares it holds. This gener-
ates a valid share of the result. The and operation is per-
formed in an interactive protocol involving Oblivious 
Transfer (cf. Section 2.2), thus, requiring additional com-
munication between the participating parties.

Using the GMW protocol, the required communication 
scales with the and-depths of the circuit, that means the 
number of “layers” of the graph containing and gates. As 
it is based on Boolean Circuits, it is especially efficient in 
evaluating bitwise operations, comparisons, and branch-
ing by multiplexing values based on decision bits.

Arithmetic Secret Sharing. Arithmetic Secret Sharing 
can be understood as an extension of the GMW protocol 
on algebraic rings Zk of size k instead of Boolean values. 
Thus, it operates on arithmetic circuits, that is, circuits 
using addition and multiplication operations. Hence, 
those arithmetic operations are much more efficient to 
evaluate in this protocol, compared to Boolean circuit-
based protocols. The secret sharing process is similar to 
the GMW secret sharing. The xor operation is substi-
tuted with a subtraction on the ring:

The reconstruction of the secret value v works by adding 
all the shares (modulo k). Multiplication require, as in the 
Boolean protocol variant, an interactive protocol, e.g., 
using “Beaver’s multiplication triples” [2], or the “Gilboa 
multiplication” [17].

Both Boolean GMW and Arithmetic Secret Sharing 
perform most communication and invocations of (sym-
metric) cryptographic primitives during the setup phase, 
allowing for a faster online phase.

ABY Framework. ABY is an open source, high perfor-
mance C++ Framework for semi honest, hybrid protocol 

si ←$, i ∈ {1, 2, . . . , n− 1},

sn ←
⊕

i

si ⊕ v.

si ←$ Zk , i ∈ {1, 2, . . . , n− 1},

sn ← v −
∑

i

si mod k .
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Secure Two-Party Computation  [11]. It allows the con-
struction and evaluation of application using Arithme-
tic Secret Sharing, Boolean GMW and Yao’s GC, as well 
as the conversion between the different sharings. This 
allows a fine-grained optimization of the MPC, as differ-
ent sections of the calculation might be more efficient in 
different protocols.

By choosing a rather low abstraction level for develop-
ing circuits, ABY trades ease of development with many 
(manual) low-level optimization possibilities for the pro-
tocol design.

For the detailed security guarantees of ABY in general 
and MainSEL in particular, please see [11, 48].

Mainzelliste framework for patient pseudonymization
Mainzelliste  [33] is a web-based open source pseu-
donymization software that is actively used to link 
records between multiple2 medical research infrastruc-
tures [27, 39, 42], biobanks [3], and patient registries [32].

Mainzelliste can function as a master patient id genera-
tor, as well as a primary and secondary pseudonym man-
agement tool in combination with identifying data. It can 
perform local probabilistic record linkage for patient de-
duplication using a highly optimized version  [45] of the 
EpiLink [9] algorithm.

In previous work, we modularly extended Mainzelliste 
with the MPC based trans-institutional PPRL system, 
Secure EpiLinker [48]. The secure EpiLinker is connected 
to Mainzelliste via its RESTful API, following the general 
design of Mainzelliste, thus forming a holistic system for 
pseudonymization, record linkage and ID management: 
MainSEL (freely available under https://​github.​com/​
medic​alinf​ormat​ics/​MainS​EL).

By using MPC techniques, MainSEL can utilize all 
identifying information for a robust and accurate fault-
tolerant record linkage, while simultaneously providing 
confidentiality and higher security guarantees than exist-
ing solutions.

Results
MainSEL: Mainzelliste Secure EpiLinker
In this work, we extended the MainSEL system presented 
in [48] to allow privacy-preserving intersection cardinal-
ity calculations based on the record linkage algorithm. 
This extension builds upon the versatility of circuit-based 
MPC protocols by reusing the record linkage similarity 
calculation and match classification and replacing the id 
distribution circuit with the set cardinality calculation. 
An early proof-of-concept was already described in [48], 
however, the expectation for practical interfaces, addi-
tional run time analysis, as well as the full functionality 
was achieved as part of the work presented here.

As described in previous works (e.g.,  [34, 48]), the 
deployment of biomedical applications in clinical net-
works is complex and expensive, due to non-standard 
network topologies, high network compartmentalization, 
and strict regulatory requirements  [6, 7]. Usually, those 
networks have a high security level, due to the sensitive 
data processed inside of them. One common restriction 
is the limitation of direct TCP (incoming) connections by 
firewall systems and proxies. This prevents the communi-
cation between the Secure EpiLinker instances, as those 
use raw TCP sockets for communication to optimize 
network bandwidth utilization. Furthermore, the bidirec-
tional nature of the necessary communication requires 
inbound port forwarding rules in the firewall systems, 
which are in need of extensive monitoring and auditing.

These challenges are solved by the MainSEL system 
architecture developed in this work using an overlay net-
work (cf. Fig. 2).

Fig. 2  MainSEL architectural overview. The diagram shows two MainSEL Docker Compose stacks, both interacting in a virtual, private network 
established by a OpenVPN server. Only the OpenVPN and Stunnel components are interfacing to the open network, all MainSEL core components 
use stack-internal networking

2  At the time of writing, around 20 projects, not including the authors’ own 
applications. See https://​bitbu​cket.​org/​medic​alinf​ormat​ics/​mainz​ellis​te/​src/​
devel​opment/​README.​md (accessed 12.03.2022) for details.

https://github.com/medicalinformatics/MainSEL
https://github.com/medicalinformatics/MainSEL
https://bitbucket.org/medicalinformatics/mainzelliste/src/development/README.md
https://bitbucket.org/medicalinformatics/mainzelliste/src/development/README.md
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Network Transport Encryption and Authentication. 
Some network boundaries only allow traffic to egress 
through HTTP(S) proxy systems, which often discard 
any traffic not conforming to those protocols. To enable 
communication between MainSEL instances despite this 
restriction, all MainSEL traffic is routed through a “Stun-
nel” [53]. Stunnel adds TLS encryption to the communi-
cation, without modifications to the other components. 
With that, all network packets conform to the HTTPS 
structure. As the data payload is encrypted, which is 
indistinguishable from random data, a proxy cannot 
inspect the data and thus not discard the non-HTTPS 
data.

An additional benefit is the easily usable added client/
server authentication. No adversary is able to imper-
sonate one of the genuine computation parties. Stunnel 
allows both public-key cryptography based approaches, 
as well as pre-shared key (PSK) symmetric schemes.

Note that the transport layer encryption is not required 
to satisfy the stated privacy and security guarantees.

Virtual Private Network Aggregation. Proposed 
changes to the firewall rules of clinical IT networks are 
(rightfully) thoroughly screened and evaluated before 
implementation. This is especially true for rules regard-
ing incoming traffic, as those pose a greater risk for the 
network to become compromised.

These change processes exist for a good reason and are 
a necessary element of every production system’s security 
strategy. However, to allow timely testing in real-world 
networks using synthetic data, MainSEL was required to 
solely operate with outgoing dedicated connections.

To achieve this mode of operation, the MainSEL sys-
tem connects to a virtual private network (VPN) at the 
beginning of a calculation. The outgoing TCP connection 
of the VPN client of each party to the VPN server is used 
for all communication.

Note, that this setup does not weaken any security 
notion, even though it increases the complexity of the 
system. The MPC protocol remains secure, even if all 
clear-text traffic is observed by an adversary  [20, 37]. 
Additionally, MainSEL’s traffic is encrypted by Stunnel 
(see Section 3.1).

MainSEL uses OpenVPN3 as both the VPN client and 
server. OpenVPN is a well-known open source VPN 
solution, highly regarded due to its security and simplic-
ity of operation. A full security audit was performed in 
2017 [44].

Containerization and Deployment. The software 
components necessary for successfully using MainSEL 
in restricted network environments, add significant 

complexity to the building and deployment process. To 
allow the easy and resource-efficient deployment despite 
that complexity, a Docker Compose4 containerization was 
chosen, tying all components together via two compart-
mentalized overlay networks, one for backend communi-
cation and one for the outside-facing component. Docker 
Compose allows the connection and orchestration of 
multiple software modules in lightweight docker5 con-
tainers with provided sane default configurations. Com-
pared to classical virtual machine deployments, where 
each virtual machine uses its own operating system and 
kernel resources, containerization allows only com-
partmentalizing of the application layer. The underlying 
operating system is shared between all running contain-
ers, thus saving (memory) resources.

This deployment schema not only reduces the required 
setup effort, it greatly enhances the automation pos-
sibilities, as well as the reproducibility of our experi-
ments. Using methods from the “Continuous Integration 
/ Continuous Deployment” [13] paradigm, changes to the 
source code of the components result in an automatic 
testing and building process. The resulting docker images 
can be deployed with minimal delay, relieving deploying 
organizations from the burden of providing a functioning 
build environment. As a result, version mismatches are 
unlikely and identical test environments for reproducible 
experiments can be set up quickly.

The chosen service-based abstraction provides scal-
ability, as based on the expected workload all services 
can either run on one physical server or be deployed on 
multiple servers with minimal (if any) changes to the 
configuration.

Performance benchmarks
Test Setup. We first evaluated our protocol in a lab envi-
ronment consisting of two virtual servers connected 
via LAN with a latency of 0.3 ms and a bandwidth of 1 
Gbit/s. The servers were equipped with a virtual 6 Core 
processor and 24 GiB of RAM each. We averaged all 
benchmarks over 10 independent runs.

We compare three different network models: 

A:	� 1 Gbit/s bandwidth and no additionally imposed 
delays. This setting is relevant as most university 
medical centers in Germany are connected via the 
“Deutsches Forschungs-Netz (DFN)” (German 
research network), a high-bandwidth carrier net-
work dedicated to research. In this context, band-
widths of 1 Gbit/s are a conservative lower bound.

3  https://​openv​pn.​net.

4  https://​github.​com/​docker/​compo​se.
5  https://​www.​docker.​com.

https://openvpn.net
https://github.com/docker/compose
https://www.docker.com
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B:	� Restricted throughput (100 Mbit/s), but no 
imposed latency.

C:	� High latency (100 ms) and restricted bandwidth 
(100 Mbit/s).

 Models B and C are interesting to analyze different 
protocol variations, namely:
GMW: The system is using the GMW without con-

version to arithmetic secret sharing during score 
evaluation.
Yao: The system is using Yao’s Garbled Circuits with-

out conversion to arithmetic secret sharing during score 
evaluation.
GMW/A: The system is using the GMW protocol and 

conversion to arithmetic secret sharing during score 
evaluation.
Yao/A: The system is using Yao’s Garbled Circuits and 

conversion to arithmetic secret sharing during score 
evaluation.

In addition to the protocol behavior analysis, the 
high-latency setting is suitable to better estimate real-
world performance, as many security applications in 

clinical networks, such as packet inspection, proxy sys-
tems, and firewalls, introduce an additional delay to the 
network connection.

All tests are performed using the default Mainzelliste 
field configuration. This includes the fields first name, 
surname, birth name, day of birth, month of birth, year 
of birth, ZIP code, and City. The three name fields form 
an exchange group. For more information, see [48].

Measurements. We performed the benchmarks by 
measuring the comparison of one record against a 
varying number of records for the second party, across 
three network models and four protocol configurations. 
Figure  3 shows the resulting runtimes, grouped in the 
Setup Phase, which consists of the pre-calculations 
before the inputs are known, and the Online Phase, 
which consists of the actual computation with the real 
input data. The tests show, that the computation of 10 
000 comparisons runs in roughly five minutes consid-
ering the worst-case network model and around 20% 
faster in the best-case network model.

Table 1 shows the runtimes, interaction rounds, and 
the size of the incurred communication in the GMW/A 
configuration.

Fig. 3  Setup and online runtime in seconds for varying database sizes and four circuit variants (cf. Sect. 3.2), in three network environments: A: 0.3 
ms latency+Gbit/s bandwidth, B: 0.3 ms+100 Mbit/s, C: 100 ms+ 1 Gbit/s. The field configuration of the Mainzelliste, developed by the German 
Cancer Research Center (DKF), was used in all benchmarks
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Real world, synthetic data tests
In addition to the performance benchmarks (cf. Section ), 
we conducted several real-world tests between eight Ger-
man clinical and university locations (see Table  2). As 
the legal assessment of using MPC protocols with real 
patient data is still pending, synthetic datasets were used 
for these experiments.

The goal of these tests was twofold: first to get feedback 
from (bio)medical researchers on how well MainSEL 
solves their requirements, and second to allow research-
ers to gather experience using MPC applications. This 
experience is necessary to sway the way MPC is seen in 
the community, from an experimental, highly academi-
cal technique to a well-understood, mature way to solve 
distributed research needs, especially in the field of rare 
diseases.

Helper scripts and pre-setup configuration files were 
supplied, as well as OpenVPN servers to lower the bar-
rier to conduct the tests. A wide range of feedback and 
researchers’ background were prioritized over custom-
ized deployment scenarios. One key difference between 
this ad hoc deployment in comparison to the deployment 
as a part of a permanent research pipeline is the data 
ingestion. For this test run, MainSEL ingested CSV files 
as described below.

Mainzelliste, and with that MainSEL, is able to directly 
integrate into FHIR6-based pipelines7. HL7 FHIR is an 
established standard in medical informatics, so the inges-
tion of FHIR data is highly encouraged for permanent 
installations.

Test Data Generation The synthetic datasets for the 
evaluation of MainSEL in real-world clinical environ-
ments were based on the synthetic FHIR datasets, used 
by the CORD project to promote interoperability and 
specialized rare disease documentation (e.g. Orpha 
code) in German medical facilities. Those datasets were 
modeled to cover the “MI-I Kerndatensatz”  [16] (com-
mon-core dataset of the German medical informatics 
initiative). For the evaluation of MainSEL’s functionali-
ties, the attributes of the module “Person”, describing a 
patient’s identifiable and demographic data, were suf-
ficient. We extracted around 54 000 Records as Comma 
Separated Value (CSV) tables, i.e., “flattened” clear text 
tables and increased the variations of the first name, last 
name, and city name fields by sampling from a list of 50 

Table 1  Comparison of the setup and online runtimes of the MPC RL based intersection cardinality procedure of varying numbers 
of records in circuit variant GMW/A . Compared are the three networking configurations from Figure 3, for varying database sizes. The 
reported network communication cost is the sum of sent and received data

Database Comm. [MiB] Setup Phase [s] Online Phase [s]

Size #Rounds Setup Online A B C A B C

1 266 0.6 0.1 0.014 0.01 0.8 0.063 0.063 13

10 330 5.7 0.7 0.078 0.073 1.5 0.085 0.081 16

25 346 14.1 1.7 0.14 0.14 1.8 0.081 0.1 16

50 362 28.1 3.4 0.73 0.69 2.3 0.1 0.1 17

100 378 53.7 6.7 1.9 1.9 4.9 0.14 0.14 19

500 410 279 25.6 12 11 13 0.34 0.34 21

1,000 426 557.8 47.1 24 23 28 0.57 0.6 23

2,500 458 1,394.4 115.5 60 60 64 1.3 1.3 32

5,000 474 2,788.6 222.5 120 120 120 2.5 2.5 39

10,000 490 5,577.4 444.9 240 240 250 5.8 5.7 51

Table 2  Pairings of institutions participating in the synthetic data, real world tests

Test Number Party 1 Party 2 Party 3

1 University Medical Centre Mannheim RTWH Aachen University Berlin Institute of Health

2 University Hospital Carl Gustav Carus, Dresden University Hospital Frankfurt University Medical Centre Mannheim

3 University Hospital Tübingen University Hospital Würzburg University Hospital Regensburg

6  https://​www.​hl7.​org/​fhir/​R4.
7  thanks to the open-source contribution of Marcel Parciak of the Univer-
sity Hospital in Göttingen https://​bitbu​cket.​org/​medic​alinf​ormat​ics/​mainz​
ellis​te/​pull-​reque​sts/​179 (accessed 12.03.2022).

https://www.hl7.org/fhir/R4
https://bitbucket.org/medicalinformatics/mainzelliste/pull-requests/179
https://bitbucket.org/medicalinformatics/mainzelliste/pull-requests/179
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000 patient and city names created using the mock data 
generator “Mockaroo”.8

We prepared three datasets with around 18 000 records 
each and a known pairwise overlap, as well as a small 
common overlap between all three datasets (Fig. 4).

Runtime Performance We measured the runtime of a 
computation between two parties with 100 patients each 
using varying system compositions to assess the runt-
ime cost of the additional cryptographic components, 
namely, the Stunnel and OpenVPN containers (Fig.  5). 
The system specifications of both parties are the same as 
in the performance benchmark setup (cf. 3.2). The Open-
VPN Server ran on a server using an AMD EPYC™ 7702 
processor with 4 dedicated cores running on 3.34 GHz, 
16 GiB RAM, and a 2.5 Gbit/s network interface, suffi-
cient to fully saturate the two parties’ bandwidth.

Discussion
After an initial “transient response” for small databases, 
the benchmarks (Fig. 3; Table 1) show the expected linear 
relationship between the number of compared records 
and overall runtime. It is visible, that the usage of con-
versions to arithmetic secret shares is beneficial in nearly 
all scenarios, the exception being high-latency networks 
with small databases. Additionally, the benefit of the con-
stant-round Yao’s Garbled Circuit protocol over GMW in 
high-latency networks is visible. This is not surprising, as 
the delay incurs a runtime penalty for each of the mul-
tiple hundred interaction rounds in the GMW protocol.

The network setting is a major influence on the run 
times. For 10 000 comparisons, the runtime differs more 
than 20% between the best and the worst network model.

Both, the performance benchmarks, and the real-world 
test (Fig.  5) attest MainSEL practical, feasible perfor-
mance for real-world workloads, thus providing a useful 
tool for medical researchers. However, the measurement 
of the runtime composition in the real-world setting 
reveals the high overhead due to the secure networking 
components. Removing OpenVPN from the stack results 
in a 259% performance boost, and removing Stunnel 
results in an additional 214% improvement. The usage of 
both systems results in an approximately 5.6 times worse 
runtime. This strongly suggests that the exploration of 
other proxy and firewall traversal mechanisms, as well 
as the implementation of authenticated communication 
channels directly in the ABY framework, are fundamen-
tal steps to further increase MainSEL’s practicality for 
larger workloads.

The separation between Setup Phase and Online Phase 
is beneficial, as it provides insight for gauging the feasi-
bility of an “online system” mode of operation. With this, 
we mean a continuously running system updating the 
intersection count in the background, e.g., after every 
patient admission. In this case, the setup phase can be 
run in between admissions with the online phase as the 
only “observable” delay between data entry and result.

Lessons Learned from Real World Tests. All test sites 
were able to perform the complete test suite with the 

Fig. 4  Composition of the synthetic datasets. All three generated 
datasets consist of roughly 18 000 records. The pairwise overlap 
consists of around 200 records. In addition, 8 records are included in 
all three datasets

Fig. 5  Runtime composition of the full MainSEL system comparing 
two databases with 100 patients each. The “Bare MainSEL” setup 
consists of only the PostgreSQL, Mainzelliste, and Secure EpiLinker 
containers

8  https://​mocka​roo.​com.

https://mockaroo.com
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correct results. Most evaluations were attended by at 
least one MainSEL developer to solve occurring hin-
drances promptly and interview the researchers regard-
ing their experiences with MainSEL. The functionality 
and the stronger security guarantees were well received 
by the rare disease researchers, indicating the need for 
secure, pragmatic tools.

One commonly observed difficulty was based on some 
researchers’ wish to perform the computations by host-
ing MainSEL on their desktop computers, rather than 
on dedicated server hardware. Due to SARS-CoV-2 
restrictions, most researchers worked remotely, so that 
residential internet bandwidths vastly increased cal-
culation times beyond realistically feasible durations. 
When using institutional internet connections, most test 
cases could be completed within less than ten minutes. 
This underlines MainSEL’s use case as a permanent ele-
ment in an institutional research pipeline or for one-off 
computations, hosted within clinical or research net-
works. Additionally, real patients’ data – contrary to the 
used, synthetic data sets—are generally only allowed 
in restricted network settings, thus eliminating this 
observed problem by policy.

Most other difficulties were related to either the test-
scenario-specific helper scripts or the provided docu-
mentation. Some portability issues regarding converting 
file system paths between the Linux and Microsoft Win-
dows operating systems were discovered and solved. To 
make things worse, in the test period Docker Desktop 
on Windows system introduced a major version change 
of Docker Compose breaking backward compatibility. 
To conclude this group of obstacles: it became apparent, 
that our approach of providing easy-to-use scripts for 
complexity abstraction interfered with the expectations 
and usage patterns of technically highly skilled research-
ers. This eventually led to more difficulties compared to 
requiring more detailed configuration from the users.

The last two classes of hindrances were technical in 
nature, again. We worked with the participating research-
ers to accommodate the high variety of encountered 
proxy systems. The specific network configuration led to 
multiple configuration combinations required for normal 
operation. We are confident to cover most proxy configu-
rations as a result of those tests, however, different needs 
cannot be ruled out. Lastly, the OpenVPN configuration 
used for this test and discussed in Section  3.1—while 
technically compatible with all institutions’ firewalls—
can be misused to circumvent the network policies the 
firewalls are supposed to implement. This is acceptable 
for test usage with synthetic data. For real operational 
readiness, specialized gateways with well-defined func-
tionality and operation concepts coordinated with the 
institutions’ IT security teams are required.

Conclusion
In this work, we extended the MainSEL framework 
for secure, privacy-preserving record linkage to allow 
the secure calculation of patient set intersection car-
dinalities. This functionality was highly requested in 
CORD_MI. Possible use cases include study feasibil-
ity estimation and dedicated analyses. In comparison 
to “classical” Private Set Intersection (PSI) solutions, 
our solution allows a successful computation on noisy, 
incomplete, and faulty patient records.

We provided an easy-to-deploy software packet, 
achieving practical run times in real-world networks. 
Using the full system, 10 000 patient comparisons can 
be performed in around 5 min. To assure up-to-date 
deployments, easy extensibility, and easy integration, 
we employ the methods of the “Continuous Integra-
tion  /  Continuous Deployment” (CI/CD) paradigm, 
e.g., automated build and containerization pipelines.

In cooperation with the rare disease research com-
munity, we conducted tests in eight German university 
medical centers using synthetic data. We incorporated 
this community feedback and worked on simplifying 
the usage, adaptation to different IT environments, and 
documentation, as well as training for participating 
researchers.

A number of promising research directions were 
identified, thanks to the real-world tests. To achieve 
reasonable run times for very large databases, com-
putation reduction techniques look promising, but 
challenging, as some techniques, such as locality sensi-
tive hashing are known to conflict with MPC security 
models  [24]. Furthermore, different proxy and fire-
wall traversal systems, as well as the implementation 
of authenticated communication channels in the ABY 
framework would allow a performance improvement of 
up to 557%. Finally, the extension of the EpiLink record 
linkage algorithm to allow multi-party similarities, that 
is, direct record linkage between more than two par-
ties, is a frequently requested feature. This extension 
is not trivial, due to the non-transitivity of the EpiLink 
similarity.

Using MPC as the cryptographic basis of MainSEL pro-
vides vastly higher security guarantees than existing solu-
tions, e.g. those based on centralized Bloom filters. In 
particular:

•	 Sensitive patient data is protected using modern, 
tried-and-tested cryptographic primitives. Informally 
speaking, even the “weakest” cryptographic building-
block used in MainSEL (OT-Extension) uses state-
of-the-art elliptic curve cryptography and is deemed 
safe until a sufficiently powerful quantum computer 
is built.
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•	 No trusted third party or central component has to 
take part in the computation. There is no central col-
lection of sensible identifying data of any kind.

•	 Even if all but one of the participating parties are 
compromised, all uncompromised parties’ patient 
data remain private.

These improved security guarantees have the potential 
to make MPC based methods the new state of the art in 
record linkage. In fact, a recent legal investigation  [26] 
argues that MPC techniques of this kind do not consti-
tute data transfer as defined in the European General 
Data Protection Regulation (GDPR). The individual 
assessment of each specific implementation, however, 
is required. While this work was devised on a European 
legal basis, similar restrictions exist in other jurisdictions. 
MPC-based techniques might provide similar benefits 
there as well. In particular, the proposed harmonization 
of European and United States’ data protection laws in 
the Transatlantic Data Privacy Framework (TADPF), as 
well as the federal American Data Privacy and Protection 
Act (ADPPA), might thus lead to a direct applicability of 
this work to U.S.-based research partners. Future legal 
research will shine more light on this topic. Nonetheless, 
MPC-based distributed analysis techniques could enable 
researchers to perform analyses previously not allowed, 
e.g., rendering the need for a data transfer consent obso-
lete, leading to easier and quicker study designs. In any 
case, MPC based record linkage, as used in MainSEL, 
provides unprecedented privacy levels for patients in rare 
diseases and beyond.
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