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The accurate and rapid classification of Salmonella serovars is an essential focus
for the identification of isolates involved in disease in humans and animals. The
purpose of current research was to identify novel sensitive and reliable serovar-specific
targets and to develop PCR method for Salmonella C2 serogroups (O:8 epitopes) in
food samples to facilitate timely treatment. A total of 575 genomic sequences of 16
target serovars belonging to serogroup C2 and 150 genomic sequences of non-target
serovars were analysed by pan-genome analysis. As a result, four and three specific
genes were found for serovars Albany and Hadar, respectively. Primer sets for PCR
targeting these serovar-specific genes were designed and evaluated based on their
specificity; the results showed high specificity (100%). The sensitivity of the specific
PCR was 2.8 × 101–103 CFU/mL and 2.3 × 103–104 CFU/mL for serovars Albany
and Hadar, respectively, and the detection limits were 1.04 × 103–104 CFU/g and
1.16 × 104–105 CFU/g in artificially contaminated raw pork samples. Furthermore,
the potential functions of these serovar-specific genes were analysed; all of the genes
were functionally unknown, except for one specific serovar Albany gene known to be
a encoded secreted protein and one specific gene for serovars Hadar and Albany that
is a encoded membrane protein. Thus, these findings demonstrate that pan-genome
analysis is a precious method for mining new high-quality serovar-targets for PCR
assays or other molecular methods that are highly sensitive and can be used for rapid
detection of Salmonella serovars.

Keywords: Salmonella, C2 serogroups, serovar-specific molecular targets, PCR, pan-genome analysis

INTRODUCTION

Salmonella is one of crucial foodborne pathogen that causes illness worldwide, including diarrhoea,
gastroenteritis, typhoid, paratyphoid, septicaemia, and other clinical syndromes (Dekker and
Frank, 2015). Pigs, poultry and their eggs, and cattle could be infected by Salmonella (Rodriguez
et al., 2006; Xu et al., 2017), which can be disseminate to humans via ingestion of contaminated
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pork, chicken, eggs, beef, and milk (Kerouanton et al., 2013;
Bonardi, 2017). Salmonellosis represents a serious occupational
and public health hazard. Characteristic lipopolysaccharide,
which is composed of lipid-A and a major O-antigen with side
chains of repeating units of sugar residues, is a dominant cause
for Salmonellosis (Sannigrahi et al., 2020). On the basis of the
O antigen, Salmonella has been divided into 46 serogroups
that markedly differ in their virulence (Davies et al., 2013); the
isolates of D, B, C1, C2, and E serogroups take up a great
majority of foodborne outbreaks (Graziani et al., 2017). Several
studies have undertaken mechanism analysis and developed
detection methods for Salmonella serovars Enteritidis (Wagner
and Hensel, 2011), Typhimurium (Maurischat et al., 2015),
and Derby (Castelijn et al., 2013), since they top the list of
the most prevalent serotypes (Ni et al., 2018). However, little
information about the other serovars is available, particularly
for the infective serotypes that belong to the C2 serogroup.
For example, S. Hadar is a host-non-specific serotype that
causes infection in both humans and animals. It has been
identified previously in hospital outbreaks and confirmed as the
fourth most frequently isolated Salmonella serovar in Germany
(Weidebotjes et al., 1998; Deshpande et al., 2015). Furthermore,
instances of multidrug resistance in S. Albany have increased
in recent years (Doublet et al., 2003). In order to reduce
the prevalence of Salmonella, establishment rapid and feasible
detection methods is essential for the identification of high-risk
Salmonella serovars.

Traditional serotyping methods are based on slide and
tube agglutination tests using O and H antigen-specific anti-
sera (Herrera-León et al., 2007). However, these measures are
costly, labour-intensive, time-consuming and insensitive, with
certain isolates remaining partially typed or untyped, attributed
to the loss of somatic and flagellar antigens. Nucleic acid
amplification tests (NAATs), with the advantages of their high-
speed, convenient operation, high-sensitivity and-specificity,
have been extensively applied in different fields including the
food industry, agriculture, and environmental sciences (Lee
et al., 2019). Selection of appropriate pathogen genes is key
to the sensitivity and specific detection capabilities of NAATs.
Various genes have been used to detect Salmonella serogroups
and serovars including SNSL254_A2005 for Salmonella C2
serogroups (Liu et al., 2011), STM4495 for S. Typhimurium (Liu
et al., 2012), sdfI for S. Enteritidis (De Freitas et al., 2010), ISR2
for S. Infantis (Akiba et al., 2011), and Newp2 for S. Newport
(Bugarel et al., 2017)—some of which may also be present in
non-target strains.

With the recent advancements in high-throughput sequencing
technology, an increasing number of whole genome sequences for
Salmonella are available online. Through bioinformatics analysis,
the resulting genomic information elucidates the diversity of
Salmonella serovars. The pan-genome is the sum of a core
genome which constitutes of genes present in all of the
strains analysed and a dispensable genome that comprises genes
present in some but not all of the strains analysed (Tettelin
et al., 2008; Kim et al., 2020). We obtain molecular targets
by selecting the co-existence genes in the target serovar of
Salmonella and excluding the unspecific genes that are distributed

among non-target serovars. Based on our prior research on
the prevalence of Salmonella in China (Yang et al., 2015a,b,
2016, 2020a,b), more than 1,400 strains of Salmonella with
42 serovars have been isolated. We undertook the present
study with the goal of identifying serovar-specific molecular
targets for the most common serovars in serogroup C2 by pan-
genome analysis of Salmonella genome sequences. Furthermore,
practical PCR verification was conducted with a large number
of bacterial strains and the specificity, sensitivity, and reliability
of the PCR were also assessed. We evaluated the specificity
targets of various Salmonella serovars by PCR and analysed
the potential functions of these target genes. These data were
analysed to obtain high-quality candidates for NAATs, as the
use of this PCR-typing method permits for the identification
of Salmonella serovars can be save a large abundance of time
and money, and its accuracy is the same as the traditional
serotyping methods.

MATERIALS AND METHODS

Tested Strains
One hundred fifty-eight Salmonella strains which were serotyped
by traditional methods, and twenty-two non-Salmonella strains
were used for assessing the specificity in our study (Table 1).
Sixteen and four strains were acquired from The American Type
Culture Collection (ATCC, Manassas, VA, United States) and
National Centre for Medical Culture Collection (CMCC, Beijing,
China), and other strains were isolated from food sources in our
laboratory from 2011 to 2014.

Genomic Sequences of Salmonella
Species
Considering the number of scaffolds exceed 200, the genome
sequence presumably has large gaps. Thus, the number of scaffold
less than or equal to 200 for representative strains of the
genome sequences are applied to analysis in this study. The 16
serovars belonging to serogroup C2 were represented by 575
isolates, with 1–248 isolates for each serovar. An additional 150
isolates from non-target serovars were also included. All 725
Salmonella genomes were downloaded from NCBI GenBank
(NIH, Bethesda, MD, United States) in nucleotide FASTA format.
A complete listing of the 725 genomes including GenBank
identifier, serogroup, serovar, isolation source, geographic
location, collection date, genome size, GC%, the number of
scaffold etc. are listed in Supplementary Table 1.

Phylogenetic Analysis
The core-genome alignment of Salmonella was implemented
using Harvest v1.1.2 software (Treangen et al., 2014) with the
S. Albany ATCC 51960 genome as a reference. Conducting
recombination and removing the putative recombined regions
were implemented Genealogies Unbiased By recomBinations
In Nucleotide Sequences (Gubbins, Croucher et al., 2015).
Single nucleotide polymorphisms (SNPs) data were obtained
from the recombination-free core-genome alignment by the
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TABLE 1 | Bacteria strains and specificity of PCR in this study.

PCR results using 7 novel serovar-specific targets&

Species/Serotype Strain* Number of strains tested 1 2 3 4 5 6 7

S. Albany Laboratory strain 17 + + + + – – –

S. Hadar Laboratory strain 5 – – – – + + +

S. Typhimurium ATCC14028 1 – – – – – – –

S. Typhimurium Laboratory strain 9 – – – – – – –

S. Derby Laboratory strain 9 – – – – – – –

S. Indiana Laboratory strain 9 – – – – – – –

S. Agona Laboratory strain 5 – – – – – – –

S. Enteritidis CMCC50335 1 – – – – – – –

S. Enteritidis Laboratory strain 9 – – – – – – –

S. Weltevreden Laboratory strain 9 – – – – – – –

S. London Laboratory strain 8 – – – – – – –

S. Wandsworth Laboratory strain 1 – – – – – – –

S. Stanley Laboratory strain 1 – – – – – – –

S. Rissen Laboratory strain 9 – – – – – – –

S. Meleagridis Laboratory strain 8 – – – – – – –

S. Corvallis Laboratory strain 1 – – – – – – –

S. Kottbus Laboratory strain 1 – – – – – – –

S. Pomona Laboratory strain 9 – – – – – – –

S. Senftenberg Laboratory strain 9 – – – – – – –

S. Braenderup Laboratory strain 9 – – – – – – –

S. Tallahassee Laboratory strain 1 – – – – – – –

S. Newport Laboratory strain 1 – – – – – – –

S. Potsdam Laboratory strain 1 – – – – – – –

S. Infantis Laboratory strain 5 – – – – – – –

S. Muenster Laboratory strain 1 – – – – – – –

S. Manhattan Laboratory strain 1 – – – – – – –

S. Kentucky Laboratory strain 1 – – – – – – –

S. Chailey Laboratory strain 1 – – – – – – –

S. Litchfield Laboratory strain 1 – – – – – – –

S. Bareilly Laboratory strain 1 – – – – – – –

S. Give Laboratory strain 1 – – – – – – –

S. Montevideo Laboratory strain 1 – – – – – – –

S. Mbandaka Laboratory strain 1 – – – – – – –

S. Riggil Laboratory strain 1 – – – – – – –

S. Lomita Laboratory strain 1 – – – – – – –

S. Saintpaul Laboratory strain 1 – – – – – – –

S. Aberdeen Laboratory strain 1 – – – – – – –

S. Istanbul Laboratory strain 1 – – – – – – –

S. Lagos Laboratory strain 1 – – – – – – –

S. Singapore Laboratory strain 1 – – – – – – –

S. Eingedi Laboratory strain 1 – – – – – – –

S. Virchow Laboratory strain 3 – – – – – – –

S. Heidelberg Laboratory strain 1 – – – – – – –

S. Thompson Laboratory strain 1 – – – – – – –

E. coli ATCC25922 1 – – – – – – –

E. coli CMCC44105 1 – – – – – – –

E. coli O157 ATCC 12900 1 – – – – – – –

E. coli ATCC43886 1 – – – – – – –

C. sakazakii ATCC 29544 1 – – – – – – –

C. sakazakii 3414c1 1 – – – – – – –

S. sonnei CMCC(B)51592 1 – – – – – – –

(Continued)
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TABLE 1 | Continued

PCR results using 7 novel serovar-specific targets&

Species/Serotype Strain* Number of strains tested 1 2 3 4 5 6 7

Y. enterocolitica Laboratory strain 1 – – – – – – –

Y. enterocolitica CMCC 52204 1 – – – – – – –

V. parahemolyticus ATCC 33847 1 – – – – – – –

V. parahemolyticus ATCC 17802 1 – – – – – – –

S. aureus ATCC25923 1 – – – – – – –

S. aureus ATCC29213 1 – – – – – – –

P. aeruginosa ATCC 9027 1 – – – – – – –

P. aeruginosa ATCC 15442 1 – – – – – – –

B. cereus ATCC14579 1 – – – – – – –

L. monocytogenes ATCC19115 1 – – – – – – –

L. monocytogenes CMCC 54104 1 – – – – – – –

B. subtilis ATCC6633 1 – – – – – – –

B. mycoides ATCC10206 1 – – – – – – –

C. jejuni Laboratory strain 2 – – – – – – –

Total 180

*Laboratory strain that were isolated from food samples.
&1–4: group_20134, group_22774, group_29844 and group_29846 (for serovar Hadar-specific gene); 5–7: group_27286, group_27289 and group_27297 (for serovar
Albany-specific gene).

script online at https://github.com/sanger-pathogens/snp-sites.
The maximum-likelihood (ML) phylogenetic tree was established
on the connected core SNPs by Random Axelerated Maximum
Likelikhood (RAxML v8.2.10) in the GTRGAMMA model (1000
bootstrap) (Stamatakis, 2014). Results were visualised with
Interaction Tree Of Life (iTOL, Letunic and Bork, 2016).

Pan-Genome Analysis and Identification
of Serovar-Specific Genes
All analysed genome sequences were re-annotated using Prokka
v1.11 (Seemann, 2014). With a BlastP (NCBI/NIH) identity
cut-off of 70%, the Prokka output was utilised to establish
the pan-genome by Roary v3.11.2 (Page et al., 2015). The
absence/presence profile of all genes across all samples was
transferred into a 0/1 matrix with a local script. Based on the
0/1 matrix, the core genes (presenting in over 99% Salmonella
genomes) and serovar-specific genes were screened, presenting
in over 95% target serovar strains (considered soft-core genes)
and in less than 5% of other serovar strains (considered non-
related) (Buchanan et al., 2017; Thépault et al., 2017). Functional
classification of the core genes were assigned to the Gene
Ontology (Go) terms (Ashburner et al., 2000). The specificity of
serovar-specific genes were further confirmed by BLAST against
the NCBI nucleotide sequence database.

Functional Analysis of Serovar-Specific
Genes
The serovar-specific genes were annotated in public databases
including the Non-redundant (NR), Kyoto Encyclopaedia of
Genes and Genomes (KEGG), Clusters of Orthologous Groups
(COG), Virulence Factors Database (VFDB), Comprehensive
Antibiotic Resistance Database (CARD), ResFinder, and

Antibiotic Resistance Gene-ANNOTation (AGR-ANNOT).
TMHMM Server, SignalP, and Phobius were also implemented
to confirm whether these genes encode membrane and/or
secretory proteins.

Evaluation of Specificity and Sensitivity
for Novel Serovar-Specific Molecular
Targets
The novel serovar-specific target genes were applied to design
primer sets (Table 2) using Oligo 7 software and synthesised
by Generay Biotech Co., Ltd. (Shanghai, China). The specificity
of the primer sets were tested against the 180 strains listed
in Table 1. Genomic DNA was extracted using the DNeasy
blood and tissue kit (Qiagen, Shanghai, China) according to
the manufacturer’s instructions. The purity and concentration
of 50 µL genomic DNA samples were measured by Qubit R©

3.0 Fluorometer (Life Invitrogen, United States) and stored at
-20◦C before being used as a template for PCR. Each 25 µL
PCR amplification mixture consisted 12.5 µL of buffer (2×,
Novoprotein Scientific Inc., Shanghai, China), 1 µL each of the
forward and reverse primer (5 µM), 1 µL of template DNA,
and sterile distilled water (filled to a final volume). The PCR
conditions were 95◦C for 5 min, followed by 35 cycles of 95◦C for
30 s, 60◦C for 30 s, and 72◦C for 30–60 s, and final extension at
72◦C for 10 min. The PCR products were analyse via 1.5% agarose
gel electrophoresis and visualised using a UV transilluminator
(GE 138 Healthcare, WI, United States).

For sensitivity testing, 10-fold serial dilutions (107–
100 CFU/mL) of S. Hadar strain SA39(5) and S. Albany
strain SA48(32) were subjected to DNA extraction. The PCR
amplification were implemented as mentioned above except 2
µL of each genome DNA was used as a template.
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TABLE 2 | Specific primer sets and sensitivity of PCR for artificially contaminated raw pork samples with Salmonella serovar Hadar and Albany.

Serotype Gene locationX Gene Sequences (5′-3′) PCR product (bp) Detection limit for artificially
pork sample (CFU/g)

S. Hadar 3719826–3721526 group_20134 TTGATCTGCTGCTGCCTAAT 1,604 1.16 × 105

TGGAACTGGTGTCCTGAAAT

3715592–3716611 group_22774 GGAATAACAAAGGTGGTACT 902 1.16 × 104

CCTGACCTTAGAGAATGGCT

3717735–3717890 group_29844 TGCCTGTGAGTTTTAACTCT 155 116 × 105

CTATGTCTCAGCCAGTTCAT

3721669–3722367 group_29846 GCGTACCACATCAAATCAGT 567 1.16 × 104

CCCAGAGACATGCCAAAAAT

S. Albany 3472553–3473584 group_27286 CTCAGTTACCAGAAAGAAGT 922 1.04 × 103

GAAGCCTGTTATTGATGAGT

3608857–3610113 group_27289 GCGTTGAGGTTGAGTGGTTG 1,187 1.04 × 104

GAACAGCAAATCACGGTAGT

4265383–4265706 group_27297 TCCTACAAGCTTTGGCGAAT 283 1.04 × 103

GTGGCAACGGAACTTAAGAC

X Reference strain are S. Hadar str. FDAARGOS_313 and S. Albany str. ATCC 51960.

Artificial Contamination of Raw Pork
Samples
The S. Hadar strain SA39(5) and S. Albany strain SA48(32)
were enriched in LB broth at 37◦C overnight, and the 10-fold
serial dilutions of different concentrations of cultures were
prepared. Twenty-five grams of pork determined to be negative
for Salmonella by standard culture methods was homogenised in
225 mL of sterile saline to obtain the matrix. Subsequently, 9 mL
homogenate was spiked with 1 mL of various concentrations of
a specific Salmonella serovar to final levels of approximately 108–
101 CFU/g samples. DNA was extracted from 1 mL of the mixture
and analysed by PCR under the same conditions. Non-inoculated
pork meat was used as the negative control and all assays were
performed independently, in triplicate.

RESULTS

Phylogenetic Analysis of Salmonella
The 725 selected Salmonella isolates differed in the 1,803
core-genome SNPs. The ML phylogenetic tree was established
based on the connected core SNPs. Isolates were distributed
across serovars and all isolates belonged to serovar Albany
and Hadar are clustered respectively. Notably, 80.34%
(94/117) and 57.66% (143/248) strains belonged to serovar
Kentucky and Newport are clustered, respectively (Figure 1).
Isolates that fell within different serovars were highly diverse,
indicating that an evolutionary difference might exist between
these serovars.

Identification of Serovar-Specific Genes
in Salmonella
We determined the size and distribution of the Salmonella
pan-genome across the 725 genome sequences and the analysis
revealed a set of 1,318 conserved genes that were universally
present within ≥99% Salmonella genomes. Functional profiles

of conserved genes were determined in Figure 2. Furthermore,
a group of 1,190 genes were present in 95% ≤ strains < 99%,
which was called the soft-core genes of Salmonella. Besides,
2,904 and 30,032 genes were found in 15% ≤ strains < 95%
and 0% ≤ strains < 15% of the isolates of Salmonella.
Consistent with previous report (Chanda et al., 2020), the
Salmonella showed an open pan-genome structure, and that
the size of pan-genome continue to expand with addition
sequenced genomes, but its conserved genes will remain stable
(Supplementary Figure S1).

Based on the gene presence/absence profile among the 725
Salmonella genomes, 10 fragments were found to be specific
to serogroups C2 and serovar Hadar and Albany. For other
serovars of Salmonella serogroup C2, there is no novel single
targets because the percentage of genomic sequences of strains
for the genes presence in target-serovar were less than 85%
and in non-target serovars were more than15%. Notably, four
(group_20134, group_22774, group_29844, and group_29846)
and three (group_27286, group_27289, and group_27297)
specific gene markers were found in serovar Hadar and Albany.
However, SNSL254_A2005 is a previously reported marker in
serogroups C2 and HSR3 and Hadspe are previously reported
markers in Hadar. The percentage of genomic sequences of
strains for the present in target and non-target serovars are shown
in Table 3.

Characterisation of Serovar-Specific
Genes
One serovar albany-specific gene (group_27289) is linked with
the function of defence mechanisms (Supplementary Table S2).
However, all other serovar-specific genes were annotated
uncharacterised functions. We went on to predict whether
these genes participate in secretion. According to the prediction
pipeline described in previous studies (refs), potentially secreted
extracellular proteins and cell membrane proteins were identified
from serovar-specific genes (Supplementary Table S2). The
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FIGURE 1 | Phylogenetic analysis of Salmonella. The ML phylogenetic tree was established based on the connected core 1,803 core-genome SNPs from725
selected Salmonella strains. Strains were distributed across serovars and 100% (17/17), 100% (41/41), 80.34% (94/117), and 57.66% (143/248) strains belonged to
serovar Albany, Hadar, Kentucky, and Newport are clustered, respectively.

group_29846 gene (for serovar Hadar-specific gene) and
group_27297 gene (for serovar Albany-specific gene) are encoded
membrane proteins. Group _27286 (for serovar albany-specific
gene) is encoded as a secreted protein. In addition, the seven
specific genes were not related to the virulence-associated genes
or the antibiotic resistance-associated genes.

Specificity and Sensitivity Assessment of
Serovar-Specific Genes by PCR
A total of 158 Salmonella strains and 22 non-Salmonella
strains (Table 1) were applied to assess the specificity of the
primer sets designed based on serovar-specific fragments by
PCR (Table 2). The proper detectable amplicon were observed
from Salmonella serovar Hadar and Albany strains, but no
amplification was obtained with DNA from all non-target strains.
Thus, four Hadar-specific and three Albany-specific primer
sets were accurately detected of Salmonella serovar Hadar and
Albany (Table 1).

The analytical sensitivity test showed that the detection
limit of the primers designed based on the group_27297 and
group_27286 primers was approximately 28 CFU/mL (Figure 4),
whereas that of the group_29844 primer based on Salmonella
serovar Hadar was approximately 2.3× 104 CFU/mL (Figure 2).
Others showed a detection limit of 2.8–2.3 × 103 CFU/mL
(Figures 3, 4).

Detection of Sereotype Salmonella in
Artificially Contaminated Raw Pork
Samples
Artificially contaminated raw pork samples were used to evaluate
the sensitivity, specificity, and reliability of the primer sets
designed based on serovar-specific genes. As shown in Table 2,
the novel target-specific Albany serovar achieved a limit of
detection as low as 1.04 × 103–104 CFU/g via PCR and target-
specific Hadar serovar achieved a limit of detection as low as
1.16× 104–105 CFU/g via PCR.

DISCUSSION

At present, the Kauffmann-White scheme of serotyping is still the
most commonly used method for the identification of Salmonella.
This conventional method is challenging in its complicated
control of serum quality and lengthy, while the role of NAATs
such as PCR is clear in their rapid identification of foodborne
diseases. The usefulness of the DNA amplification method is
predicated on the selection of the appropriate target sequence and
specificity of the primer sets. A few serovar-specific fragments for
Salmonella are available except for those related to genes of the
O and H antigens such as STM4495 for S. Typhimurium (Liu
et al., 2012), sdfI for S. Enteritidis (De Freitas et al., 2010), ISR2
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FIGURE 2 | Distribution of GO categories in conserved genes of Salmonella.

for S. Infantis (Akiba et al., 2011), and Newp2 for S. Newport
(Bugarel et al., 2017), some of which may also be present in
non-target strains due to the low specificity of targets—easily
causing false-positive and false-negative results. Thus, additional
novel specific molecular targets for Salmonella serovars must be
identified and applied.

The comparative genomic method provides an available
and efficient approach to obtain specific molecular targets
for different pathogens. Unlike the complicated process of
suppression subtractive hybridisation (requires restriction
endonuclease, ligase, vector plasmid, and hybridisation) used
for identifying specific targets to detect Salmonella serovar of
Enteritidis and Pullorum (Agron et al., 2001; Li et al., 2009), the
comparative genomic method only requires the collection of

genomic sequences, classification target and non-target strains,
and identification specific targets only present in target strains
but absent in non-target strains by computers. Pan-genome
analysis has been used to identify specific markers in bacteria,
such as serotype, virulence, and antibiotic resistance, because
bacterial phenotypes are usually associated with specific genes
acquired through horizontal gene transfer (Buchanan et al., 2017;
Laing et al., 2017). These genes are most frequently accessory
genes in a bacterial species and are only present in bacterial
strains that show corresponding phenotypes (McInerney
et al., 2017). In order to obtain targets with high reliability
and feasibility, we herein employed the pan-genome analysis
approach to identify serovar-specific molecular targets for the
detection of serogroup C2.
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TABLE 3 | Presence profile of specific targets for Salmonella serogroups
C2 and serovars.

Serotype Related gene Presence profile Source

In target
(%)

In non-target
(%)

Serogroup C2 SNSL254_A2005 555 (96.52%) 1 (2%) Liu et al., 2011

S. Hadar group_20134 40 (97.56%) 0 (0) Our study

group_22774 40 (97.56%) 0 (0) Our study

group_29844 40 (97.56%) 0 (0) Our study

group_29846 40 (97.56%) 0 (0) Our study

HSR3 40 (97.56%) 2 (0.29%) Chiang et al.,
2018

Hadspe 34 (82.83%) 0 (0) Bugarel et al.,
2017

S. Albany group_27297 15 (100%) 2 (0.28%) Our study

group_27289 15 (100%) 1 (0.14%) Our study

group_27286 15 (100%) 1 (0.14%) Our study

In a previous study, the SNSL254_A2005 gene (hypothetical
protein) was evaluated as a PCR target for Salmonella serogroup
C2 detection and the results demonstrated that among 4
Salmonella C2 isolates of 2 serovars and 103 non-target
isolates, the SNSL254_A2005-based PCR detection showed 100%
inclusivity and 100% exclusivity (Liu et al., 2011). In our
study, the percentage of genomic sequences of strains for the
SNSL254_A2005 gene presence in serogroup C2 and in other
serogroups was 96.52% (555/575) and 2% (1/150), respectively,

based on the gene presence/absence profile by pan-genome
analysis. Thus, according to our results and previous studies, it
can be concluded that the SNSL254_A2005 gene is an effective
specificity target for Salmonella serogroup C2 detection.

Currently, O and H antigen genes are ordinary targets
for the detection of Salmonella serovars based on PCR (Yang
et al., 2012; Maurischat et al., 2015). The major drawbacks
of this approach are the utilisation of several targets for the
detection of one serotype. In this study, we obtained seven
novel single targets to detect Salmonella serovar Hadar and
Albany. The HSR3 and Hadspe (hypothetical protein) genes
were evaluated as PCR targets for Salmonella serovar Hadar
detection and the results showed high specificity (100%) of
this gene (Bugarel et al., 2017; Chiang et al., 2018). Compared
to previous reports, the percentage of genomic sequences of
strains for the four novel genes (group_20134, group_22774,
group_29844, and group_29846) and HSR3 specific for serovar
Hadar presence in target strains was higher (97.56%, 40/41) than
in the Hadspe (82.93, 34/41), whereas in non-target serovars,
the HSR3 genes were observed in serovars Paratyphi B and
Tees (0.29%, 2/684). To the best of our knowledge, no primer
set has been reported for the specific detection of serovar
Albany. In the current study, the group_27286, group_27289,
and group_27297 genes were identified to be specific to serovar
Albany. The percentage of genomic sequences of strains for
the gene presence in serovar Albany was 100% (15/15) and
in other serovars was 0.14 (1/710), 0.14 (1/710), and 0.28
(2/710). These three genes were present in one strain for serovar
Newport (0.4%, 1/248) and one strain for serovar Kentucky

FIGURE 3 | PCR detection sensitivity using dilutions of a pure culture of S. Hadar strain SA39(5). Lane M: DSTM 2000 marker; Lane C: negative control
(double-distilled H2O); lane 1–8, 9–16, 17–24, and 25–32 primer sets based ongroup_20134, group_22774, group_29844, and group_29846 genes, respectively
(concentrations ranging from 2.3 × 107 to 100 CFU/mL).
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FIGURE 4 | PCR detection sensitivity using dilutions of a pure culture of S. Albany strain SA48(32). Lane M: DSTM 2000 marker; Lane C: negative control
(double-distilled H2O); lane 1–8, 9–16, and 17–24 primer sets based on group_27297, group_27289 and group_27286 genes, respectively (concentrations ranging
from 2.8 × 107 to 100 CFU/mL).

(0.85, 1/117) was also observed in the group_27297 gene. In
addition, Newp and Newspe genes were evaluated as PCR targets
for Salmonella serovar Newport detection in a previous report
and the results showed almost all of tested strains belonged to
serovar Newport, Hadar, Bovismorbificans, Kottbus, Blockley,
Manhattan, Litchfield, Glostrup, and several strains belonged
to serovar Virchow and Muenchen were amplified by Newp
gene; in order to distinguish serovar Newport and Hadar, the
Newspe marker was designed, which showed 93.3% (28/30)
strains for Newport and only S. Blockey were amplified Newspe
gene (Chiang et al., 2018). This result was also observed in
our study. The percentage of genomic sequences of strains for
the Newp gene in target and non-target strains was 87.5%
(217/248) and 23.69% (113/477), respectively, and 87.8% (36/41)
strains for S. Hadar also had this gene, but when the Newspe
gene was added, although S. Hadar did not show a cross-
reaction, there were still some serovars harbouring of the
Newspe gene, in which the percentage of genomic sequences
of strains for the Newp gene in target and non-target strains
was 78.3% (188/248) and 23.69% (169/477), respectively. Based
on our research, there is no ideal specific gene for S. Newport.
The results suggest that some molecular targets previously
considered specific may inevitably result in elimination with
the expansion of genome databases. We also analysed the
potential functions of serovar-specific genes. Consistent with

previous reports (Kim et al., 2006; Liu et al., 2012; Zhang et al.,
2018), all of the selected specific genes for the serovar are
encoded hypothetical proteins or putative proteins. Therefore,
future studies on the functions of the selected seven genes
are necessary for a better understanding of Salmonella serovar
Hadar and Albany.

The primers for the PCR assays were designed according to
the sequences of the seven specific genes and specificity was
verified using 158 isolates with 42 Salmonella serovars in China
and other genera. All primer sets showed perfect specificity in the
PCR assays (Table 1). We determined the detection limit of the
PCR assays using seven primer sets and different concentrations
of pure Salmonella cultures. The detection limit for primer sets
to serovar Albany and Hadar were 2.8 × 101−3 CFU/mL and
2.3 × 103−4 CFU/mL, respectively (Figure 4); these results
are in agreement with those reported by Kong et al. (2013),
Chen et al. (2015), and Chin et al. (2017). The sensitivity,
specificity, and reliability of the PCR were further confirmed
in S. Albany and Hadar in artificially contaminated raw pork
samples. The detection limit was 1.04 × 103−4 CFU/g and
1.16× 104−5 CFU/g in raw pork samples, which was in the same
range as that of other targets by PCR (Beaubrun et al., 2012).
Therefore, it can be applied for rapid convenient, specific and
sensitive detection of Salmonella serovar Albany and Hadar by
PCR using seven serovar-specific genes in food.
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CONCLUSION

In conclusion, pan-genome analysis is an effective method to
identify molecular targets specific to Salmonella serovars and
the identified genes can be used as targets for molecular typing
and identification of Salmonella serovars. The accuracy of the
PCR results showed that it was a suitable method to explore
the differences among serogroups. Future studies are needed
to identify other single specific targets for the identification of
other Salmonella serovars through pan-genome analysis for use
as a new target for improved high-throughput detection methods
crucial for the effective treatment and prevention of transmission
from animal food to humans.
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