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Abstract: To generate drug molecules of desired properties with computational methods is the 

holy grail in pharmaceutical research. Here we describe an AI strategy, retro drug design, or RDD, 
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to generate novel small molecule drugs from scratch to meet predefined requirements, including 

but not limited to biological activity against a drug target, and optimal range of physicochemical 

and ADMET properties. Traditional predictive models were first trained over experimental data 

for the target properties, using an atom typing based molecular descriptor system, ATP. Monte 

Carlo sampling algorithm was then utilized to find the solutions in the ATP space defined by the 

target properties, and the deep learning model of Seq2Seq was employed to decode molecular 

structures from the solutions. To test feasibility of the algorithm, we challenged RDD to generate 

novel drugs that can activate µ opioid receptor (MOR) and penetrate blood brain barrier (BBB). 

Starting from vectors of random numbers, RDD generated 180,000 chemical structures, of which 

78% were chemically valid. About 42,000 (31%) of the valid structures fell into the property space 

defined by MOR activity and BBB permeability. Out of the 42,000 structures, only 267 chemicals 

were commercially available, indicating a high extent of novelty of the AI-generated 

compounds. We purchased and assayed 96 compounds, and 25 of which were found to be MOR 

agonists.  These compounds also have excellent BBB scores. The results presented in this paper 

illustrate that RDD has potential to revolutionize the current drug discovery process and create 

novel structures with multiple desired properties, including biological functions and ADMET 

properties. Availability of an AI-enabled fast track in drug discovery is essential to cope with 

emergent public health threat, such as pandemic of COVID-19.  
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Introduction 
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The primary goal of modern drug discovery is to identify molecules of therapeutic benefits. A 

successful drug molecule usually shares two features: 1. It modulates the biological function of 

its therapeutic target(s) selectively with sufficient binding affinity; 2. It has a balanced ADMET 

(absorption, distribution, metabolism, excretion, and toxicity) profile, such that it reaches its 

target(s) unchanged and with sufficient quantity.  Traditionally, a drug discovery project starts 

with screening a compound library against a proposed protein target, followed by an 

optimization process to fix existing issues associated with original hit compounds, such as 

potency, selectivity, PK, and etc. This traditional drug discovery process requires tremendous 

input of resources and time.  Computational generation of high-quality drug candidates with 

desired properties, a long-sought goal of pharmaceutical research, will not only reduce the 

unprecedented cost of bringing a drug to market dramatically (Paul, Mytelka et al. 2010, 

Hughes, Rees et al. 2011, DiMasi, Grabowski et al. 2016), it will also dramatically speed up the 

whole process. Accelerated drug development is of paramount importance for public health 

threats of pandemics such as COVID-19 (Administration 2020, Grobler, Anderson et al. 2020)  

 

The deep learning (DL) technology (LeCun, Bengio et al. 2015, Schmidhuber 2015) brings hope 

to a new era of drug discovery and development and have the potential of substantially 

improving or even revolutionizing the current drug discovery paradigm. DL utilizes multiple 

layers of neurons to model high-level abstractions, complex and non-linear relation in data, and 

has outperformed humans in many fields including image processing, text and voice 

recognition, protein structure prediction and GO game; yet this potential in drug discovery 

remains to be fulfilled.  

 

Various machine learning and deep learning algorithms have been proposed over the past 

decade for generation of novel molecules with therapeutic benefits.  Kadurin et al (Kadurin, 

Nikolenko et al. 2017), Blascheke et al (Blaschke, Olivecrona et al. 2018), and Lim et al  (Lim, 

Ryu et al. 2018) used autoencoder, variational autoencoder and adversarial autoencoder to 

identify and generate new molecular fingerprints with predefined properties.  Bjerrum and 

Threlfall (Esben jannik Bjerrum 2017), Cherti et al (Medhdi Cherti 2017),  and Segler et al 

(Segler, Kogej et al. 2018) utilized recurrent neural network, in particular, the long short-term 

memory (LSTM) model  (Hochreiter and Schmidhuber 1997) to generate novel molecular 

structures with certain target properties.  
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The autoencoder and RNN models are quite limited for generating novel molecules of preferred 

properties. These models are not designed to assess, or optimize, the properties of the generated 

molecules. Furthermore, quality of deep learning models is largely determined by data quality 

and quantity on which they are based, and unfortunately the sample size and data quality of 

available experimental drug discovery data are usually insufficient for deep learning methods.   

 

To address the limitations of autoencoder and RNN models, various reinforcement learning 

(RL) (RS Sutton 1998)  and generative adversarial networks (GAN) (Ian Goodfellow 2014)  have 

been proposed and implemented for sequence generation. These models typically consist of 

sequence generation model, RL, and GAN. The RL and GAN models are used to optimize and 

move the generated molecules towards the target properties.  

 

Olivecrona et al (Olivecrona, Blaschke et al. 2017) introduced a method to tune a sequence-

based generative model for de novo molecular design. Sanchez-Lengeling et al  (Benjamin 

Sanchez-Lengeling 2017) presented ORGANIC, a framework based on both GAN and RL, 

which is capable of producing a distribution over molecular space that matches with a certain 

set of desirable metrics. Popova et al (Popova, Isayev et al. 2018) devised and implemented a 

novel computational strategy for de novo design of molecules with desired properties.  As a 

typical strategy, it includes a generative model that produces chemically valid SMILES string, 

predictive models that forecast the desired properties of the de novo-generated compounds, 

and a reinforcement learning module that tips the generated structures to have the desired 

properties.  Putin et al  (Putin, Asadulaev et al. 2018) reported a deep neural network, ATNC or 

Adversarial Threshold Neural Computer, for the de novo design of novel small-molecule 

organic structures with druglikeness properties. Zhou et al (Zhou, Kearnes et al. 2019) 

presented a framework, called Molecule Deep Q-Networks (MolDQN), for molecule 

optimization by combining domain knowledge of chemistry and state-of-the-art reinforcement 

learning techniques (double Q-learning and randomized value functions).  One advantage of 

MolDQN is that it can produce structures of 100% chemical validity. Zhavoronkov 

(Zhavoronkov, Ivanenkov et al. 2019)  developed a deep generative model, generative tensorial 

reinforcement learning (GENTRL), for de novo small-molecule design, and GENTRL produced 

several compounds, which were active in biochemical assays and cell-based assays. Ikebata et al 
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(Ikebata, Hongo et al. 2017) used Bayesian model to identify promising hypothetical molecules 

with a predefined set of desired properties.  

 

Most of the efforts in de novo molecular design are based upon deep neural networks, in 

particular, RNN, GAN, and RL. While these DL methods demonstrated the good potential in 

drug discovery, they are not ready for prime time in typical drug discovery projects.  First, deep 

learning models require a very large number of good quality samples. Unfortunately, available 

experimental data for drug discovery are limited in both quality and quantity.  Second, current 

methods are not efficient for sampling molecular structural space. To generate new valid 

chemical structures, a method can only perform local, small, and slow perturbations on 

representations like SMILES string (Daylight) or graph; such sampling method is apparently 

not sufficient considering the vast possible chemical and structural space. This may partially 

explain why GENTRL took 21 days to produce several active compounds. Sampling regardless 

chemical structure validity will lead to very small percentage of produced structures to be valid. 

For example, only 7% of the generated structures by ORGANIC is valid. Third, RL algorithms 

tend to have difficulties in achieving a good balance of exploration and exploitation, making 

long term credit assignment, and being unstable likely due to moving target. Fourth, with RL, it 

is theoretically possible to optimize multiple target properties, but in practice, current 

implementations use either one target property or weighted sum of multiple target properties.  

 

Here we propose a new strategy called Retro Drug Design (RDD). Unlike the current forward 

approaches as described above, RDD starts from multiple desired target properties, works 

backwards, and then generates the “qualified” compound structures. 

  

RDD is based upon following rationales and considerations. First, although the amount of 

available discovery data of small molecules for drug targets and ADMET properties is 

insufficient for deep learning models, it is sufficient for traditional, or shallow, machine 

learning models. Second, over the past decades, we developed a generic fingerprint called ATP 

of 269 descriptors (Sun 2015). The same ATP descriptors have achieved outstanding 

performance in traditional machine learning prediction models of all the physicochemical and 

ADMET properties, accessible to us. ATP is originally designed to have good correspondence 

with SMILES; in other words, one SMILES produces one ATP, and one ATP corresponds to as 
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few SMILES as possible.  Third, many millions of valid compound structures are readily 

available, and they provide a good coverage of valid chemical space of small molecules. 

  

To test our algorithm, we generated 180,000 ligands for µ opioid receptor (MOR) systems (Al-

Hasani and Bruchas 2011), selected and tested 96 in cAMP assay in hMOR-CHO cells. Opioids 

are the most widely used and effective analgesics for the treatment of pain and related 

disorders, most commonly used opioids for pain management act on MOR, and the cAMP 

assay is mature and reliable. 

 

 

Methods 

 

Molecular representation  

 

An optimized atom‐type‐based molecular descriptor system, or ATP, consisting of 221 atom 

types and 48 correction factors was employed to represent small molecules. The details of the 

molecular descriptors have been elaborated elsewhere (Sun 2015). Atom types are assigned 

according to the properties of an atom and its chemical environment. An atom type 

casting tree was designed to assign atom types, based on whether the atom is aromatic, 

whether the atom is in a ring, whether the atom is next to different functional groups, 

etc. This original tree, largely based on a medicinal chemist’s intuition, was subject to a 

recursive optimization cycles in terms of where to further split the tree, where to stop 

splitting, and where to combine the branches, in order to make the best prediction of 

logP values in the Starlist dataset containing about 11,000 structurally diverse 

compounds.(Sun 2015) An atom in a molecule is like a piece of puzzle chip in a puzzle, 

which has its unique edge. When a set of puzzle chips are provided, the puzzle can be 

solved unambiguously, on the basis of unique shape of each piece. 

 

The optimized tree output 221 atom types, featuring 88 different carbon types, 7 

hydrogen types, 58 nitrogen types, 31 oxygen types, 8 halide types, 23 sulfur types, and 

6 phosphorus types. (Sun 2015) Forty-eight correction factors are appended to catch a 
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number of whole molecule features, such as the molecular globularity, molecular 

rigidity, lipophilicity, and etc.(Sun 2015) In total, a series of 269 numerical values 

comprise the final set of the atom type molecular descriptors. 

Using ATP representation, we could design molecules of predefined properties by sampling in 

the ATP space of 269 dimensions.  

 

General RDD workflow 

 

 
 

Figure 1. The flowchart for retro drug design. 

 

The workflow of RDD is illustrated in Figure 1. RDD starts from a list of target properties and 

their preferred ranges, such as logP between 2 and 5, and the number of properties is only 

limited by available computing resources. The properties can be physicochemical properties, 

such as molecular size, solubility, and biological properties, such as hERG (Wikipedia) activity.  

In this study, all properties are computed from the same molecular representation system, ATP, 

through an evaluator, which could be a simple mathematical function, a traditional machine 

learning model, or a deep learning neural network model. The property range is defined by 

lower and upper boundaries of L0-Ln and U0-Un (Figure 1).  

 

With the input list of target properties and their desired ranges, RDD uses a number of 

evaluators of E0-En (Figure 1) and a Monte Carlo (MC) sampling algorithm to find solutions in 
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the ATP space that have the desired ranges according to the corresponding evaluators. In order 

to sample in the more likely valid region of the ATP space, we calculated the mean (ATP_Mean) 

and the standard deviation (ATP_Std) from the ATP for 906,727 unique molecular structures in 

NCATS’s compound collection. 

 

The MC algorithm consists of the following steps: 

 

1. Start from a randomly initialized ATP, 𝑎𝑡𝑝 according to Equation 1 

 

𝑎𝑡𝑝[𝑖] = 𝐴𝑇𝑃_𝑀𝑒𝑎𝑛[𝑖] + 𝑔𝑟 ∗ 𝐴𝑇𝑃_𝑆𝑡𝑑[𝑖]   (1) 

 

Where 𝑔𝑟 is a Gaussian random number generator with a mean of 0.0 and standard 

deviation of 1.0. Apply the evaluators and compute the output score 𝑆! . Then calculate 

the initial cost according to Equation 2. 

 

𝐶 = ∑ 𝑤!(𝐿! − 𝑆!)"!#$!
%
!&' +𝑤!(𝑆! − 𝑈!)"!()!    (2) 

 

Where n is the number of properties or evaluators, wi is the weighting factor for the ith 

evaluator, Li and Ui are the lower and upper boundaries of the ith property. 

 

2. Randomly pick 8 elements (optional) from previous 𝑎𝑡𝑝, and randomly perturb each by 

adding 0.5*(	𝑟 - 0.5) * 𝐴𝑇𝑃_𝑆𝑡𝑑[i] to propose a new atp. 𝑟 is a uniform random number 

generator between 0.0 and 1.0.  

 

3. Recalculate the cost of the current 𝑎𝑡𝑝. If the current cost is < 0.01 (optional), stop the 

sampling process and output the solution. If the current cost is smaller than the previous 

one, accept the perturbation; otherwise reject the perturbation. Go back to step 2. 

 

4. If no solution is found after 50 steps, go back to step 1. 

 

5. If no solution is found after 40,000 steps, stop and terminate.  
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With the solution of atp in the ATP space from the Monte Carlo algorithm, next, RDD uses  

a deep learning model, called ATP2SMI, to map atp to molecular structures as represented by 

SMILES. ATP2SMI is adapted from the widely used seq2seq model (Google). A typical seq2seq 

model consists of an encoder and a decoder; the encoder transforms the sequence input to a 

vector of latent variables, which is then transformed to the output sequence by the decoder.  In 

ATP2SMI, we removed the encoder, used ATP as the vector of latent variables, and then used a 

decoder to transform ATP to output sequence-SMILES (Figure 2).  

 

 
 

Figure 2. ATP2SMI network.  The vector of ATP is fed to a fully connected layer, FC, and the 

output is fed to decoder, a recurrent neural network of GRU cells. Each GRU cell outputs a 

letter of a SMILES. 

 

SMILES uses a string of letters to represent a molecular structure. In this study, we ignored 

chirality in a molecular structure, and used a vocabulary of only 40 letters or words -- A, T, E, U, 

= # % ( ) [ ] / \ 0 1 2 3 4 5 6 7 8 9 B C N O P S F I c n o p s - + Br Cl -- to encode a SMILES. A, T, 

E, U are added for convenience; A is for padding, T for start, E for stop, and U for any letters not 

included in this vocabulary list. Each element in this vocabulary list is encoded by a one-hot 

vector. We ignored chirality in a molecular structure, mainly for simplification purpose, and 

plan to include chirality in the future studies. 

 

In the ATP2SMI, an atp is fed to a fully connected layer, FC, and the output is fed to decoder, a 

recurrent neural network of GRU cells. The number of units in the FC is the same as that in the 

GRU cell, and we tried four different numbers of units, 1024, 1280, 1536 and 2048.  
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Sparse categorical cross entropy is used as the loss or cost function. Backpropagation is used for 

training the network (David E. Rumelhart 1986). Optimization of the loss function is carried out 

by mini-batch of a size 128 and the ADAM optimizer (Diederik P. Kingma 2017), which is 

implemented as tf.train.AdamOptimizer in the Tensorflow library (Tensorflow). For the ADAM 

optimizer, a learning rate of 0.001 produced a satisfactory result.  

 

The model training process was monitored by two metrics: cost function and accuracy on both 

the training and validation datasets. The model with the best accuracy on the validation set is 

saved and applied to the test dataset to collect chemistry specific benchmarks. In this study, we 

compute three chemistry specific metrics. The first is the percentage of the generated structures 

that are chemically valid. A structure is considered valid if it is successfully parsed by 

ChemAxon’s molecular parser (Chemaxon). The second is the percentage of the valid structures 

that are identical to the ground truth. The third is the percentage of the structures that have a 

Tanimoto score > 0.95. 

 

 

SVM models as evaluators of ligand binding activity for MOR and blood brain barrier (BBB) 

permeability 

 

In order to recognize ligands for MOR, a SVM model (Noble 2006) was constructed using the 

primary screening results.   

 

Among the 1707 preprocessed samples, 256 were assigned active and 1451 inactive. Apparently, 

this dataset was highly skewed. To address this data imbalance problem, we adopted the 

bootstrapping and Jackknifing method (Sun, Huang et al. 2017). Briefly, the 1707 samples were 

randomly split into training dataset (80%) and test dataset (20%).  The negative samples in the 

training dataset were further randomly split into 5 subsets, which were then combined with the 

positive samples to produce 5 sub training datasets. Five SVM models were trained using the 

software package of LIB-SVM (C-C Change 2001).  The parameterization of the penalty for 

misclassification, C, and the non‐linearity parameter in the kernel function of a Gaussian Radial 

Basis Function (RBF), γ, was accomplished on a grid‐based search to minimize the mean 
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standard error (MSE) of 5‐fold cross‐validation (CV) on the training data. The consensus 

prediction results on the test dataset were used for benchmarking the accuracy and AUC-ROC 

(Hughes, Rees et al. 2011). The whole process was repeated for 10 times. The confidence 

intervals of the accuracy and AUC-ROC were 0.812 ±0.0063 (95%) and 0.863 ±0.0167 (95%), 

respectively. 

 

BBB classification model was built with the same ATP descriptors, based on a curated data set 

of 1964 compounds (Martins, Teixeira et al. 2012). The SVM model trained with 80% randomly 

selected compounds achieved a high predictivity on the 20% test set, with AUC-ROC of 0.92 

and accuracy of 0.87. 

  

 

cAMP assay in hMOR-CHO cells 

 

3-isobutyl methyl xanthine (IBMX), NKH 477 and naloxone hydrochloride were purchased from 

Sigma–Aldrich (St. Louis, MO). DAMGO was purchased from Abcam Inc. (Cambridge, MA). 

cAMP-Gi assay kit was from Cisbio (Bedford, MA). Human recombinant µ opioid receptor 

(hMOR-CHO-K1) stably express mu cell line was purchased from Multispan, Inc. (Hayward, 

CA). All the cell culture reagents were obtained from Invitrogen (Life Technologies, Madison, 

WI). hMOR-CHO-K1 cells were cultured in DMEM/F12 medium supplement with 10 % fetal 

bovine serum, 100 U/mL penicillin, 100 µg/mL streptomycin and 10 µg/mL puromycin at 37°C 

under a humidified atmosphere and 5% CO2. 

  

hMOR-CHO cells were re-suspended in culture medium and dispensed at 2,000 cells/3µL/well 

in 1,536-well white plates (Greiner Bio-One North America, Monroe, NC) using a Multidrop 

Combi (Thermo Fisher Scientific Inc., Waltham, MA). After incubation at 37°C for 18 h, 23 nL of 

compound dissolved in dimethyl sulfoxide (DMSO) or DMSO only was added to the assay plates 

via a Wako Pintool station (Wako Automation, San Diego, CA). Following compound addition, 

1 µL of IBXM at final concentration of 0.5 mM were transferred to the assay plate by a BioRaptr 

Flying Reagent Dispenser (FRD) (Beckman Coulter, Brea, CA). The assay plates were then 

incubated at 37°C for an additional 30 min. And then 2.5 µL of cAMP-d2 and 2.5 µL anti cAMP-

Cryptate were added to each well and the assay plates were incubated at room temperature in 
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the dark for 1 h. The fluorescence intensity of the assay plates was measured at 340 nm excitation 

and 665 and 620 nm emission using an Envision plate reader (Perkin Elmer, Boston, MA). Data 

was expressed as the ratio of 665nm/620nm emissions. Each test compound was tested in 

triplicates at 11 concentrations ranging from 0.00078 to 46.08 µM.  

 

Computer hardware and software 

The computations were performed on a Dell PowerEdge R940xa server with four Intel Xeon 

Platinum 8160 processors (each with 24 cores), 3TB of RAM and four 16GB NVIDIA Tesla V100 

graphic processing unit, installed with Ubuntu 16.04.6 distribution, python 3.5, CUDA driver 

version 10.0, cuDNN version 7.4, TensorRT 5.1 and TensorFlow 1.13.1. A Java program was 

written to use JOELib (JOELib) for molecule structure parsing and ATP calculation, a Java 

program was written to implement the Monte Carlo algorithm, and a python script was written 

to implement the ATP2SMI model. 

 

 

Results and Discussion 

 

ATP2SMI 

 

We used entire 906,727 unique molecules in NCAT’s compound collection to train the ATP2SMI 

model to learn the general principles of the molecular system. This collection is of 

pharmaceutical interest, consisting of the marketed drugs, drugs that have reached clinical 

trials, and other bioactive molecules. Each ATP and the corresponding ground truth SMILES 

form a data sample of input and output. The 906,727 samples were randomly split into a 

training dataset of 816,424 samples (90%), a validation dataset of 45,306 samples (5%), and a test 

dataset of 44,998 samples (5%). 

 

The training process took about four days for a GRU cell of 2,048. The cost and the accuracies 

versus epoch on the training and validation datasets were plotted in Figure 1. The cost dropped 

dramatically in the first 10 epochs and then continued to decrease slowly. The accuracies on both 
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training and validation datasets also increased rapidly in the first 10 epochs, and then continued 

to improve slowly. 

 
 

 

Figure 3. Cost and accuracies vs epoch on the training and validation datasets.  The number of 

the units in both the fully connected layer and the GRU cell is 2048. 

 

 

We trained 4 ATP2SMI models using GRU cells of 1024, 1280, 1536 and 2048 units, and the 

accuracies of the optimized models on the test dataset are given in Table 1. The accuracy improves 

as the unit number of the GRU cell in the decoder increases.   

 

For testing the ATP2SMI model, we used the unit size of 2048. The test dataset has 44,998 samples. 

Among the generated 44,998 SMILES, 42,053 (93.5%) are chemically valid, and among the 42,053 

valid SMILES, 19,716 (46.9%) are identical to the ground truth and 40,762 (96.9%) have a Tanimoto 

score > 0.95.   

 

When ATP descriptor system was designed, one of the major motivations was to produce a 

molecular descriptor system that is universal, in other words, the same system can be applied to 

generate QSAR models for all properties.(Sun 2004) Our following efforts have proved that ATP 

can provide excellent QSAR models for all the datasets available to us, and most of the QSAR 
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models achieved accuracy comparable to experimental determinations.(Sun 2005, Sun, Veith et 

al. 2011, Sun 2015, Sun, Huang et al. 2017, Sun, Nguyen et al. 2017, Sun, Shah et al. 2019, Sun, 

Wang et al. 2020) To achieve a universal molecular descriptor system, the descriptors should well 

represent the compound and extract its chemical meanings as accurately and adequately as 

possible. Atom typing meets these requirements. As long as each atom type carries enough 

information of its surrounding atoms and bonds, ATP descriptors and the corresponding SMILES 

is interconvertible. Therefore, choosing ATP is critical for the success of RDD.  

 

Generation of ligands for µ opioid receptor (MOR) with BBB permeability  

 

Opioids are the most widely used and effective analgesics for the treatment of pain and related 

disorders, and most commonly used opioids for pain management act on MOR. We chose MOR 

and the cAMP assay in hMOR-CHO cells to test our algorithm because the cAMP assay is 

available to us in-house and it is mature and reliable. Furthermore, opioid addiction is a huge 

challenge to worldwide public health, and this effort to generate potential ligands from RDD for 

MOR is part of the champaign of the HEAL program (NIH).  

 

MOR is a G-protein-coupled receptor (GPCR) and the target of most opioids, such as morphine. 

The crystal structures of MOR revealed a vast ligand binding pocket, which could 

accommodate small molecule agonists and peptide agonists, such as peptide MANGO (Figure 

4). This can explain the high hit rate of the primary assay. In this study, we aimed at generating 

MOR agonists with BBB permeability. Since small-size molecules with a polar surface area less 

than 60 Å2 have a better opportunity to penetrate the BBB by passive diffusion, RDD will be 

induced to output MOR agonists of small or medium size. 

(a) (b) 
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Figure 4. Top view (a) and sideview (b) of the ligand binding site of MOR in complex with 

peptide agonist DAMGO. 

 

In order to test the RDD algorithm, we used three target properties. The first property was the 

molecular size as measured by the number of heavy atoms.  Most of the approved small 

molecule CNS drugs have 27-37 heavy atoms, so the lower and upper boundaries are set at 27 

and 37. The corresponding evaluator was a simple function taking sum of the first 221 

descriptors in ATP for non-hydrogen atoms. The second property was the probability of a 

molecule to modulate MOR, which was evaluated with the SVC model built on internal MOR 

primary assay results, as described earlier. The lower and upper boundaries were set between 

0.5 and 1.0. The third property was the probability of a molecule being permeable to BBB, which 

was evaluated with the SVC model built on the curated BBB dataset as described earlier. The 

lower and upper boundaries were also set between 0.5 and 1.0.  

 

The Monte Caro sampling was performed in the ATP space. We generated 180,000 SMILES, and 

on our workstation, it took about 200 CPU hours. On average, it takes four seconds to find one 

solution in the ATP space, 5 seconds to generate one valid structure (4/0.78), and 16 seconds to 

generate one structure with three desired target properties (5/0.31).  

 

Of the 180,000 generated structures, 139,720 SMILES (78%) are chemically valid. Out of the 

139,720 valid SMILES, 58,879 (42%) have heavy atom number between 27 and 37, 137,624 

(98.5%) and 107,505 (77%) are predicted to be BBB permeable and MOR active, respectively. 

There are 42,653 (31%) SMILES that meet three requirements.  

 

To generate a valid SMILES from scratch is not trivial. There are numerous underline rules to 

follow, in order to avoid 5-carbon aromatic rings, or 5-bond carbons. RDD can learn these 

chemical and structural rules and incorporate them into the process of generating new structures, 

as indicated by the results. Furthermore, nearly one third of the RDD generated compounds met 

all three predefined conditions. 

 

Chemical space is vast, like a galaxy. The past decade observed tremendous efforts to expand the 

coverage of both physical and virtual chemical space.(Hoffmann and Gastreich 2019) Merck 
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MASSIVE 2018 contains 1020 virtual compounds, seconded by AZ space of 1017 capacity. 

(Hoffmann and Gastreich 2019) Even though computer software and hardware can handle these 

huge compound libraries, they are ignorable comparing with the size of the estimated druglike 

chemical space of 1060. To rebuild the galaxy is not an efficient way for drug hunting, although 

occasional successes have been achieved.(Lyu, Wang et al. 2019) RDD takes a different approach 

by locating the relevant constellation instead of exploring the whole galaxy. In this study, three 

conditions, MOR activity, BBB permeability, and molecular size, defined a subspace, or 

constellation, and RDD acknowledged the conditions and generated novel structures within the 

constellation. 

 

Confirmation of the RDD hits by experiments 

 

Due to the limited the resources, we can only afford the purchasable chemicals. As a result, we 

computed the InChi hash keys for the 139,720 structures, searched about 20 millions of small 

molecular structures in the Sigma-Aldrich catalog, and found about 267 matches. Among the 

267 matches, only 96 are available for purchase (Table 2).  These 96 compounds were not high 

ranking ones among the 107,505 structures that were predicted to be MOR active. The highest 

ranking commercially available hit ranked 2,986 in the 139,720 RDD generated structures 

(Figure 5). The striking feature observed in this study was the high percentage of the novel 

structures generated by RDD – only 267 out of nearly 140,000 RDD hits were commercially 

available. RL and GAN usually start from existing molecules and introduce different level of 

perturbation to generate new structures, so the new structures are generally close analogues of 

their templates. RDD started from random numbers, so the algorithm will not be restricted by 

existing seeds in terms of chemical space. In this sense, RDD is the authentic tool to explore the 

sub-space relevant to the targets and predefined properties unbiasedly. The advantage of RDD 

algorithm is obvious, i.e., it avoids searching the whole galaxy, which is inefficient assuming it 

is possible, for the target, instead, it explored only the small chemical space related to the 

targets. Another truth revealed by this study is the collection of commercially available 

compounds is tiny, and the vast chemical space is insufficiently investigated.   
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Figure 5. Distribution of MOR scores for 139,720 RDD generated hits. The green, yellow and red 

lines indicate the highest, median and lowest ranking of MOR score for the commercially 

available hits. 

 

We purchased these 96 compounds and performed the cAMP assay in hMOR-CHO cells.  At 

NCATS, a sample is defined as positive if its curve class belongs to (1.1, 1.2, 2.1, 2.2) or its 

efficacy is > 50%. According to this definition, 25 out of 96 were found MOR positive, and the 

positive hit rate was 26%.  Four of the 25 confirmed hits had a curve class of 1.1 (Figure 6), and 

the AC50 ranged between 5.25 and 41.76 ( µM).  
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Figure 6. Dose-response curves and chemical structures of the four generated structures with 

curve class of 1.1. 

 

 

The 25 generated and active molecules were not structurally similar to the 256 active 

compounds from the primary assay. Tanimoto similarities between the 25 RDD hits and their 

closest analogues in the 256 primary assay hits were calculated, and they were between 0.24 and 

0.41. Since atom typing was to dismantle a molecule to small pieces, such as atoms and 

functional groups, and SVM and other ML algorithms extracted the important or discriminant 

atom types associated with a protein target or a property, then Monte Carlo algorithm served as 

a search engine to search for the solutions to the multiple conditions in atom type space, 

dissimilarity of the final solutions resulted from the process of reassemble the atomic pieces 

back to a molecule. 
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In summary, we demonstrated that RDD was able to generate novel chemical structures with 

multiple targeted properties. For MOR, we achieved a hit rate of 26% even though the 

commercially available compounds did not rank top for activity against MOR. All the 25 

generated active compounds are structurally dissimilar from the active compounds from the 

primary screening. On average, RDD generated one compound with desired target properties 

in 16 seconds on a single CPU core. 

 

Designed as a platform, RDD supports various evaluators/plugins, and it allows multiple 

properties to be optimized individually and yet at the same time. Most generative models are 

theoretically capable of optimizing multiple properties at the same time; in their current 

implementation, however, they only support using one target property or weighted sum of 

multiple properties as cost function.  

 

These features bring a number of advantages for RDD. First, to generate new structures with 

desired ADMET properties, RDD does not need a very large quantity of quality samples. A 

typical machine learning model such as SVM could be trained over a specific experimental 

dataset of moderate size, as few as a few hundreds. Second, RDD does not use weighted sum of 

properties as cost function, and it allows multiple properties to be individually optimized. In 

this study, we only used three evaluators for target properties. In another unpublished study, 

we used 10 evaluators for 10 target properties and achieved comparable results. Third, the 

Monte Carlo sampling algorithm is very stable and fast. Very few processes failed to produce 

solutions in the ATP space, and it takes about 4 seconds to find one solution. Even with 10 

target properties, it just takes about 30 seconds to find a solution. 

 

 

Conclusion: 

 

Different from searching for a star in a vast galaxy, the strategy that the traditional drug discovery 

takes, RDD locates the star by exploring its neighboring subspace only.  In this study, we have 

demonstrated that the RDD platform is capable of generating highly novel structures from scratch 

to meet predefined requirements, including MOR activity and BBB permeability. Nearly 180,000 

chemical structures were generated from random numbers, among which 78% were chemically 
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valid. About one third of the valid structures fell into the property space defined by MOR activity 

and BBB permeability. Out of the 42,000 qualified structures, only 267 chemicals were 

commercially available, indicating a high extent of novelty of the AI-generated compounds. 

We purchased and assayed 96 compounds, and 25 of which were found to be MOR agonists.  

These compounds were structurally diverse and had excellent BBB scores. The results presented 

in this paper illustrate that RDD has potential to greatly improve efficiency of drug discovery 

process, by creating novel structures with desired biological and ADMET properties. Availability 

of highly efficient and productive drug discovery platform is essential to handle emergent public 

health threat, such as pandemic of COVID-19.   
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Table 1.  Accuracies of the optimized models on the test dataset.   

 

Epoch ATP_LV 

Dimension 

Number of units 

in GRU cell 

Accuracy 

120 7 1024 0.885 

40 7 1280 0.885 

30 7 1536 0.885 

70 7 2048 0.897 

120 14 1024 0.923 

40 14 1280 0.923 

110 14 1536 0.936 

30 14 2048 0.936 

250 38 1024 0.962 

80 38 1280 0.962 

50 38 1536 0.962 

120 38 2048 0.974 
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Table 2. SMILES of the 96 compounds purchased from Sigma-Aldrich 

 

FC1=CC=C(C=C1)N2CCN(CC(=O)N3CCC4=C3C=CC=C4)CC2 

CCC1=CC=C(OCC(=O)N2CCC3=CC=CC=C23)C=C1 

ClC1=CC=C(C=C1)C2=CC3=C(C=CC=C3)N=C2 

CC1=CC(OCCN2C=NC3=CC=CC=C23)=CC=C1 

COC1=CC=C(C)C=C1NC(=O)CN2CCCC2C3=CC=C(F)C=C3 

FC1=CC=C(CN2CCC3=CC=CC=C3C2)C=C1 

COC1=CC(=CC=C1)C(=O)NC2=CC(=CC=C2)N3CCCC3 

NC1=CC=C(C=C1)C2=NC3=CC=CC=C3S2 

COC1=CC=C(C=C1)C2CCCN2CC3=CC=C(F)C=C3 

FC1=CC=C(CN2CCN(CC2)C3=CC=CC=C3)C=C1 

CN1CCN(CC1)C(=O)C2C3=CC=CC=C3OC4=CC=CC=C24 

FC1=CC=C(C=C1)N2CCN(CC2)C(=O)CC3=CC=CC=C3 

CSC1=CC=CC=C1NC(=O)CCN2CCC(C2)C3=CC=CC=C3 

CCOC1=CC=C2N(CC3=CC=CC=C3)C(C)=C(C(C)=O)C2=C1 

ClC1=CC=CC=C1CC(=O)N2CCN(CC2)C3=CC=CC=C3 

CSC1=CC=CC=C1C(=O)NCCC2=CC=C3OCCOC3=C2 

FC1=CC=CC(CC(=O)N2CCCC2C3=CC=C(Cl)C=C3)=C1 

CN1CCC(C2=CC=CC=C2)C3=CC=CC=C13 

COC1=CC=CC(=C1)C(=O)N2CCCC3=CC=CC=C23 

FC1=CC=CC=C1N2CCN(CC(=O)NCC3=CC=CC=C3)CC2 

CN1CCN(CC1)C2=CC=C(C=C2)C(=O)C3=CC=C(F)C=C3 

COC1=CC=C(C=C1)C(=O)N2CCCC3=CC=CC=C23 

NC1=CC=C(C=C1)N2CCC3=CC=CC=C23 

COC1=CC=CC=C1N2CCN(CC2)C(=O)CC3=CC=C(Cl)C=C3 

COC1=CC=C(C=C1F)C(=O)NC2=CC=CC=C2N3CCN(C)CC3 

NC1=CC=C(CC2=CC=CC=C2)C=C1 

CC1=CC=CC(NC2=NC(=CS2)C3=C/C4=CC=CC=C4OC\3=O)=C1 

CC(CCC1=CC=CC=C1)NCCN2C=NC3=CC=CC=C23 

CN1CCC(CC1)OC(=O)C2C3=CC=CC=C3OC4=CC=CC=C24 
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NC1=C2CCCC2=NC3=CC=CC=C13 

CN(CC1=CC=CC=C1)C2CCC3=C2C=CC=C3 

CSC1=CC=C(Cl)C(=C1)C(=O)NC2CCC3=CC=CC=C23 

CC1=CC=C(OCCC(=O)NC2=CC=CC(=C2)C#N)C=C1 

CC1CCN(CC1)C2=CC=CC=C2C#N 

CC1=CC=C(OCC(=O)N2CCN(CC2)C3=CC=CC=C3)C=C1 

CC1=C(C=CC=C1)N2CCN(CC2)C(=O)C3=CC=C(Cl)C=C3 

CN(CC1=CC=C(Br)C=C1)C2CCN(C)CC2 

CSC1=CC=CC=C1C(=O)N2CCN(CC2)C3=CC=CC(Cl)=C3 

CN(CC1=CC=CC=C1)C(=O)COC2=CC=CC=C2Cl 

COC1CCCN(C1)C2=CC=C(NC(=O)C3=CC(F)=CC=C3)C=C2 

FC1=CC=C(CN2CCN(CC2)C3=CC=CC(Cl)=C3)C=C1 

O=C(CSC1=CC=C2C=CC=CC2=C1)N3CCCC3 

FC1=CC=C(C=C1)N2CCN(CC2)C(=O)CC3CCC4=CC=CC=C34 

CC1=CC=CC=C1N2CCN(CC3=CC=CC=C3F)CC2 

BrC1=CC=C(NC(=O)CN2CCC3=CC=CC=C3C2)C=C1 

CC(C)C(=O)N1CCCN(CC2=CC=CC=C2F)CC1 

C(N1CCC2=CC=CC=C12)C3=CC=CC=C3 

ClC1=CC=CC=C1C2=CC=CC=C2 

ClC1=C(C=CC=C1)N2CCN(CC(=O)NC3=CC=CC=C3)CC2 

CN1CCC(CC1)OC2=CC=C(NC(=O)C3=CC=CC=C3F)C=C2 

C(N1CCCC(C1)C2=CC=CC=C2)C3=CC=CC=C3 

ClC1=CC=C(C=C1)C2=NC(N3CCCC3)=C4C=CC=CC4=N2 

FC1=CC=CC(NCC(=O)N2CCC3=CC=CC=C3C2)=C1 

CCC(=O)N(C)C1CCCN(C1)C2=CC=CC=C2 

COC1=CC=C(CN2CCN(CC2)C3=CC=CC=C3F)C=C1OC 

ClC1=CC=C(C=C1)N2CC3=CC=CC=C3C2 

CSC1=CC=CC=C1C(=O)N2CCC3=CC=CC=C23 

ClC1=CC=C(SCC(=O)NC2CCCC3=CC=CC=C23)C=C1 

CC(NC(=O)CC1=CC=CC=C1Cl)C2=CC=CC3=C2C=CC=C3 

ClC1=CC=C(C=C1)C(=O)N2CCN(CC2)C3=CC(Cl)=CC=C3 

ClC1=CC=C(CN2CCC3=CC=CC=C3C2)C=C1 
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CCCOC1=CC=C(CN2CCCC2C3=CC=C(F)C=C3)C=C1 

COC1=CC(=CC=C1)C(=O)NCCC2=CC=C(C=C2)N3CCCC3 

FC1=CC=C(CC(=O)NCC2(CCCC2)C3=CC=CC=C3)C=C1 

ClC1=CC(=CC=C1)C2=NC3=CC=CC=C3S2 

CSC1=CC=C(CC(=O)N2CC(=O)NC3=CC=CC=C23)C=C1 

CCOC1=CC=C(CN2CCCC2C3=CC=C(F)C=C3)C=C1 

CC(=O)C1=CC=CC=C1NCC(=O)N2CCC3=CC=CC=C23 

FC1=CC=CC=C1N2CCN(CC2)C(=O)CCC3=CC=CC=C3 

CSC1=CC=CC=C1NC(=O)CCN2CCC3=CC=CC=C3C2 

COC1=CC=C(C=C1)C(=O)N2CCN(CC2)C3=CC(Cl)=CC=C3 

FC1=CC=C(NC(=S)N2CCC3=CC=CC=C23)C=C1 

FC1=CC=CC(NC(=O)CCN2CCC(C2)C3=CC=CC=C3)=C1 

COC1=CC=CC=C1NC2=NC(=CS2)C3=CC=C(C)C=C3 

O(C1=CC=CC=C1)C2=CC=C(C=C2)C3=CC=CC=C3 

COC1=CC=CC(=C1)C(=O)NC2=CC=CC=C2N3CCCC3 

CN1CCCN(CC1)C(=O)C2=CC=C(Cl)C=C2 

CC1=CC2=C(O)C=C(CSC3=CC=CC=C3)N=C2C=C1 

CN(CC(=O)NC1CCCC2=CC=CC=C12)CC3=CC(Cl)=CC=C3 

COC1=CC=CC=C1CCNC(=O)CN2CCC3=CC=CC=C23 

CC1=CC=CC=C1OCC(=O)N2CCC3=CC=CC=C3C2 

ClC1=CC=CC(CN2CCC3=CC=CC=C3C2)=C1 

CC1=CC=C(C=C1)N2COC3=CC=C(Br)C=C3C2 

O=C(CCC1=CC=CC=C1)N2CCCC3=CC=CC=C23 

CSC1=CC=C(CN(C)CC(=O)N2CCC3=CC=CC=C23)C=C1 

CC(C)N1CCC(CC1)NC(=O)CC2=CC=C(Cl)C=C2 

O=C(CN1CCCC2=CC=CC=C12)NC3=CC=CC=C3 

ClC1=CC=C(CCNC(=O)C2(CC2)C3=CC=CC=C3)C=C1 

CSC1=CC=CC=C1C(=O)N2CCCC3=CC=CC=C23 

ClC1=CC=C(C=C1)N2CCN(CC2)C(=O)C3=CC=C4OCOC4=C3 

FC1=CC=C(CCNC(=O)C2(CC2)C3=CC=CC=C3)C=C1 

CSC1=CC=C(CN(C)C(=O)C2=CC=C3C=CC=CC3=C2)C=C1 

OC1=C(C=NC2=CC(Cl)=CC=C12)C(=O)N3CCCC3 
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ClC1=CC=CC(CN2N=C(C=CC2=O)C3=CC=CC=C3)=C1 

ClC1=CC=C(C=C1)N2CCN(CC3=CC=CC=C3)CC2 

CSC1=CC=CC(NC(=O)C2=CN(C)C3=CC=CC=C23)=C1 
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