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ABSTRACT Cholera is a diarrheal disease caused by Vibrio cholerae that continues
to be a major public health concern in populations without access to safe water.
IgG- and IgA-secreting memory B cells (MBC) targeting the V. cholerae O-specific
polysaccharide (OSP) correlate with protection from infection in persons exposed to
V. cholerae and may be a major determinant of long-term protection against cholera.
Shanchol, a widely used oral cholera vaccine (OCV), stimulates OSP MBC responses
in only some people after vaccination, and the gut microbiota is a possible determi-
nant of variable immune responses observed after OCV. Using 16S rRNA sequencing
of feces from the time of vaccination, we compared the gut microbiota among
adults with and without MBC responses to OCV. Gut microbial diversity measures
were not associated with MBC isotype or OSP-specific responses, but individuals
with a higher abundance of Clostridiales and lower abundance of Enterobacterales
were more likely to develop an MBC response. We applied protein-normalized fecal
supernatants of high and low MBC responders to THP-1-derived human macro-
phages to investigate the effect of microbial factors at the time of vaccination. Feces
from individuals with higher MBC responses induced significantly different IL-1b and
IL-6 levels than individuals with lower responses, indicating that the gut microbiota
at the time of vaccination may “prime” the mucosal immune response to vaccine
antigens. Our results suggest the gut microbiota could impact immune responses to
OCVs, and further study of microbial metabolites as potential vaccine adjuvants is
warranted.

KEYWORDS oral cholera vaccination, Shanchol, gut microbiota, memory B cell
response

V ibrio cholerae is the causal agent of cholera, an acute diarrheal disease that causes
an estimated 91,000 deaths every year (1). Cholera is endemic in Sub-Sahara

Africa and South East Asia, and nearly 3 million cases are reported annually (1). Over
200 serogroups of V. cholerae are found in the environment and two have caused epi-
demic disease in humans: V. cholerae O1 and, less commonly, O139. V. cholerae O1 are
divided into serotypes Inaba and Ogawa that differ in the methylation of a terminal
perosamine in the O-side chain of lipopolysaccharide (LPS), and both biotypes circulate
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in regions of cholera endemicity (2–5). After ingestion of V. cholerae-contaminated
water or food, V. cholerae colonizes the small intestines and produces cholera toxin
(CT) that is responsible for severe watery diarrhea and dehydration.

Oral cholera vaccines (OCVs) are an important tool in combating cholera and have
been used in outbreaks in cholera-naive populations and in cholera-endemic areas (6,
7). Currently, the most widely used OCVs are killed whole-cell V. cholerae formulations
without a recombinant CT subunit B (Shanchol, Shantha Biotechnics, India, and
Euvichol or Euvichol-Plus, Eubiologics, South Korea). These vaccines consist of inacti-
vated V. cholerae O139 and O1 strains of both Inaba and Ogawa serotypes, and require
one or more doses to protect adults and children over 5 years of age (8–10).
Vaccination with Shanchol usually generates a vibriocidal antibody response and circu-
lating IgG and IgA antibodies to V. cholerae antigens (11–13). Plasma antibody levels
wane quickly after vaccination and are not reliable indicators of response to vaccina-
tion. Memory B cells (MBC) are long-lived cells that circulate in the weeks after vaccina-
tion and can then be reactivated to produce antibodies rapidly after reexposure to an
antigen (14). Studies of household contacts of patients with cholera indicate that
measurable V. cholerae-specific MBC responses to the O-specific polysaccharide (OSP)
component of the V. cholerae LPS correlate with protection against infection (15, 16).
After vaccination with Shanchol, V. cholerae OSP-specific MBC responses are induced in
some adults living in cholera areas of endemicity, such as Haiti and Bangladesh (17,
18). These responses peak 3 to 6weeks after vaccination and wane over the period of 1
year (17, 18). Depending on the serotype and immunoglobin isotype, 0 to 67% of vac-
cine recipients develop detectable OSP MBC responses after vaccination (17, 18).

There are several hypotheses for this variation in immune response to OCV, includ-
ing diet, preexisting immunity, and differences in the gut microbiome (19). Gut micro-
bial communities have been correlated previously with immunological responses to
oral vaccines; for example, Harris et al. reported that administration of antibiotics prior
to live attenuated rotavirus vaccination correlated with immunologic response to vac-
cination (20). Another study of oral live attenuated typhoid vaccination found that dif-
ferences in gut microbiota diversity at time of vaccination differentiated between per-
sons with multiphasic versus late cell-mediated immune responses (21). Consistent
with the concept of gut microbes at the site of vaccine absorption impacting vaccine
response, small intestinal bacterial overgrowth has also been associated with a blunted
immune response to live oral cholera vaccines (22, 23).

To investigate the relationship between the gut microbiota and responses to the
OCV Shanchol, we analyzed the fecal microbiota at the time of vaccination and meas-
ured immune responses after vaccination in humans in Bangladesh. We identified gut
microbial taxa that differentiate vaccine responders from nonresponders and charac-
terized the baseline immune activation of responders compared to nonresponders by
measuring cytokine responses to fecal metabolites in a human macrophage cell culture
model.

RESULTS
Study enrollment and demographics. Sixty-nine participants enrolled in a study

designed to measure the immunogenicity of the Shanchol vaccine stored in ambient
temperatures contributed feces for this study (24). Demographic and clinical character-
istics of study participants are shown in Table 1. Study participants received one or
two doses of Shanchol (at 14 or 30 days apart, see the Materials and Methods) and all
of these regimens are known to be efficacious and immunogenic (8–10).

Vibriocidal titer and V. cholerae OSP antibody responses. Similar to immune
responses from prior cohorts, vibriocidal titers to V. cholerae O1 Ogawa and Inaba sero-
types increased from baseline after vaccination (Fig. 1A and B) (18, 25). In total, 44
(64%) and 54 (78%) of the 69 vaccine recipients had a 4-fold or greater Ogawa- or
Inaba-specific vibriocidal response, respectively, by day 7 (see Table S1 in the supple-
mental material). Individuals with elevated baseline vibriocidal titers had lower sero-
conversion rates by day 7 compared to individuals with lower baseline vibriocidal
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titers, as previously reported (Table S1) (18, 26). Another traditional measure of vaccine
response to OCV is circulating IgG and IgA antibodies.

Plasma IgG antibodies targeting Ogawa and Inaba OSP were elevated above the
baseline measurement by day 3 (P, 0.0001) and day 33 (P, 0.0001) and returned to
baseline by day 60 (Fig. 1C). A similar pattern of response was observed for both sero-
types of OSP-specific IgA responses. IgA antibodies to Ogawa OSP were increased by
day 3 (P=0.0002) and remained elevated to day 33 (P, 0.0001), while antibodies to
Inaba OSP were significantly increased by day 7 (P, 0.0001) until day 60 (P=0.03) (Fig.
1D). Similar results were also found when participants were stratified by high and low
baseline vibriocidal titers. Independent of baseline vibriocidal titer status, IgG antibod-
ies to OSP were significantly elevated by day 3 after the initial vaccination dose, while
IgA antibodies to OSP were significantly elevated by day 7 (see Fig. S1 in the supple-
mental material).

V. cholerae OSP-specific memory B cell responses. OSP-specific memory B cell
(MBC) responses are correlated with longstanding immunity against V. cholerae (15, 16,
27). When a person with prior infection is reexposed to V. cholerae, long-lived OSP-spe-
cific MBCs are thought to rapidly differentiate, mature, and generate V. cholerae-spe-
cific OSP antibody responses that mediate protection from disease (28). After vaccina-
tion, IgG-specific MBC responses to Ogawa and Inaba OSP were significantly increased
on day 60 and decreased at subsequent time points (Fig. 2A). IgA-specific MBC
responses varied by serotype. There were 36% (25/69) and 26% (18/69) IgG MBC
Ogawa and Inaba responders, respectively. While there was a significant increase in
IgA-specific MBC to Ogawa OSP by day 60 (P, 0.0001), no change in IgA MBC
response directed at Inaba OSP was observed (Fig. 2B). The frequency of IgA MBC res-
ponders was 62% (43/69) and 39% (27/69) for Ogawa and Inaba OSP, respectively.

Gut microbiota composition before and after vaccination. We studied the gut
microbiota community composition and diversity before and after vaccination. In a
subset of participants receiving two doses of Shanchol 14 days apart, microbial com-
munities were analyzed at the time of initial vaccination (day 0) and follow-up days 7,
17, and 42. The number of sequences per sample used for analysis was normalized
based on rarefaction curves (Fig. S2A). We measured the alpha and beta diversity of
the gut microbiota between baseline and follow-up time points using inverse Simpson
and Bray Curtis dissimilarity index. No significant changes in diversity or shifts in micro-
bial community were found in the gut microbiota following vaccination in a subset of
samples (Fig. S2B and C).

Relationship between MBC responses and gut microbiota diversity. Because our
microbiota analysis combines data from persons who underwent three different vacci-
nation regimens, we first compared the microbial diversity and community structure in
the gut microbiota between dosing groups (Fig. S3). We found that the single dose
vaccination group, with a small sample size of 12 participants, had low levels of
Proteobacteria (Fig. S3A), with an increased inverse Simpson index compared to the

TABLE 1 Demographics and clinical characteristics of study participants

Characteristics Participants, n=69
Age (yrs)
Mean 28.96
Range 18–44

Gender (%)
Females 67 (97.1)
Males 2 (2.9)

Vibriocidal titer at day 0 (%)
Ogawa$ 80 36 (52.2)
Ogawa, 80 33 (47.8)
Inaba$ 80 36 (52.2)
Inaba, 80 33 (47.8)
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other two groups (Fig. S3B). These findings were driven by an additional phylum pres-
ent with small relative abundance in this group. Despite the variation in inverse
Simpson index measures, all vaccine dosing groups had overlapping community struc-
tures by Bray Curtis measures of dissimilarity (Fig. S3C). Additionally, the gut micro-
biota alpha diversity was not correlated with age, baseline vibriocidal titer of ,80 or
$80, or presence of 4-fold change in vibriocidal titer after vaccination (Fig. S4).
Because the vaccine dosing regimens used are all known to be effective in preventing
cholera, and because the baseline diversity differences found between groups do not
have a known relationship with how the gut microbiota would impact vaccination and
may be influenced by small sample size when analyzed within vaccine arms, we

FIG 1 Vibriocidal titers and IgG and IgA antibody responses in study participants. (A and B) Ogawa
(A) and Inaba (B) specific vibriocidal titers at day 0 through day 180 are shown. Day 0 is the date of
administration for the initial vaccine dose. (C) IgG OSP-specific antibodies to Ogawa and Inaba
serotypes. (D) IgA OSP-specific antibodies to Ogawa and Inaba serotypes. Vibriocidal titers are
presented as geometric means with bars representing 95% confidence interval on a log2 scale. Mean
values of OSP antibodies are shown with bars representing standard error of the mean (SEM). Mann-
Whitney testing was performed and asterisks denoting statistically significant differences from
baseline levels are shown; *, P, 0.05; **, P, 0.01; ***, P, 0.001; ****, P, 0.0001.
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combined the vaccination dosing groups to increase our likelihood of detecting a rela-
tionship between MBC responses and the gut microbiota, if this relationship is present.
At baseline, the microbiota of the study participants was predominantly composed of
phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria (Fig. 3A). Twelve of
69 participants had over 20% abundance of Proteobacteria and the overall mean abun-
dance was 10%, consistent with prior studies of the gut microbiota in healthy
Bangladeshi adults (29).

We next evaluated differences in phylum level abundance according to MBC response.
There were no significant differences in phylum level abundance or alpha diversity as
measured by inverse Simpson comparing nonresponder (NR) and responder (R) study par-
ticipants (Fig. S5). Further analysis of beta diversity using principal-component analysis
(PCoA) of Bray Curtis distance demonstrated overlap of NR and R bacterial communities,
indicating similar community structures between NR and R participant microbiotas at time
of vaccination (Fig. 3B). We found that the microbiota community structure at the time of
vaccination and diversity measures did not differentiate NR from R participants, including
by specific MBC immunoglobulin type.

Bacterial communities differentially represented in MBC responders and
nonresponders. To further investigate the microbiota at time of vaccination, we used
an unsupervised modeling approach to identify bacterial taxa regardless of MBC char-
acterization. Baseline taxa were fitted into unbiased community types using a Dirichlet
multinomial mixtures model that clusters communities by the bacteria taxa present
(30). Four microbial “partitions” resulted from modeling the baseline microbiota of vac-
cine participants at the bacterial order level (Fig. 4). Partition 4 (P4) had significantly
higher diversity compared to the other three partitions (comparisons P, 0.0001,
P=0.007, and P=0.0009, respectively, as shown in Fig. 4A), while analysis of the

FIG 2 IgG and IgA OSP-specific memory B cell responses in study participants. (A and B) IgG (A) and
IgA (B) Ogawa or Inaba specific MBC responses at day 0 through day 180. Day 0 is the date of
administration for the initial vaccine dose. Data shown are means with bars representing SEM. Mann-
Whitney testing was performed and asterisks denote statistically significant differences between
follow up time points and baseline measurements; *, P, 0.05; **, P, 0.01; ***, P, 0.001; ****,
P, 0.0001.
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community structure with PCoA showed overlap of the partitions (Fig. 4B). A heat map
of order-level taxa from each participant within the partitions demonstrates similar
patterns between P2 and P3, with an increase in abundance of Enterobacterales, while
P1 and P4 had increased Clostridiales (Fig. 4C). The bacterial taxa that contributed the
most to the model for delineating the partitions were Clostridiales, Enterobacterales,
Mycoplasmatales, and Oscillospirales (Fig. 4D to G; Fig. S6). Clostridiales was the top
taxon in the model and was highly abundant in P1 (mean= 0.50 6 SD 0.18) compared
to P2 (0.0356 0.04), P3 (0.0626 0.42), and P4 (0.136 0.10) (P, 0.0001 for all compari-
sons, Fig. 4D). Conversely, P2 (0.0796 0.030) and P3 (0.446 0.18) were characterized
by high levels of Enterobacterales compared to P1 (0.0286 0.047; P1 versus P2:
P=0.009; P1 versus P3: P, 0.0001) and P4 (0.0176 0.021; P2 versus P4: P=0.005; P3
versus P4: P, 0.0001) (Fig. 4E). P2 (0.336 0.123) was defined by high levels of
Mycoplasmatales that were nearly absent in the microbiota of persons classified in the
other partitions (P, 0.0001 for all comparisons) (Fig. 4C and F). Oscillospirales was
most abundant in P4 (0.1386 0.09) compared to P1 (P=0.0011), P2 (P, 0.0001), and
P3 (P=0.002) (Fig. 4G). These data highlight the sources of variation and distinct micro-
bial communities present in this population at the time before vaccination.

To investigate the relationship between MBC responses and the four partitions,
each participant was labeled as an MBC responder or nonresponder for each immuno-
globulin isotype and V. cholerae serotype (top row shown in Fig. 4C). All partitions had
a 50% or greater proportion of responders to IgA Ogawa. Responses to IgA Inaba and
responses to IgG of both serotypes were variable (full data shown in Table S2).
Partition P1 had the highest percentage of responders overall, with more than 40%
MBC response for each isotype and serotype (Fig. 4C; Table S2). As above, this partition
was characterized by increased Clostridiales, and the most abundant taxa identified in
this group were the Sarcina genus and the species Clostridium sensu stricto (as shown
in Table S3). Although P4 had the highest alpha diversity values and community over-
lap with P1, this partition had a low frequency of MBC IgG responses (Ogawa 21%, and
Inaba 27%) and the lowest IgA Inaba responses (35%) (Table S2). As we suspected from
our beta diversity analyses, NR and R gut microbial communities did not separate
neatly into partitions but were differentiated by specific bacterial taxa. We next

FIG 3 Microbiota composition at the time of vaccination in participants stratified by MBC response. (A) Phylum level abundance on
the date of administration for the initial vaccine dose in each participant (baseline). (B) Principal-component analysis (PCoA) of beta
diversity measured by Bray Curtis dissimilarity of MBC nonresponders (NR) and responders (R) by antibody isotype and V. cholerae
serotype. Columns in (A) and dots in (B) represent a single participant with ellipses (B) representing the 95% confidence interval.
Statistical testing of all four PCoA values using analysis of molecular variance (AMOVA) was not significant (P. 0.05).
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investigated how fecal metabolites may impact vaccine response by querying the
potential for NR and R feces to stimulate innate immune responses, independent of mi-
crobial diversity and partition assignment.

Impact of responder compared to nonresponder fecal metabolites on innate
immune responses of human-derived macrophages. The development of long-term
protective immune responses to V. cholerae infection is thought to be partially directed by
the innate immune response to infection (31–34). We compared baseline fecal metabolites
between study participants with high or low MBC responses to learn if baseline innate
immune activation was associated with the postvaccination MBC response. We defined
high responders as study participants with 3 or 4 detectable MBC responses (out of the four
MBC measurements: IgA Ogawa, IgA Inaba, IgG Ogawa, and IgG Inaba), and low responders
as participants with 1 or 0 detectable MBC responses. To assess the baseline fecal metabolite
effects on innate immune responses independent of differential microbial taxa identified in
our partition model, we selected high and low responders from all four of the above-
described partitions. We hypothesized that the fecal metabolites of individuals that induced
more inflammatory cytokines would have lower/absent MBC responses. Resuspension and
filtering of feces removed large particles such as debris and bacteria, and supernatant was

FIG 4 Microbiota communities present at the time of vaccination associated with differences in Clostridiales and Enterobacterales. (A and B) Partitions were
created by unsupervised clustering of microbiota at baseline. Diversity of each partition was measured by inverse Simpson index (A) and PCoA using Bray
Curtis dissimilarity (B). (C) Heat map of order-level bacteria as centered log-ratio abundance split by partitions. Black circles (�) denote MBC response and
blank spaces denote lack of MBC response for the indicated measure. (D to G) Relative abundance of Clostridiales (D), Enterobacterales (E), Mycoplasmatales
(F), and Oscillospirales (G) compared to total gut microbial taxa. Dots in (A and B) and (D to G) represent a single participant and data are shown as mean 6
SEM. Ellipses in (B) represent 95% confidence intervals. Statistical testing in (A) and (D to G) are Kruskal-Wallis tests with multiple comparison adjustments;
**, P, 0.01; ***, P, 0.001; ****, P, 0.0001.
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tested for sterility prior to application to cells and protein levels were normalized (see
Materials and Methods). We first assayed endotoxin levels to assess for LPS, and these did
not differ between high and low responders (Fig. 5A). Fecal supernatants were then applied
and cultured with human THP-1-derived macrophages and innate cytokines were meas-
ured. Fecal extracts from participants with high MBC responses induced significantly higher
levels of interleukin (IL)-1b compared to extracts from persons with low levels of MBC
response (P=0.037) (Fig. 5B), while low MBC participant extracts induced significantly higher
levels of IL-6 (P=0.0056) (Fig. 5C). There were no significant differences in the inflammatory
cytokine tumor necrosis factor alpha (TNF-a) or the noninflammatory cytokine IL-10 (Fig. 5E
and F). These differences indicate that fecal metabolites present at the time of vaccination
polarize the innate immune responses.

After identifying this difference in immune responses stimulated by fecal superna-
tants from high and low responders in our cell culture model, we correlated the bacte-
rial taxa previously identified to stratify partitions with corresponding cytokine
responses. Levels of IL-1b stimulated by fecal extracts were positively correlated with

FIG 5 Cytokine responses of THP-1-derived macrophages following fecal supernatant stimulation.
Fecal supernatants were extracted from a subset of individuals with high MBC responses (high)
(n= 12) or low MBC responses (low) (n= 12) independent of vibriocidal titer or plasma antibody
measures. (A) Measure of LPS in fecal supernatants by limulus amebocyte lysate assay expressed as
endotoxin units. (B to E) Cytokine measurements in THP-1 supernatants after 24 h of incubation with
fecal supernatants by ELISA for IL-1b (B), IL-6 (C), TNF-a (D), and IL-10 (E). Each dot denotes one
participant’s fecal supernatant; data are shown as mean 6 SEM and are representative of two
independent experiments performed in duplicate. Mann-Whitney testing was used for statistical
testing; *, P, 0.05; **, P, 0.01.
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the relative abundance of Clostridiales, but not Enterobacterales (Fig. 6A). In contrast,
while IL-6 levels were significantly different in cells stimulated by extracts from high
compared to low MBC responders, IL-6 levels did not significantly correlate with either
Clostridiales or Enterobacterales (Fig. 6B). Cytokine levels did not correspond with the
amount of endotoxin in fecal supernatants (Fig. S7). In summary, specific bacterial
groups, such as Clostridiales, were differentially abundant among study participants
who developed higher MBC responses, and this taxon was also associated with gener-
ating differential cytokine responses in our fecal supernatant stimulation model, inde-
pendent of endotoxin content. Together these results indicate that the presence of the
metabolites of specific gut microbial taxa at the time of vaccination may influence
immune responses to vaccination.

DISCUSSION

Shanchol administered in a one- or two-dose regimen provides protection from V.
cholerae infection in adults and the mechanisms of this protection remain under study
(8, 35, 36). Antibodies that target the O-specific polysaccharide (OSP) and coat the
sheath of the V. cholerae flagellum are known to correlate with protection from infec-
tion, most likely by inhibiting motility, thereby reducing V. cholerae virulence (16, 28,
37–39). Peripherally circulating memory B cells (MBC) that produce anti-OSP antibodies
are generated after V. cholerae exposure or vaccination and correlate with protection
from infection in human studies (15, 27). The MBC responses to Shanchol in cholera-na-
ive and cholera-endemic populations vary, and a subset of persons receiving vaccine
do not generate any OSP-specific MBCs (16, 17). Age, prior exposure to V. cholerae, en-
teric enteropathy, concurrent infection, and the gut microbiota have been proposed as
factors that may impact OCV protective efficacy (9, 40, 41). Our study is the first to

FIG 6 Relationship between fecal supernatant induced inflammatory cytokines and relative
abundance of Clostridiales and Enterobacterales. (A and B) Correlation between IL-1b (A) and IL-6 (B)
cytokine levels secreted from THP-1 cells and Clostridiales or Enterobacterales relative abundance in
the fecal supernatants used for stimulation of THP-1 cells. Simple linear regressions with r2 and P
values are shown.
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investigate the relationship between the gut microbiota and immune responses to
OCV.

We found that the diversity of the gut microbiota at the time of OCV did not predict
an increase in OSP-specific MBC responses. In prior studies, the relationship between
microbial diversity and immune responses to oral vaccination has been mixed (21,
42–44). This suggests that the gut microbial impact on immune response to vaccina-
tion may be linked to the presence of specific strains, metabolites, or other factors that
influence the intestinal environment, rather than a general measurement of gut micro-
bial “health,” such as taxonomic diversity. Among our cohort of vaccine participants,
the bacterial order Clostridiales differentiated the gut microbiota of persons most likely
to have high compared to low MBC responses. Clostridiales are robust producers of
short-chain fatty acids (SCFAs), which are fermentation products of anaerobic bacterial
metabolism. Higher SCFA gut levels have been associated with positive effects on host
metabolism and the health of the gut epithelium, and are known to modulate mucosal
immunity (45–49). For example, SCFAs downregulate LPS-induced proinflammatory
mediators, including IL-6, by inhibiting histone deacetylation activity in gut macro-
phages (50, 51). This is in agreement with our observation that less IL-6 was secreted in
our human-derived macrophage model stimulated with fecal extracts from persons
with more robust MBC responses.

In this study, the taxa most abundant in the Clostridiales group were the genus
Sarcina and the Clostridiales sensu stricto species, which produce SCFAs. Both taxa have
been previously associated with vegetarianism, and a plant-based diet is known to
reduce gut oxidative stress and mucosal surface innate immune activation (52–57).
Although we did not collect diet data on our study participants, the gut microbiota is
known to be highly impacted by diet (58) and it is possible that some participants had
low or no animal products in their diet, which may be due to availability and cost
rather than lifestyle choice. Future studies of vaccine responses and the gut microbiota
should consider collecting data on dietary habits as a host factor that could inform the
gut microbiota-vaccine immune response relationship.

The gut microbiota associated with lower frequency of MBC responders was domi-
nated by taxa from the group Enterobacterales. Strains from this taxon are typically
aerobes and, in prior studies, have been associated with low-diversity microbiota and
disruption of healthy gut flora (59–61). Abundant genera within Enterobacterales
includes Klebsiella, Escherichia, and other species with pathogenic potential that are
known to have more adhesins, siderophores, and antibiotic resistance genes than
other taxonomic groups (62, 63). Enterobacterales also includes strains known to have
inflammatory LPS and surface proteins that activate innate immune responses, contrib-
uting to baseline inflammation at the mucosal surface (64, 65). We hypothesize that a
higher Enterobacterales abundance in the gut may result in a “blunting” of the innate
immune response when vaccine antigens are presented. Innate immune responses
generated by OCVs are relevant to protective immunity because they contribute to the
development and growth of V. cholerae OSP-specific MBCs that later reactivate when a
person is exposed to V. cholerae (31, 66–68). For example, IL-1b is a canonical innate
inflammatory cytokine that promotes upregulation of innate effector proteins and
stimulates development of T follicular helper cells that provide “help” to B cells in ger-
minal centers (69, 70).

To explore the hypothesis that the gut microbiota of low vaccine responders was
more likely to stimulate innate immune activation at baseline, we measured innate
responses from human-derived macrophages stimulated with fecal extract containing
microbial metabolites. We found that low MBC responder feces resulted in significantly
more IL-6 secretion and less IL-1b secretion, independent of fecal endotoxin content.
Both IL-1b and IL-6 stimulate production of acute phase proteins and facilitate the
growth and development of neutrophils and B cell populations (71). Because IL-1b
stimulates IL-6 expression, and these cytokines are often cosecreted in response to
pathogen-associated molecular patterns, we were surprised that IL-1b and IL-6
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secretion significantly differed in our model (72). IL-1b and IL-6 expression in macro-
phages both rely on nuclear factor kappa light-chain enhancer of activated B cells (NF-
kB), a canonical innate immune pathway, but differ in their downstream activation
and cytokine release pathways. IL-1b processing is dependent on cleavage by cas-
pase-1, which is activated by assembly of the NOD-, LRR-, and pyrin domain-containing
protein 3 (NLRP3) inflammasome, and release can be stimulated by specific bacterial
toxins and extracellular ATP (73–76). Conversely, IL-6 processing and secretion is pri-
marily regulated through posttranscriptional alterations by the AT-rich interactive do-
main containing protein 5a (77, 78), whose release occurs via LPS-mediated stimulation
of macrophages. The opposing IL-1b and IL-6 secretion in our model in response to
high or low responder fecal stimulation suggests that, in addition to microbial metabo-
lites, diet- or host-derived small molecules in the intestinal environment may impact
the downstream processing or release of IL-1b and IL-6 downstream of NF-kB stimula-
tion. Fecal supernatant contains small proteins, SCFAs, bile metabolites, and other
known immunomodulators such as flagellin that may impact these pathways. Future
study of the small molecules in the fecal extract that could be responsible for polariz-
ing responses to vaccine antigens are needed in order to identify active components
for further testing as potential vaccine adjuvants.

OSP-specific MBC responses to both Inaba and Ogawa serotypes were studied
because these two strains emerge and reemerge in cholera outbreaks in a cyclical pat-
tern that is not well understood (79, 80). Immunologically, the degree of cross-protec-
tion between serotypes is incomplete and may be asymmetric (79, 81, 82). In this
study, we did not find significant differences between Ogawa compared to Inaba OSP-
specific MBC results. Our study was limited by small sample size and a primarily female
study population. We did not collect blood group information on our study partici-
pants and there are conflicting reports about the impact of blood group O status on
vaccine responses to whole-cell killed OCVs (83, 84). Our study population included
individuals who underwent different dosing regimens of vaccination; however, all
dose regimens are known to be protective in adults and elicit similar immune
responses (8, 35, 36). The microbial analysis was performed using 16S rRNA sequenc-
ing and this provides only compositional data and does not give resolution on bacte-
rial gene content, function, or expression between the gut microbiota of study partici-
pants. Overall, the microbiota composition in our population is consistent with other
studies of healthy Bangladeshi adults (29). However, one vaccine group had a lower
abundance of Proteobacteria than other groups. This may have been due to the small
sample size of this vaccine group compared to the other groups. In our analysis of
microbiota diversity over time after vaccination, we did not conduct daily sampling
which would give increased resolution on the fluctuations of the microbiota over time.
An additional limitation to this work is that the location of immunologic processing of
OCV occurs in the small intestine (85); here, we use feces as a proxy for the gut micro-
biota of the gastrointestinal tract. Fecal extract used in in vitro experiments excluded
large molecules and retains host- and diet- derived metabolites in addition to micro-
bial-derived metabolites.

Our observations of the gut microbiota in adults receiving OCV suggest that gut
microbes present at the time of vaccination may impact OSP-specific MBC responses
and, specifically, that the taxon Clostridiales is correlated with more robust long-term
MBC responses that are known to protect from reinfection. Identification of commensal
microbes or bacterial metabolites that enhance vaccine responses could lead to candi-
date products for coadministration to boost vaccine efficacy.

MATERIALS ANDMETHODS
Study participants and sample collection. Healthy adult volunteers between the ages of 18 and 45

were recruited for this study in Dhaka, Bangladesh (24). Participants consenting to the study were
excluded if they reported fever, gastrointestinal symptoms, use of anti-diarrheal medication in past
7 days, major comorbidities, were immunocompromised, pregnant, or had previously received any OCV.
Upon enrollment, participants were randomized into three arms as follows: the first group received a sin-
gle dose of Shanchol, the second received two doses 14 days apart, and the third received two doses
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30 days apart. Blood was collected on the day of vaccination (day 0) and subsequent time points. Single
dose (SD) participants were followed on day 3, day 7, day 30, and day 90. Individuals receiving two doses
14 days apart (TD-14) participated in follow-up on day 3, day 7, day 17, day 42, day 90, and day 180 after
the first dose. Participants receiving two doses 30 days apart (TD-30) had follow-up sampling on day 3,
day 7, day 60, day 90, and day 180 after the first dose. Downstream analyses of immune responses com-
bined all vaccine arms. Participants in each vaccine group were recruited simultaneously in the Mirpur
area of Dhaka city between November and December 2012. Fecal samples were first collected the day of
the initial vaccine dose, which we refer to in this study as “day 0” or “baseline.”

Measures of vibriocidal antibodies. To separate peripheral blood mononuclear cells (PBMCs) from
plasma, blood samples were subjected to a density gradient centrifugation using Ficoll-Isopaque
(Pharmacia, Piscataway, NJ). Measures of vibriocidal antibody responses in plasma were completed as
previously described using V. cholerae O1 Ogawa (X-25049) and V. cholerae O1 Inaba (T-19479) (86).
Vibriocidal titers were characterized as the reciprocal of the highest dilution with over 50% reduction in
optical density compared to control wells without plasma. Seroconversion is defined as having a 4-fold
or greater change in vibriocidal titer from the baseline measurement.

Plasma OSP-specific IgG and IgA antibody responses. Measures of OSP-specific IgG and IgA anti-
bodies in plasma were conducted using enzyme-linked immunosorbent assay (ELISA) as previously
described (86). Briefly, antigens V. cholerae O1 Ogawa OSP with bovine serum albumin (BSA, 1mg/ml) or
V. cholerae O1 Inaba OSP with BSA (1mg/ml) were prepared in bicarbonate buffer (pH 9.6 to 9.8) and
coated on 96-well polystyrene plates. V. cholerae O1 Ogawa and Inaba OSP and BSA conjugates were
prepared as previously described using V. cholerae O1 El Tor PIC018 and PIC158 strains, respectively
(87). Plasma was diluted 1:40 in 0.1% BSA with 0.05% Tween in phosphate-buffered saline (PBS) and
100ml of diluted plasma was plated per well. Following incubation, horseradish peroxidase (HRP)-conju-
gated secondary antibodies for human IgG and IgA (Jackson ImmunoResearch, West Grove, PA) with a
1:1,000 dilution were applied, and plates were developed using ortho-phenylene diamine (Sigma, St.
Louis, MO) in 0.1 M sodium citrate buffer (pH 4.5) and 0.01% hydrogen peroxide. Kinetic measurements
were taken at an absorbance of 450 nm for 5 min with 14-s intervals. Values were recorded as milli-ab-
sorbance units/min. ELISA data were normalized using the ratio of the optical density of the test sample
to the standard of pooled convalescent-phase sera (from previously infected patients with cholera) (88).

Measures of memory B cell OSP-specific responses. Memory B cells producing IgA and IgG spe-
cific for V. cholerae OSP were measured by using enzyme-linked immunospot assay (ELISPOT) as pre-
viously described (15, 89–91). Briefly, 5� 105 PBMCs/well were cultured in cell culture plates with
complete medium (Rosewell Park Memorial Institute Medium [RPMI] 1640 containing 10% fetal bo-
vine serum [FBS], 2 mM L-glutamine, 200 units/ml penicillin, 200mg/ml streptomycin, and 50mM
beta-mercaptoethanol). For ELISPOT of MBCs, plates were coated using anti-human immunoglobu-
lins, OSP, or keyhole limpet hemocyanin (KLH), blocked with RPMI 1640 containing 10% FBS, and
then cells were applied for 5 h at 37°C in 5% CO2. Following incubation, plates were treated with
HRP-conjugated goat anti-human IgA or IgG (Hybridoma Reagent Laboratory, Baltimore, MD) at a
dilution of 1:500 and incubated overnight at 4°C. Plates were developed using 3-amino-9-ethyl car-
bazole and cells were quantified using a stereomicroscope. Measures of ELISPOT were calculated as
the percentage of antigen-specific MBCs from the total MBCs of that specific isotype at the same
time point. MBC values were considered valid if quality control criteria were fulfilled, as in prior
studies. Briefly, data were included if (i) the ratio of total Ig MBC stimulated to total Ig MBC unstimu-
lated was greater or equal to 3; (ii) unstimulated response for specific antigens was less than 3; and
(iii) stimulated MBC response to KLH was less than 3 (15, 89, 92). Individuals receiving vaccination
were classified as responders (R) if the MBC response at follow-up time points was higher than the
baseline value measured at the time of vaccination, and nonresponders (NR) if there was no
increase in MBC value at follow-up time points in comparison to the baseline value.

Fecal microbiota DNA extraction and 16S sequencing. Feces were collected in cryovials and fro-
zen at 280°C. Fecal microbial DNA was extracted using Powersoil DNA isolation kit (Qiagen, Germany)
with a modified protocol as previously described (93). Briefly, fecal sample was thawed on ice and
approximately 100mg of sample was added to the PowerBead tubes. The feces were treated with C1 so-
lution, heated at 65°C for 10 min, 95°C for 3 min, and vortexed for 10 min at maximum speed. Samples
were then treated and washed using C2 to C5 solutions provided by the Powersoil kit. The resulting
DNA was eluted in DNase- and RNase-free water and quantified using NanoDrop ND-1000 (Thermo
Scientific, Waltham, MA, USA). Sequencing for taxonomic characterization was performed targeting the
V4 region of 16S rRNA amplified using 515F (59-GTGCCAGCMGCCGCGGTAA-39) and 806R primers (59-
GGACTACHVHHHTWTCTAAT-39) (94) and paired-end reads were sequenced using the Illumina MiSeq
platform (Illumina, San Diego, CA, USA).

16S rRNA data processing and analysis. Raw files obtained as fastq files were curated using
mothur v.1.44.1 following the MiSeq SOP (https://mothur.org/wiki/miseq_sop/, accessed 25 June 2020)
(95). Briefly, paired-end reads were combined into contigs, sequences were screened for maxambig = 0
and maxlength = 275, and aligned to Silva 16S rRNA sequence data (silva.nr_v138.align). Aligned sequen-
ces were preclustered to allow up to a 2-bp difference and chimeras were detected and removed using
VSEARCH (v2.13.3) (96). Sequences were classified using SILVA (v138) (97) with a confidence score
greater than 80% and phylotyped to the family level using cluster.split(). Alpha diversity measures were
calculated using the inverse Simpson index. Beta diversity measures was calculated using the Bray Curtis
dissimilarity index and visualized using principal-coordinate analysis (PCoA) plots. Unsupervised proba-
bilistic clustering of bacterial communities by Dirichlet multinomial mixtures was performed using the
mothur command get.communitytype() using the default settings on the order level of operational
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taxonomic unites (OTUs) (30). The heatmap of order-level abundance was created with abundances nor-
malized using center-log ratio transformation (98).

Fecal supernatant. Approximately 75mg of feces was resuspended in 4ml of sterile PBS (pH 7.0).
Feces were homogenized by vortexing and incubating at room temperature for 30 min. After incuba-
tion, feces were centrifuged at 4,000� g for 10 min at room temperature and supernatant was collected.
The pH was normalized to 7.0 to 7.2 and filtered through a 0.2-mm polyethersulfone syringe filter. Fecal
supernatants were plated on tryptic soy agar with 5% sheep’s blood (Thermo Scientific, Waltham, MA,
USA) and incubated at 37°C aerobically for 48 h to ensure sterility. Protein levels in fecal supernatants
were measured using a Bradford/Coomassie protein assay kit with BSA standard (Pierce/Thermo
Scientific, Waltham, MA, USA). Fecal supernatants were stored at220°C until use.

Endotoxin assay. Fecal supernatants were thawed on ice and diluted in sterile PBS. Endotoxin levels
were measured using the Chromogenic Endotoxin Quant kit (Thermo Scientific, Waltham, MA, USA)
according to the manufacturer’s instructions with pyrogen-free Eppendorf tubes, pipette tips, and sterile
96-well plates.

THP-1-derived macrophage stimulation and cytokine ELISAs. THP-1 monocytes were obtained
from ATCC (TIB-202) and maintained in RPMI 1640 supplemented with L-glutamine, 25mM HEPES, 10%
FBS, and Pen-Strep with 5% CO2 at 37°C. To induce differentiation to a macrophage phenotype, cells
were seeded in 48-well tissue culture treated plates with 50 ng/ml phorbol 12-myristate 13-acetate
(Invivogen, San Diego, CA, USA) for 72 h. Prior to treatment with fecal supernatants, the adherent THP-1-
derived macrophages were washed 3 times with sterile PBS. Fecal supernatants were normalized for pro-
tein as described above and supernatants were applied to cells at a quantity of 10mg/ml of protein for a
total volume of 400ml per well. After 24 h, cell supernatant was collected and assessed for cytokine pro-
duction using ELISA. Cytokines were measured using human IL-1b , IL-6, tumor necrosis factor alpha
(TNF-a), and IL-10 DuoSet kits (R&D Systems, Minneapolis, MN, USA) according to the manufacturer’s
instructions.

Ethics statement. All studies involving OCV participants were approved by the Research Review and
Ethics Review Committee of the International Centre for Diarrheal Disease Research, Bangladesh (icddr,
b) in Dhaka, Bangladesh, and the Institutional Review Board of the Massachusetts General Hospital and
the University of Washington. The vaccine Shanchol is prequalified by the WHO for use in populations at
risk for cholera, such as persons living in Dhaka, Bangladesh (99). Written informed consent was
obtained from all participants in this study.

Statistical analysis. All figures and statistical testing were generated using Prism (GraphPad, San
Diego, CA version 9.0.2) or R (version 4.0.2). PCoA ellipses represent the 95% confidence interval.
Statistical testing for differences in immunological responses to vaccine compared to day 0 was per-
formed using Mann-Whitney testing with two-tailed P values. Mann-Whitney testing was also per-
formed on alpha diversity measures of 16S microbiota data between NR and R groups. Comparison
of alpha diversity and bacterial abundances of partitions was performed with Kruskal-Wallis test
with Dunn’s multiple comparisons. Cytokine measurements of treated THP-1-derived macrophages
were tested using Mann-Whitney testing and simple linear regression analysis was performed com-
paring bacterial abundances to cytokine levels. P values lower than 0.05 were considered statisti-
cally significant.

Data availability. The microbiome sequencing data has been deposited at BioProject under acces-
sion number PRJNA742046.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 1.6 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.01 MB.
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