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Abstract—Fetal electrocardiogram (ECG) waveform analysis
along with cardiac time intervals (CTIs) measurements are
critical for the management of high-risk pregnancies. Cur-
rently, there is no system that can consistently and accurately
measure fetal ECG. In this work, we present a new automatic
approach to attenuate the maternal ECG in the frequency
domain and enhance it with measurable CTIs. First, the
coherent components between the maternal ECG and abdom-
inal ECG were identified and subtracted from the latter in the
frequency domain. The residual was then converted into the
time domain using the inverse Fourier transform to yield the
fetal ECG. This process was improved by averaging multiple
beats. Two fetal cardiologists, blinded to the method, assessed
the quality of fetal ECG based on a grading system and
measured the CTIs.We evaluated the fetal ECG quality of our
method and time-based methods using one synthetic dataset,
one human dataset available in the public domain, and 37
clinical datasets. Among the 37 datasets analyzed, the mean
average (± standard deviation) grade was 3.49 ± 1.22 for our
method vs. 2.64 ± 1.26 for adaptive interference cancellation
(p-value < 0.001), thus showing the frequency-based fetal
ECG extraction was the superior method, as assessed from
our clinicians’ perspectives. This method has the potential for
use in clinical settings.

Keywords—Abdominal electrocardiogram, Fetal electrocar-

diogram, Spectral coherence, Maternal electrocardiogram.

INTRODUCTION

Each year, there are approximately 24,000 stillbirths
in the United States20 and an estimated 2.6 million
stillbirths worldwide.9 Unfortunately, these rates have
not dropped since 2006.20 About 25-40% of these
deaths are unexplained, and fetal rhythm disorders
such as long QT syndrome are suspected to cause at
least 3–10% percent of these unexplained deaths.12

Additionally, 1–3% of pregnancies experience fetal
arrhythmias.31 Approximately 10% of the referral
population of arrhythmias are life-threatening.32

Without early diagnosis and treatment, arrhythmias
and repolarization abnormalities can progress to hy-
drops fetalis or death. Fetuses have high mortality
after hydrops development.29,30 They can also cause
preterm delivery or the need for cesarean section
delivery which increases both infant and maternal
morbidity and mortality.30 When appropriately de-
tected and treated before hydrops fetalis, the prognosis
for fetal arrhythmias is favorable, with up to 96%
survival.23,29,34

Fetal monitoring is usually performed through
various techniques such as cardiotocography,5 mag-
netocardiography,14 Doppler ultrasound,16 and
echocardiography.2 However, none of these techniques
can translate to a continuous, portable monitor due to
the use of unwieldy Doppler probes and machines in
cardiotocography and fetal echocardiography, and the
demand for a costly environment shielding for mag-
netocardiography. Electrocardiography1 is the most
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commonly used device for detecting arrhythmias and is
applicable in pediatrics due to its moderate cost and
accessibility, but is not used routinely for fetal moni-
toring. The existing technology for fetal electrocar-
diogram (ECG) monitoring is primarily designed for
heart rate monitoring in fetuses past 36 weeks of ges-
tation or relies upon signal averaging.4 The basic
framework of these existing fetal ECG devices is sim-
ilar—a set of electrodes is applied to the mother and
linked to a software analysis package via an amplifier.
Approaches vary in the way the electrodes are ar-
ranged (lead montage), user interface, and signal pro-
cessing algorithm. Currently, accurate, noninvasive
monitoring of the fetal ECG is challenging due to the
lack of direct contact with the fetus, and a very weak
fetal ECG overlapped with a high amplitude maternal
ECG. This is compounded by other disturbances such
as power line noise, maternal muscle, respiration
activity, fetal movement, and background noise.17

Traditional signal processing techniques have previ-
ously been proposed to separate fetal ECG from
maternal ECG, including blind source separation
methods (such as principal/independent component
analysis (PCA/ICA)),8,11,13,33,37–39 template match-
ing,8,10,19 and adaptive filtering.18,21 Blind source sepa-
ration techniques require multiarray data to decompose
a raw signal into independent components and extract
fetal ECG. In the template matching techniques, one
maternal QRS complex is considered as a template,
which is searched for across the entire dataset. The
matching occurrences are subtracted from the template
to reduce the maternal ECG amplitude to the baseline
activity.Adaptive filtering techniques use an input as the
reference and another input as the primary signal.
Martinek et al.21 used an adaptive filtering technique in
the frequency and time domain to detect fetal ECG. This
approach first regressed abdominal ECG against
maternal ECG in the frequency domain. Then, the
regression coefficients were used as filter coefficients to
filter out the maternal ECG from the fetal ECG. An-
other fetal ECG technology based on adaptive filtering
was established at the Johns Hopkins University/Ap-
plied Physics Laboratory [Patent numbers 6751498
(2004) and 7869863 (2011)]. Their adaptive interference
cancellation (AIC) method24 used the standard least
mean square (LMS)35 technique and included four
components: (1) bandpass filter between 0.5 and 60 Hz,
(2) canceling maternal ECG using a time-based
approach, (3) enhancing the fetal ECG signal (improv-
ing the signal to noise ratio), and (4) estimating the fetal
heart rate using either peak location detection using a
running autocorrelation estimate or R wave detection
andR–R intervalmeasurement.Krupa et al.18 presented
an adaptive noise canceler based on a neuro-fuzzy

inference system to extract fetal ECG. They estimated
the filter coefficients using the normalized LMS by
minimizing the mean square error. Despite the efforts
made by these methods proposed for fetal ECG sepa-
ration, translation to the clinical setting has been slow,
and the separation of fetal ECG and maternal ECG
remains a major challenge.

Therefore, we developed a new frequency-based
approach to separate fetal ECG from maternal ECG
automatically. Additionally, we improved the signal
content by averaging the fetal ECG over multiple
complexes. A preliminary version of this work with 16
datasets was presented at the Pediatric Academic
Society.27 In this paper, two clinicians measured car-
diac time intervals (CTIs). We compared our method
with the traditional signal processing techniques and
evaluated its performance using one synthetic dataset,
one real public dataset, and 37 clinical datasets.

MATERIALS AND METHODS

Simulated Dataset

To synthetically produce a maternal-fetal ECG, we
employed a publicly available model written in the
MATLAB environment.7,22 This model approximates
ECG cycles using a set of Gaussian kernel functions
and produces a realistic ECG for a range of different
heart rates, sampling frequencies, PQRST-complex
morphologies, and noise levels. We generated the
synthetic maternal-fetal ECG with the following
parameters: (1) sampling frequency of 750 Hz, (2)
signal length of 4 min, (3) abdominal signal (including
both maternal ECG and fetal ECG) to noise ratio of 8
dB, (4) fetal to maternal signal ratio of 2 3 dB, (5)
maternal and fetal heart rates of 60 and 110 beats per
minutes (bpm), respectively.

Public Dataset

To assess the performance of our method using a
public dataset, we selected one real dataset (subject
one) from the Set A of the 2013 PhysioNet/Computing
in cardiology challenge database.28 The dataset in-
cludes four noninvasive abdominal signals containing
fetal ECG, recorded with a sampling frequency of
1 kHz for 1 min. Reference locations of R peaks were
annotated based on a fetal scalp electrode.

Clinical Dataset

In 2016, our team developed a research prototype
device and began testing it under an institutional re-
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view board-approved study with patient consent at
Children’s National Hospital (#Pro00007309; June 12,
2020). The device consisted of standard ECG elec-
trodes and a Biopac MP150 data acquisition system.
This device recorded 5–7 channels of maternal ECG
and 8–16 channels of abdominal ECG (mixture of fetal
ECG and maternal ECG). Data was acquired from
singleton pregnant women at Johns Hopkins Univer-
sity or Children’s National Hospital Cardiology Clinic
for 5 min. Deidentified datasets from Johns Hopkins
University were studied under a data use agreement.
Table 1 shows the data summary, including the num-
ber of subjects studied at each center, the total number
of studies performed at each center, gestational age
(GA), the sampling frequency for different studies, and
year of data acquisition. It needs to be mentioned that
the performance of our approach is not dependent on
the sampling frequency of ECG. For reference pur-
poses, the sampling frequencies are reported in Ta-
ble 1.

For data collection, the position of the noninvasive
ECG lead vector montage was adaptable and inde-
pendent of the fetal position. Electrodes were arranged
densely to avoid the loss in fetal ECG during fetal
motion. In Fig. 1, one version of lead montages used in
data collection is presented.

Signal Processing Approach

In Fig. 2, an overview of the proposed fetal ECG
extraction method is presented including, (1) extrac-
tion of fetal ECG in the frequency domain, (2)
enhancement of fetal ECG, and (3) determination of
fetal CTIs. First, abdominal ECG and maternal ECG
were pre-processed to remove noise and baseline
wandering. Then, coherent components between
maternal ECG and abdominal ECG were estimated
using the null-coherence approach15 with the optimal
parameters and subtracted from the abdominal ECG
to leave the fetal ECG as residual. After that, fetal
ECG was enhanced using the averaging technique4 for
CTI measurements. These steps are described below.

Extraction of Fetal ECG in the Frequency Domain

Both abdominal ECG and maternal ECG were
high-pass filtered (0.5 Hz cutoff) to remove baseline
wandering using a fourth-order Butterworth filter on
both forward and reverse directions of the signal.
Then, the null-coherence approach was employed to
separate the coherent components between the
abdominal ECG (reference signal) and maternal ECG
(source signal) to obtain fetal ECG as residual using
the following steps.

Estimation of Coherent Components Between Maternal
ECG and Abdominal ECG

In this study, we divided the data into 1-min
inspection windows to attenuate the maternal ECG.
Our coherence estimation followed the Welch peri-
odogram approach.26 Both abdominal ECG and
maternal ECG were split into 3-s independent epochs
(j=1,…,N). In this paper, N is 20 because the 1-min
inspection window consists of 20 3-s epochs. The
choice of 3 s as the Fourier transform length was made
to have an optimal spectral estimate while not com-
promising the estimate. Next, the mean value was
subtracted from the data in each epoch, and the data
was transferred to the frequency domain using the
Fourier transform. Then, in the jth epoch, the peri-

odograms of maternal ECG (Sj
mECG) and abdominal

ECG (Sj
aECG) and the cross-spectrum (Sj

aECG;mECG)

between them were calculated as follows:

Sj
aECGðxÞ ¼ jFj

aECGðxÞj
2
; ð1Þ

Sj
mECGðxÞ ¼ jFj

mECGðxÞj
2
; ð2Þ

Sj
aECG;mECGðxÞ ¼ Fj

aECGðxÞ � F
jy
mECGðxÞ; ð3Þ

where Fj
aECG and Fj

mECG denote the Fourier transform
of abdominal ECG and maternal ECG for the jth
epoch, respectively. x is the frequency in Hz. | . |
indicates the magnitude operation. y represents the
complex conjugate operator. Using these spectral
quantities, the coherent components between abdom-
inal ECG and maternal ECG were calculated using the
spectral coherence (CohaECG;mECGðxÞ) defined in (4).

The coherence value is in the range [0, 1], where 0 and 1
show the asynchrony and synchrony, respectively,
between the two signals. The confidence level of the
coherence at every frequency was calculated using

1� 1� að Þ1=ðN�1Þ,15 where N is the number of the
segments involved in the spectral estimation (N = 20
in this study). a is the significance level, which was set
to 0.99.26 Only when a significant coherence was
determined between maternal ECG and abdominal
ECG, the procedure was continued to attenuate the
maternal ECG by (5) and (6).

CohaECG;mECG xð Þ ¼
PN

j¼1 S
j
aECG;mECG xð Þ

�
�
�

�
�
�
2

PN
j¼1 S

j
aECG xð Þ �

PN
j¼1 S

j
mECG xð Þ

� � :

ð4Þ
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Separation of Fetal ECG

To separate fetal ECG, an impulse-response transfer
function (HaECG;mECGðxÞ) was defined as follows:

HaECG;mECG xð Þ ¼
PN

j¼1 S
j
aECG;mECG xð Þ

PN
j¼1 S

j
mECG xð Þ

: ð5Þ

For each 3-s epoch, maternal ECG was attenuated
in abdominal ECG to leave fetal ECG as residual in
(6):

Fj
fECG xð Þ ¼ Fj

aECG xð Þ � H
y
aECG;mECG xð Þ

� �

� Fj
mECG xð Þ

� �
; ð6Þ

The fetal ECG was then converted back to the time
domain for enhancement.

Optimizing the Parameters

To identify potentially extra and missed beats, we
defined the lower and upper boundaries for the fetal
heart rate at 105–190 bpm.36 Inability to detect low
amplitude signals can cause artificially low heart rate.
Noisy signal, in contrast, can cause false detection of
maternal ECG as a fetal beat and inaccurately high

heart rate. Thus, a good quality fetal ECG should
provide the minimum number of extra and missed
beats.

To select the optimal parameters, we investigated
the different combinations of maternal and abdominal
channels for the best results. For the fetal ECG
obtained for each combination, a loss function (l)36

was defined to estimate the number of missed and extra
beats as follows:

l ¼ missedþ extra; ð7Þ

missed ¼
X RRi

medianRR interval

� �

�M; ð8Þ

extra ¼ E�
X RRe

medianRR interval

� �

; ð9Þ

where RRi and RRe denote an RR interval that is
more than 0.5714 s and less than 0.3158 s, respectively.
M and E represent the total number of intervals that
exceed 0.5714 s and drop below 0.3158 s, respectively.
Finally, the best channel combination was identified as
the one that yielded the minimum loss function.

FIGURE 1. The device used for data acquisition at Children’s National Hospital; (a) system hardware and (b) lead montage.

TABLE 1. Summary of the acquired data information.

Center # Cases # Studies GA (weeks) Sampling frequency (Hz) Year

CNH 20 34 27±7

in the range [16, 37]

250: #2;

500: #25;

2000: #7

2016–2020

JHU 26 105 32±5

in the range [24, 41]

250: #7;

500: #4;

750: #94

2002–2003

CNH Children’s National Hospital, JHU Johns Hopkins Hospital.
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Enhancement of Fetal ECG

To reduce the presence of poorly attenuated
maternal complex in the fetal ECG, an averaging
technique was applied. First, R peaks were determined
using the Pan-Tompkins method25 and the fetal heart
rate was calculated. To ensure only genuine beats were
used in the averaging, we included only the beats that
yielded heart rate in the range [105–190] bpm, expected
for a fetus.36 Finally, we improved fetal ECG quality
by averaging the cardiogram using 0.5 s of data before
and 0.6 s of data after each R-wave. This time duration
included the QRS complexes from the previous and the
following cycles.

Determination of Fetal CTIs

Two fetal cardiologists first evaluated the quality of
the enhanced fetal ECG and graded it using a scale of
1–5,27 where 5 indicates a perfect signal for CTI mea-
surements and 1 shows bad signal quality. For those
signals with an average scale value greater than 4, two
fetal cardiologists determined the fetal cardiac time
points (P-onset, P-end, Q, R, S, T-onset, and T-end) on
two different days, independently. Using those time
points, the fetal CTIs (PR, QRS, RR, and QTc) were
measured. Of which, QTc – a corrected QT, was cal-

culated using the Bazett formula (QTc ¼ QT=
ffiffiffiffiffiffiffiffi
RR

p
).6

Results were compared using the Wilcoxon signed-
rank test at the 5% significance level. Inter- and Intra-
observer reliability between the CTI measurements
were calculated using intraclass coefficient (ICC) with
a significance level of 5%. All analyses were performed
in MATLAB using the statistical toolbox.

RESULTS

Experimental Setup

We used a computer with a 4-core CPU (i5 with 3.2
GHz) to implement the method. All programs were
written in the MATLAB environment. Our approach
took around 2 s to attenuate the maternal ECG from a
1-min maternal ECG.

Simulated Dataset

Figure 3 illustrates one sample of the fetal ECG
extracted from the synthetic abdominal ECG. Fig-
ures 3a–3c show the synthetic abdominal ECG,
maternal ECG, and fetal ECG (reference data),
respectively. Figures 3d–3h present the fetal ECG ex-
tracted using our frequency-based method (Fig. 3d)
and the open-source algorithms,3,7 including (1) blind
source separation based on fastICA (Fig. 3e) and PCA
(Fig. 3f), (2) template matching (Fig. 3g), and adaptive
filtering based on LMS (Fig. 3h). Additionally, corre-
lation values between each fetal ECG extracted and the
reference data are reported in Table 2. Results show
that our approach separated the fetal ECG with the
highest correlation value of 98.97% when compared to
the other methods. The high correlation value indicates
that our method could preserve almost all the features
in the fetal ECG, which did not happen to the same
degree in the other methods. Blind source separation
methods (PCA and fastICA) require multiple channels
to separate the independent components while our
method does not need this additional calculation.
Adaptive filtering approaches (such as LMS) are vul-
nerable to maternal/fetal movement and variable heart
rate. Although template matching showed a similar
result to ours, selecting the right template is challeng-
ing, especially in real clinical data.

Public Dataset

In Fig. 4, fetal ECG extraction using one public
dataset is presented. Figures 4a and 4b show channels
two and four of ECG tracing used as the reference and
source inputs in our method, respectively. Figure 4c
represents the extracted fetal ECG along with the ref-
erence (red ‘o’) and extracted (black ‘o’) R peak loca-
tions. In Fig. 4d, the enhanced fetal ECG is illustrated.

FIGURE 2. Flowchart of the method proposed for fetal ECG
visualization and CTI measurement.
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FIGURE 3. Numerical simulation to separate fetal ECG from abdominal ECG; a the synthetic abdominal ECG, b the synthetic
maternal ECG, c the synthetic fetal ECG, the fetal ECG extracted using d our approach, e fastICA, f PCA, g template matching, and h
LMS.

TABLE 2. The correlation coefficient between different fetal ECG results and the reference one.

Our approach fastICA PCA Template matching LMS

Correlation coefficient 98.97% 89.63% 77.61% 96.36% 87.71%
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Results show that our method was able to separate the
fetal ECG reliably. Moreover, the fetal heart rate cal-
culated using our approach correlated well with the
fetal heart rate (available via annotations) calculated
using the fetus’s scalp electrode (see Fig. 4c). Fur-
thermore, the visualization of fetal ECG was improved
by the averaging technique, as shown in Fig. 4d).

Clinical Dataset

To assess the clinical results, 37 good quality data-
sets with three or more consecutive beats were selected.
Figure 5 presents one sample of clinical fetal ECG
extraction and enhancement. In Figs. 5a and 5b,
abdominal ECG and maternal ECG are illustrated,
respectively. Figure 5c represents the fetal ECG ex-
tracted using the null-coherence approach. Even
though the amplitude of fetal ECG was almost 6 times
less than the maternal ECG, our method was able to
reliably attenuate the maternal ECG (see Fig. 5c).
Figure 5d shows the enhanced fetal ECG, used for CTI
measurements.

In Fig. 6, one sample of CTI measurements is
shown. Figure 7 demonstrates two samples of the fetal
ECG extracted using our approach and the AIC
method.24 In Table 3, the average grading results for
our approach and the AIC method are reported. Re-
sults show that our approach yielded a higher average
grade value with more reproducibility compared to the

AIC method (3.49 ± 1.22 vs. 2.64 ± 1.26; Wilcoxon
signed-rank p-value <0.001).

Among the graded datasets, 48 results (including 31
results from our approach and 17 results from the AIC
method; GA in range [24, 41] weeks) were graded more
than 4 on average and selected for CTI measurements.
Tables 4 and 5 show the ICCs with the 95% confidence
interval for the measured CTIs based on our approach
and the AIC method, respectively. Results show that
there was a high correlation between CTI measure-
ments made by each clinician on two different days.
Also, there was a high agreement between the mea-
sured RR interval as quantified using the ICC criterion
for our method and the AIC method. For other CTI
measurements, there was moderate to low agreement
between the two clinicians. Our method yielded more
reproducibility compared to the AIC method, espe-
cially when there was no agreement for the AIC-based
P- and T-wave measurements.

DISCUSSION

Early diagnosis of fetal cardiac arrhythmia is
important to prevent fetal and neonatal deaths, and
substantially improves the health outcome of the
neonate. Electrocardiography is a safe and
portable device used to diagnose arrhythmias in infants
and children, but its utility for fetuses is limited by

FIGURE 4. An example of fetal ECG separation from abdominal ECG using subject one in the public dataset; (a) channel two of
ECG tracing, (b) channel four of ECG tracing, (c) the separated fetal ECG along with the reference (red ‘o’) and extracted (black ‘o’)
R peak locations, and (d) the enhanced fetal ECG with reversed amplitude for better visualization.
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challenges, including filtering, a low signal-to-noise
ratio, fetal movement, fetal orientation, amniotic fluid,
and maternal characteristics. Several techniques have
been proposed to separate maternal, fetal, and noise
signals, including blind source separation, template
matching, and adaptive filtering. However, these
methods have not become a standard clinical tool.
Blind source separation techniques are time-consum-
ing, and their performance is impacted by the bandpass
filtering used for the data. Template-based approaches
are dependent on the maternal QRS morphology
which might be changed during maternal movement
and breathing. Adaptive filtering approaches are sen-

sitive to factors such as maternal movement and fetal
movement that can cause a significant baseline wan-
dering.

In this study, we used the frequency domain, fol-
lowed by an averaging technique to extract the fetal
ECG from maternal ECG and enhance it to the
observable CTIs. Our frequency-based approach im-
proved the clarity of waveforms and CTIs from clini-
cians’ perspectives. There was low agreement between
clinicians’ CTI measurements likely due to the differ-
ences in appearance from the standard pediatric ECG
which required further study of normal morphology.
In our next study, we plan to develop and set a rubric
for grading to improve consistency. Future work is
needed to increase the inter-rater reliability and to
validate these methods against a gold standard. Since
this study was a retrospective analysis, we were not
able to alter the ECG acquisition. However, we plan to
do this in the future. Our future studies also will con-
sider a large cohort spanning the entire gestational
period (21 weeks to 40 weeks) to test the robustness of
our proposed approach. Additionally, although our
method is fast, it is not currently suitable for real-time
applications. In the future, we will optimize the pro-
cessing time by converting the MATLAB codes into
machine-level languages such as C/C++.

FIGURE 6. Measurement of fetal CTIs.

FIGURE 5. An example of clinical fetal ECG separation and enhancement; (a) abdominal ECG, (b) maternal ECG, (c) the obtained
fetal ECG, and (d) the enhanced fetal ECG.
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TABLE 3. Quantitative results obtained from clinicians’ grading.

Our approach(average ± std*) AIC(average ± std) p-value

1st clinician 3.54 ± 1.3** 2.92 ± 1.43*** 0.03

2nd clinician 3.43 ± 1.36** 2.4 ± 1.19*** 0.002

Both clinicians 3.49 ± 1.22 2.64 ± 1.26 < 0.001

*std: standard deviation; **p-value = 0.39; ***p-value <0.001.

TABLE 4. Intraclass correlation coefficient (95% confidence interval) for the CTI measurements based on our approach.

T P QRS PR R2R QTc

1st Clinician 0.85

(0.72, 0.92)

0.92

(0.84, 0.96)

0.83

(0.68, 0.91)

0.95

(0.9, 0.98)

1

(0.99, 1)

0.8

(0.64, 0.9)

2nd Clinician 0.72

(0.52, 0.85)

0.59

(0.33, 0.78)

0.65

(0.42, 0.81)

0.84

(0.7, 0.92)

1

(0.99, 1)

0.6

(0.36, 0.79)

1st and 2nd clinician

(1st day)

0.35

(0.11, 0.67)

0.17

(0.01, 0.71)

0.39

(0.14, 0.69)

0.34

(0.1, 0.67)

0.97

(0.94, 0.98)

0.39

(0.14, 0.69)

1st and 2nd clinician

(2nd day)

0.23

(0.04, 0.67)

0.22

(0.03, 0.67)

0.27

(0.06, 0.66)

0.37

(0.13, 0.68)

0.97

(0.94, 0.99)

0.47

(0.21, 0.72)

FIGURE 7. Two samples of the fetal ECG extracted using our approach (a and c) and the AIC method (b and d), used for grading
and CTI measurements by clinicians.
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