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Abstract 

The prediction of phenotypes from ancient humans has gained interest due to its potential 

to investigate the evolution of complex traits. These predictions are commonly performed 

using polygenic scores computed with DNA information from ancient humans along with 

genome-wide association studies (GWAS) data from present-day humans. However, 

numerous evolutionary processes could impact the prediction of phenotypes from ancient 

humans based on polygenic scores. In this work we investigate how natural selection 

impacts phenotypic predictions on ancient individuals using polygenic scores. We use 

simulations of an additive trait to analyze how natural selection impacts phenotypic 

predictions with polygenic scores. We simulate a trait evolving under neutrality, stabilizing 

selection and directional selection. We find that stabilizing and directional selection have 

contrasting effects on ancient phenotypic predictions. Stabilizing selection accelerates 

the loss of large-effect alleles contributing to trait variation. Conversely, directional 

selection accelerates the loss of small and large-effect alleles that drive individuals farther 

away from the optimal phenotypic value. These effects result in specific shared genetic 

variation patterns between ancient and modern populations which hamper the accuracy 

of polygenic scores to predict phenotypes. Furthermore, we conducted simulations that 

include realistic strengths of stabilizing selection and heritability estimates to show how 

natural selection could impact the predictive accuracy of ancient polygenic scores for two 

widely studied traits: height and body mass index. We emphasize the importance of 

considering how natural selection can decrease the reliability of ancient polygenic scores 

to perform phenotypic predictions on an ancient population.    
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Introduction 

Genome-wide association studies (GWAS) with large sample sizes and deep 

phenotyping have identified thousands of loci associated with complex traits and diseases 
1–4. These associations have enabled the possibility of computing polygenic scores (PS), 

which represent the genetic contribution of single nucleotide polymorphisms (SNPs) to a 

heritable trait. Researchers have used polygenic scores as a tool to develop predictive 

models for inferring phenotypes and assessing individuals’ genetic risk to exhibit different 

phenotypic conditions5. The ability to sequence genomes from past human remains has 

allowed the analysis of ancient genotypes using polygenic scores to predict phenotypes 

that cannot be observed directly6. These polygenic score analyses have been conducted 

using allele effect sizes estimated with genomic data from present-day cohorts. The ability 

of polygenic scores to predict ancient phenotypes using ancient DNA extracted from 

human tissues is an area of recent interest due to its potential to investigate the evolution 

of anthropometric measurements such as height7–9 and to analyze the temporal 

prevalence of different diseases and conditions10. 

Current research has demonstrated that polygenic scores can result in poor predictions 

among contemporary individuals. Some of the factors compromising the predictive power 

of polygenic scores include population stratification, changes in allele frequencies 

between populations, and environmental heterogeneity11–15. However, few studies have 

evaluated the impact of evolutionary factors such as natural selection on the predictive 

accuracy of polygenic scores on both contemporary and ancient individuals16–18. A 

previous study has shown that stabilizing selection is acting on 26 out of 70 traits analyzed 

in both sexes from the UK Biobank data19 and a more recent study showed that stabilizing 

selection acts on 21 out of 27 analyzed traits20. These results suggest that this 

evolutionary force needs to be considered when performing analysis of ancient 

phenotypic predictions due to its action on many complex traits. Previous work 

demonstrated that stabilizing selection reduces the predictive accuracy of polygenic 

scores in present-day populations not represented in GWAS samples18. However, to our 

knowledge there has not been any research analyzing how stabilizing selection impacts 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2024. ; https://doi.org/10.1101/2024.09.10.612181doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.10.612181
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 

the predictive accuracy of polygenic scores for ancient individuals. On the other hand, 

previous work evaluated how directional selection impacts the predictive accuracy of 

ancient traits17 but we currently lack an understanding of differences on the action of 

stabilizing and directional selection on the predictive accuracy of polygenic scores in 

ancient humans. 

In this work we investigate how stabilizing and directional selection impact the predictive 

accuracy of ancient polygenic scores when the scores are computed using ancient 

genotypes along with effect size estimates from a present-day population. We use 

forward in time simulations to model a single trait evolving under stabilizing selection or 

directional selection. We show that stabilizing and directional selection reduce the 

predictive accuracy of ancient polygenic scores even with perfectly estimated effect sizes 

at the causal loci of complex traits. Stabilizing selection causes the loss of high effect 

alleles while directional selection causes the loss of alleles that move phenotypes farther 

away from the phenotypic optimum. We observe a lower phenotypic predictive accuracy 

when the strength of stabilizing selection increases. We also find that the distribution of 

allele effects has an impact on the predictive accuracy of phenotypes when the traits 

evolve under directional selection. Moreover, we perform simulations to show how natural 

selection could impact the phenotypic prediction of height and body mass index in the 

past with polygenic scores. We find that stabilizing selection and directional selection 

negatively impact polygenic score accuracy despite having a simple demographic model, 

complete genotype data and perfect estimates of effect sizes in causal mutations. We 

argue that considering the impact of natural selection acting on a trait is important to avoid 

substantial biases in the prediction of complex traits from the past with the use of 

polygenic scores. 
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Materials and methods 

Simulation details 

We used SLiM 4.121 to simulate a polygenic trait evolving under neutral evolution, 

stabilizing selection and directional selection. We simulated a single population with a 

constant population size of 𝑁	 = 	10	000 diploid individuals. We simulated 20 independent 

regions of 25	000 bp to mimic the human nuclear gene median length22. We set the 

mutation and recombination rate at a value of 1𝑒!" per base pair. Each independent 

region comprises quantitative trait loci (QTLs) where the effect size of a new allele is 

drawn from a normal distribution with mean 𝜇	 = 	0 and standard deviation 𝜎	 = 	0.25. We 

assume that the effect sizes of alleles in QTLs are additive. We defined an individual 𝑗 

true phenotype 𝑌# as 𝑌# = 𝐺# + 𝜖. Here 𝐺# is the additive genetic value which is the sum of 

the additive effects of the derived alleles possessed by an individual 𝑗 and can be 

estimated as 𝐺# = ∑ 𝑧$# ∗ 	𝛼$%
$	'	(  where 𝑎$%is the additive effect of the derived allele at SNP 

𝑖, 𝑧$# is the number of copies of the derived allele that the individual 𝑗 carries at the SNP 

𝑖 and 𝑛 is the number of new mutations. On the other hand, 𝜖 is an environmental variable 

drawn from a Gaussian random distribution with mean 𝜇	 = 	0 and standard deviation 𝜎	 =

	8𝑉). We defined the environmental variance 𝑉) as 𝑉) = (𝑉* − ℎ+𝑉*)/ℎ+. Here we defined 

𝑉* as the genetic variance which is calculated as the variance of all the additive genetic 

values 𝐺#. We evaluated two different heritability values, ℎ+ = {0.5, 1.0} for each 

evolutionary scenario. 

We simulated a polygenic trait evolving under 1) neutrality, 2) stabilizing selection and 3) 

directional selection. In the case of neutrality, we assume that every new allele does not 

have an effect in the fitness of an individual. On the other hand, we modeled a scenario 

of stabilizing selection using a Gaussian stabilizing selection fitness function to define the 

fitness of an individual as 

𝑊(𝑌) = 	 𝑒
!(-!-!)

"

+/"#  
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Where 𝑌 is the phenotype of an individual, 𝑌0 is the optimal phenotype and 𝑤 determines 

the width of the fitness peak, i.e. the strength of stabilizing selection. Larger values of 𝑤 

indicate a weaker strength of stabilizing selection23,24. We ran simulations of a trait 

evolving under stabilizing selection around a constant optimal trait value 𝑌0 = 0 at five 

different strengths of selection, 𝑤 = {1,2,3,4, 5} to represent cases going from stronger to 

weaker stabilizing selection, respectively. The values of 𝑤 are in the same order of 

magnitude of values of 𝑤 estimated on traits under stabilizing selection in humans18. 

We forced a positive shift in the optimal trait value to simulate a trait evolving under 

directional selection. In our simulations, the population evolved under stabilizing selection 

with 𝑤 = 1 and an optimal trait value of 𝑌1 = 0 during a burn-in period of 10𝑁 generations. 

The optimal trait value then shifts to 𝑌1 = 1 for the remainder 400 generations that we 

simulated. We changed the standard deviation of the QTL mutations effect sizes 

distribution 𝑄𝑇𝐿	~	𝑁(𝜇 = 0, 𝜎 = 	 {0.25, 0.025, 0.0025}) under the scenario of directional 

selection. For this selection scenario we computed the phenotypic mean and phenotypic 

variance for every generation since the optimal value shift until the present. 

In all our simulations we used a burn in period of 100	000 (10𝑁) generations. We randomly 

sampled 100 individuals from the population every 100 generations for 400 generations 

after the burn in period. We defined ancient sampling times as 𝜏 = 0, 100, 200, 300, 400 

generations in the past. These 𝜏 values were chosen to mimic sampling times of 

0, 2	900, 5	800, 8	700 and 11	600 years before the present assuming a generation time of 

29 years per generation25. These sampling times contain the timeframe of 0 − 10	000 

years before the present where the majority of the recovered genetic samples from 

ancient humans have been collected26. We record the genotype and allele QTL effect 

sizes of each individual we sampled at different times 𝜏. We simulated 100 replicates for 

each combination of parameter values in each scenario. 

We compute the true phenotype, 𝑌#(𝜏 = 𝑥), for each sampled ancient individual j at time 

𝜏 = 𝑥 as 

𝑌#(𝜏 = 𝑥) = 𝐺# + 𝜖. 
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We define the ancient polygenic scores 𝑌𝑗%(𝜏 = 𝑥) for each 𝑗 sampled individual at time 

𝜏 = 𝑥 as 

𝑌𝑗%(𝜏 = 𝑥) = ∑ 𝑧𝑖𝑗(𝜏 = 𝑥)	𝛼𝑖(𝜏 = 0)𝑛
𝑖	𝑆𝑁𝑃𝑠 	, 

where 𝑧$#(𝜏 = 𝑥) 	∈ 	 {0,1,2} is the number of copies of the derived allele at the 𝑖th SNP of 

the 𝑗th individual sampled at time 𝜏 = 𝑥. GWAS can only estimate the effect sizes of 

variants on segregating sites in present-day populations. Due to this, our estimations of 

𝑌𝑗%(𝜏 = 𝑥) only use alleles from variants present on segregating sites in a present-day 

sample of 100 individuals at 𝜏 = 0. 𝛼$(𝜏 = 0) is equal to 0 if the derived allele is not present 

in a segregating site on a present-day sample of 100 individuals. On the other hand, 

𝛼$(𝜏 = 0) is equal to the effect size of the variant if the derived allele is present in a 

segregating site on a present-day sample of 100 individuals. In our modeling framework 

we assume that we know the effect sizes of variants in segregating sites at time 𝜏 = 0 in 

a present-day sample of 100 individuals. Therefore, we know the effect sizes of all 

variants with a frequency equal or bigger than 0.5% on segregating sites in a present-day 

sample of 100 individuals.  Figure 1 summarizes the modeling framework. 

For the neutral evolution case, we computed the transition mass functions (TMF), i.e. the 

probability of transitioning from a specific number of alleles at one point in time to a 

different number of alleles at a point in the future. We used fastDTWF27, which is a tool to 

compute likelihoods and transition probabilities under the discrete-time Wright-Fisher 

model. We assumed a population size of 20	000 haploids with a mutation rate of 1𝑒 − 8 

and set the selection coefficient to 𝑠 = 0 to explore a scenario where the alleles evolve 

under neutrality. Our initial allele frequencies were based on a set ranging from 0 to 0.02 

in 0.001 steps, as approximately 90% of all our simulated alleles on QTLs for the neutral 

case at ℎ+ = 1.0 have population frequencies between 0 and 0.02. We computed the 

transition probabilities for the alleles to be lost on 400 generations. 

Accuracy metrics 

We used two statistics to assess the accuracy of the ancient polygenic score in 

approximating the true phenotype. First, we used the coefficient of determination, 𝑟+, to 
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measure the error of ancient polygenic scores to predict phenotypes. 𝑟+ is the squared 

value of the Pearson’s correlation coefficient, 𝑟 and is defined as: 

𝑟+ = 9:;(-<,-)
>?@A(-<)∙?@A(-)

, 

where 𝑌 and 𝑌T are the 𝑛-vectors of true phenotypes 𝑌#(𝜏 = 𝑥) and ancient polygenic 

scores 𝑌𝑗%(𝜏 = 𝑥) at some time 𝜏 = 𝑥 , respectively, of all individuals j. 

We also used another metric defined as the mean-squared error which is equal to: 

𝑀𝑆𝐸 = (
%
∑ (𝑌# − 𝑌CY)+%
#'( , 

where 𝑛 is the sample size, 𝑌#	 is the j element of the n-vector of the true phenotypes 

𝑌(𝜏 = 𝑥) and 𝑌#	 is the is the j element of the n-vector of the ancient polygenic scores 

𝑌𝑗%(𝜏 = 𝑥) at some time 𝜏 = 𝑥 of all individuals j. 
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Results 

Accuracy of ancient polygenic scores on a trait evolving under neutrality 

We employed a modeling framework (see Methods) to analyze the ability of polygenic 

scores to predict the true phenotype of an ancient individual sampled at a point in time 𝜏. 

We used the effect sizes of QTL mutations which are assumed to be perfectly estimated 

from an association study (GWAS) performed in the present (𝜏 = 0). We assume that it is 

only possible to estimate effect sizes from variants present on segregating sites on the 

GWAS. We simulated a trait evolving under neutrality (see Methods: Simulation 
Details) and we sampled individuals from five different sampling times spanning 𝜏 =

{0, 100, 200, 300, 400} generations ago from the present. Remarkably, we found that 

ancient polygenic scores accurately predict the true phenotype of an ancient individual at 

the five different ancient sampling times tested when assuming a heritability value of ℎ+ =

1.0. The values of 𝑟+(𝑌, 𝑌T) were higher than 0.93 at 𝜏 = 400, 300, 200, 100, and 0 

generations ago, respectively (Figure 2A). In addition, we observed that 𝑀𝑆𝐸(𝑌, 𝑌T) 

values tend to decrease linearly as we move forward in time with the largest 𝑀𝑆𝐸(𝑌, 𝑌T) 

values tending to occur at 𝜏 = 400 generations ago (Figure 2B). In addition, we found 

that ancient polygenic scores display lower 𝑟+(𝑌, 𝑌T) values when assuming a heritability 

value of ℎ+ = 0.5 compared to simulations done with a heritability value of ℎ+ = 1.0	. We 

observed that 𝑀𝑆𝐸(𝑌, 𝑌T) values are higher in simulations where ℎ+ = 0.5 compared to 

simulations performed where ℎ+ = 1. 

Our model assumes that not all segregating sites will be present in both ancient and 

present-day sampled individuals due to genetic drift. Therefore, we evaluated the effect 

sizes of the QTL mutations that are conserved (i.e. mutations that remain present in both 

ancient and present-day sampled individuals) and lost in samples of 100 individuals taken 

at the earliest sampling time and the present-day sampling time (𝜏 = 400 and 0 

generations ago, respectively). We observed that the distribution of both conserved and 

lost alleles has a unimodal shape (Figure S1). We also find that the majority of QTL 

mutations that have a larger contribution to the trait are conserved over time in a span of 
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400 generations (Figure S1). We computed the probability of transitioning from a given 

allele frequency at one point in time to a different frequency at some point in the future 

under the forward-in-time discrete-time neutral Wright-Fisher (DTWF) model27 to further 

understand the dynamics of conserved and lost mutations. We saw that approximately 

90% of the lost mutations in a span of 400 generations have population frequencies 

between 0 and 0.02 (Figure S2A). We observed that the probability of losing an allele, 

i.e. transitioning from 𝑓 to 𝑓 = 0 in 𝜏 generations increases as we move forward in time. 

However, as the initial frequency 𝑓 increases, the probability of losing an allele at 

frequency 𝑓 drastically decreases even at 𝜏 = 400 generations (Figure S2B). These 

results are concordant with our observation that most of the lost alleles have allele 

frequencies smaller than 2% (Figure S2A). This indicates that, under neutrality, the allele 

frequencies of segregating alleles must be low to be removed by genetic drift alone on 

the timeframe explored. 

Accuracy of ancient polygenic scores on a trait evolving under stabilizing selection 

Several human complex traits evolve under stabilizing selection19,20. Therefore, we 

expanded our baseline modeling framework to simulate a trait evolving under Gaussian 

stabilizing selection23,24 to analyze whether ancient polygenic scores predictive accuracy 

will vary from our neutral model results. We simulated a single trait evolving under 

Gaussian stabilizing selection where an individual’s fitness is defined as a fitness function, 

𝑊(𝑌) = 	 𝑒
!(%&%')

"

")"
# , where 𝑌 is the individual’s phenotype, 𝑌0 is the optimal phenotypic 

value and 𝑤 is a parameter that measures the width of the fitness function and determines 

the strength of selection acting on phenotypes (see Methods: Simulation details). We 

assumed an evolutionary scenario in which the optimal phenotypic value, 𝑌0 = 0, remains 

constant through time. We conducted simulations under different stabilizing selection 

strengths, 𝑤 = {1, 2, 3, 4, 5}, ranging from stronger to weaker stabilizing selection values. 

We selected our 𝑤 estimates to be on the same order of magnitude as previous estimates 

of 𝑤 on real data19 as shown previously18. 

We found that simulating a trait evolving under stabilizing selection at a heritability value 

of ℎ+ = 1.0 decreases ancient polygenic scores predictive accuracy in contrast a trait 
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evolving under neutrality. We observed that 𝑟+(𝑌, 𝑌T) drops from 1 (in the present) to 

roughly 0.75 and 0.25 in 100 generations in the past under the different strengths of 

stabilizing selection that we used (Figure 3A). This drop continues gradually until it 

reaches our most ancient sampling time at 400 generations in the past. We observed that 

the drop in accuracy is larger under a stronger stabilizing selection force, 𝑤 = 1, as 

𝑟+(𝑌, 𝑌T) drops from 1 (in the present) to roughly 0.27 in 100 generations in the past and 

to 0.21, 0.20 and 0.19 in 200, 300 and 400 generations ago, respectively (Figure 3A). 

Assuming a lower heritability of the trait, ℎ+ = 0.5, we observed that ancient polygenic 

scores display poorer prediction accuracy at the five different strengths of stabilizing 

selection that we analyzed. We observed that ancient polygenic scores accuracy 

drastically decreases from a 𝑟+(𝑌, 𝑌T)  equal to 0.51 in the present to 0.13, 0.11, 0.1 and 

0.08 at 𝜏 = 100, 200, 300, and 400 generations ago, respectively, when 𝑤 = 1 and ℎ+ =

0.5 (Figure 3A). In addition, we observed that 𝑀𝑆𝐸(𝑌, 𝑌T) values appear to decrease 

linearly as we move forward to the present (𝜏 = 0) at the five different 𝑤 values. 

Interestingly, we find that the highest 𝑀𝑆𝐸(𝑌, 𝑌T) values are observed at 𝑤 = 5 and the 

lowest 𝑀𝑆𝐸(𝑌, 𝑌T) values appear on simulations with 𝑤 = 1. Therefore, we see that we 

have low 𝑟+(𝑌, 𝑌T) and 𝑀𝑆𝐸(𝑌, 𝑌T) values on traits simulated with the highest strength of 

stabilizing selection. This situation is a notable contrast to the results with complex traits 

evolving under neutrality (Figure 2) where cases with a low 𝑟+(𝑌, 𝑌T) value exhibit a high 

𝑀𝑆𝐸(𝑌, 𝑌T) value and vice versa. The inspection of a simulation replicate sheds more light 

on this result and reveals that phenotypic values are clustered around a small number of 

𝑌 values that are not well predicted by 𝑌T  values that do not show large variations under a 

strong stabilizing selection (Figure S3). This leads to low 𝑀𝑆𝐸(𝑌, 𝑌T) and 𝑟+(𝑌, 𝑌T) values 

when there is a high strength of stabilizing selection. Conversely, we observe high 𝑀𝑆𝐸 

values consistent with a wider distribution of phenotypic values under a weak stabilizing 

selection strength and we also observe a high 𝑟+(𝑌, 𝑌T) (Figure S3). This result suggests 

that the magnitude of 𝑀𝑆𝐸(𝑌, 𝑌T) depends on the strength of stabilizing selection. It also 

shows that different error metrics must be evaluated to define the prediction accuracy of 

ancient polygenic scores. 
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We then analyzed the effect sizes of the QTL mutations that are lost and conserved 

between the earliest sampling time and the present-day sampling time (𝜏 = 400 and 0 

generations ago, respectively). We observed that the strength of stabilizing selection 

causes the distribution of lost and conserved QTL allele effect sizes to be narrower when 

𝑤 is smaller and, therefore, there is a stronger stabilizing selection acting on the trait 

(Figure S4). This effect is due to the tendency to have small effect sizes in QTL mutations 

conserved through time. We found similar results at ℎ+ = 0.5 for the effect sizes of the 

QTL mutations that are lost and conserved between the earliest sampling time and the 

present-day sampling time (𝜏 = 400 and 0 generations ago, respectively) (Figure S4). 
This result suggests that stabilizing selection increases genetic differentiation through 

time particularly through the loss of large-effect QTL mutations which causes a decay in 

ancient polygenic scores accuracy through time. 

Accuracy of ancient polygenic scores on a trait evolving under directional 
selection 

We used our baseline Gaussian stabilizing selection fitness function to model recent 

directional selection as a shift where the optimum phenotypic value changed from 𝑌0 to 

𝑌0′ in the most recent 400 generations. We studied how the accuracy of ancient polygenic 

scores changes due to shifts on the distribution of effect sizes that is acting on the QTL 

mutations. We studied this impact by reducing the standard deviation of the QTL 

mutations effect sizes distribution by one, two and three orders of magnitude, 

𝑄𝑇𝐿	~	𝑁(𝜇 = 0, 𝜎 = 	 {0.25, 0.025, 0.0025}). 

We first observed that the population approaches the new optimum phenotypic value 

within approximately 50 and 150 generations when the standard deviation of the QTL 

mutations effect sizes distribution is equal to 0.25 and 0.025, respectively. Conversely, 

the population does not approach the new optimum within the 400 generation time span 

at the lowest standard deviation of the distribution of effect sizes inspected, 𝜎 = 0.0025, 

(Figure S5). In concordance with previous research28, we observed that the average 

phenotypic variance spikes as the population approaches the new optimum value. 

Afterwards, the phenotypic variance is reduced (Figure S5). The most pronounced and 
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severe spike occurs at 𝜎 = 0.25 when the population rapidly reaches the new optimum. 

In contrast, we do not see such a larger spike at 𝜎 = 0.025 and 𝜎 = 0.0025 with the 

population taking longer to approach the new optimum phenotypic value (Figure S5). 

We then investigated how ancient polygenic scores predictive accuracy acts when the 

trait evolves under directional selection. We observed that, at a heritability value of ℎ+ =

1.0, ancient polygenic scores give good predictions of the true phenotype when the QTL 

mutations effect sizes distribution has a lower standard deviation, 𝜎 =	{0.025, 0.0025}. 

We saw that the 𝑟+(𝑌, 𝑌T) values drop from 1 to 0.93, 0.92, 0.9 and 0.64 in samples taken 

100, 200, 300 and 400 generations ago when 𝜎	is equal to 0.025. Additionally, the 𝑟+(𝑌, 𝑌T) 

values go from 1 to 0.96, 0.95, 0.9 and 0.84 in samples taken 100, 200, 300 and 400 

generations when 𝜎	is equal to 0.0025, respectively (Figure 4). On the other hand, ancient 

phenotypic predictions perform poorly when 𝜎 = 0.25 and 𝑟+(𝑌, 𝑌T) drops from 1 (in the 

present) to roughly 0.65 in 100 generations in the past and to 0.51, 0.29 and 0.29 in 

samples taken 200, 300 and 400 generations in the past, respectively (Figure 4). On 

simulations done with ℎ+ = 0.5 we observed that ancient polygenic scores display lower 

𝑟+(𝑌, 𝑌T) values compared to simulations done with ℎ+ = 1.0 at the three 𝜎 values 

inspected. In addition, we observed 𝑀𝑆𝐸(𝑌, 𝑌T) values decrease as we move forward to 

the present (𝜏 = 0) at 𝜎 = 0.025 and 𝜎 = 0.0025. Interestingly, simulations with 𝜎 = 0.25 

show an increase in 𝑀𝑆𝐸(𝑌, 𝑌T) from 400 to 300 generations ago. To further understand 

this observation, we computed both 𝑟+(𝑌, 𝑌T) and 𝑀𝑆𝐸(𝑌, 𝑌T), between the true phenotype, 

𝑌#(𝜏 = 𝑥), and the predicted ancient polygenic score, 𝑌CY(𝜏 = 𝑥), of each sampled individual 

j at times 𝜏 = 400, 390, 380, 370, 360, 350, 340, 330, 320, 310 and 300 generations before 

the present for simulation replicates having  𝜎 = 0.25 (Figure S6). We observed that there 

is a decrease in 𝑟+(𝑌, 𝑌T) that lasts around ~30 generations between 400 and 370 

generations before the present, which is the time span the population approaches the 

new optimum value when 𝜎 = 0.25  (Figure S5 and S6). The values of 𝑟+(𝑌, 𝑌T) increase 

as we move forward in time after 370 generations before the present. 

We analyzed the effect sizes of the QTL mutations that are lost and conserved between 

each ancient sampling time (𝜏 = 400, 300, 200 and 100 generations ago, respectively) and 
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the present-day sampling time (𝜏 = 0 generations ago). Broadly we observed a bias 

where QTL mutations with negative effect sizes values tend to be more lost compared to 

QTL mutations with positive values which tend to be conserved (Figure S7-S14). 

Mutations with positive values move individuals closer to the new optimum value in the 

generation where there is a shift in the optimum phenotypic value.  

Insights into predicting the evolution of complex traits: Height and Body Mass 
Index (BMI) 

Height and body mass index (BMI) are among the most extensively studied polygenic 

traits in humans and are evolving under stabilizing selection based on data from the UK 

Biobank19. We used simulations to investigate the impact of stabilizing selection on the 

predictive accuracy of ancient polygenic scores for these traits. Each trait evolves under 

stabilizing selection in our simulations based on the strength of selection given by 𝑤 

estimated from the selection gradients (𝛾*) calculated previously for each trait19. 

Particularly, we used approximations to estimate 𝑤 based on 𝛾* selection gradients18. Then 

we simulated height and BMI with parameters 𝑤 = 7.28 and 𝑤 = 6.61 and heritability 

values previously estimated of ℎ+ = 0.829 and ℎ+ = 0.711, respectively. In concordance 

with our previous results, we found that the predictive accuracy of ancient polygenic 

scores decreases as the time between the present-day GWAS population and the ancient 

population increases for both traits (Figure 5). This result suggests that, even with 

complete genotype data and perfect estimates of the effect sizes of causal mutations, 

polygenic scores accuracy can decay if a population is evolving under stabilizing 

selection. 
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Discussion 

Inferring complex traits from genotypes in ancient samples will help to better characterize 

phenotypic diversity in ancient human populations. Polygenic scores provide a framework 

to infer ancient phenotypes. However, we still do not know all the factors that can impact 

the predictions of phenotypes in ancient human populations. In this work we proposed a 

simulation framework to investigate the impact of natural selection on the predictive 

accuracy of ancient polygenic scores. We show that the evolution of a phenotype under 

neutrality, stabilizing selection and directional selection has a different impact on the 

predictive accuracy of ancient polygenic scores. This reduction in the predictive accuracy 

is seen in samples that were taken between 0 to 400 generations ago which, assuming a 

generation time of 29 years25, contains the timeframe from 0 up to 10	000 years ago 

where the majority of ancient human genomes have been sampled26. 

Our results show that we can make an accurate prediction of traits based on polygenic 

scores when the trait is evolving under neutrality. In our simulations we assume that we 

can predict the effect sizes of segregating variants with a frequency equal or larger than 

0.5% frequency in the present since we take a sample of 100 individuals present-day 

individuals and assume that we can predict the effect sizes of all the variants segregating 

in this sample. It is remarkable to note we can make a very accurate prediction of neutral 

traits in the past knowing the effect sizes from segregating variants in that present day 

sample (Figure 2). On the other hand, we find that stabilizing selection negatively impacts 

the predictive accuracy of ancient polygenic scores. This result is consistent with previous 

work showing that a higher strength of stabilizing selection causes more genetic 

differentiation among populations which negatively impacts polygenic scores accuracy in 

contemporary populations18. Similarly, we observe that stabilizing selection rapidly 

removes large-effect mutations within short time periods. As a result, present-day 

individuals become more genetically differentiated in high effect alleles from ancient 

individuals of the same population which is a factor that is likely to be a major contributor 

in the reduction of ancient polygenic score accuracy (Figure 3). 
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Additionally, our results show that the distribution of effect sizes has an impact on the 

predictive accuracy of ancient phenotypic traits under directional selection. In our 

simulations we find that a distribution that produces a higher proportion of high effect 

alleles causes a higher reduction of the predictive accuracy of traits under directional 

selection (Figure 4). This result shows that the distribution of effect sizes in the alleles 

acting on the trait will be important to determine the accuracy of ancient phenotypic 

predictions. On the other hand, we also observed that directional selection tends to 

preserve both small and large-effect mutations that drive individuals towards the new 

phenotypic optimum in the generation when there is a shift towards a new phenotypic 

optimum (Figure S7-S14). Obtaining accurate estimates of the shape of the distribution 

of effect sizes will be crucial to characterize how the interaction between directional 

selection and the effect sizes of new mutations impacts predictions of traits on ancient 

individuals.  

A recent paper predicted individual height variation of ancient individuals using polygenic 

scores8. They found that polygenic scores in ancient individuals can explain a modest 

(~6%) but significant proportion of height variation. This finding might seem surprising 

considering that height is a trait with high heritability (~80%) among present-day 

individuals29. However, as shown previously, height is evolving under stabilizing selection 

in individuals from the UK Biobank19. Here we see that stabilizing selection can reduce 

polygenic scores predictive accuracy based on the stabilizing selection strength estimate 

for height19 (Figure 5). We argue that considering stabilizing selection as a potential factor 

decreasing prediction accuracy will benefit the interpretation of ancient polygenic scores. 

Broadly we find an interesting pattern based on the analysis of the ratio of the number of 

conserved QTL mutations divided by the total number of QTL mutations between the 

earliest sampling time and the present-day sampling time (𝜏 = 400 and 0 generations ago, 

respectively) for each evolutionary scenario that we analyzed. We observed that the ratio 

remains constant across varying effect sizes on traits evolving under neutrality. This result 

shows that high effect alleles can be conserved in the time span inspected on traits 

evolving under neutrality (Figure 6A). In contrast, we showed that stabilizing selection 

favors the conservation of small-effect mutations while large-effect mutations are lost. 
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This pattern causes an increased genetic differentiation between ancient and present-

day individuals from the same population (Figure 6B). Broadly, we see that in simulations 

done with traits evolving under stabilizing selection there is an association between a 

decreased accuracy of ancient polygenic scores accuracy and a higher loss of alleles 

with a high effect. Finally, directional selection favors the loss of negative QTL mutations. 

These mutations drive individuals farther away from the new phenotypic optimum in the 

generation when the optimum value shifts (Figure 6C). Therefore, natural selection 

changes the proportion of lost alleles based on the effect sizes of the alleles. The category 

of alleles lost based on their effect sizes should be considered when performing 

phenotypic predictions in the past since there is an association between those two factors 

and the type of natural selection acting on the trait. 

Our simulations were done under a simple demographic model where we did not include 

demographic processes such as population size changes or gene flow. Here we aim to 

show that two evolutionary processes such as stabilizing selection and directional 

selection have an important impact on the prediction of ancient complex traits. Recent 

studies have demonstrated that stabilizing selection drives the evolution of various human 

complex traits19,30,20. On the other hand, a recent study suggests that directional selection 

drives the evolution of height in individuals from Sardinia31. Therefore, the impact of those 

two evolutionary processes should be considered when predicting ancient complex traits. 

Currently there are estimates of the impact of stabilizing selection acting on several 

human phenotypes19,20. We hope to see more studies evaluating whether complex traits 

exhibit signals of natural selection. It would be particularly interesting to see if the impact 

of natural selection acting on traits varies between population cohorts and if there are 

environmental factors driving the global variation in the action of natural selection. 

Here we demonstrate that natural selection can hamper the predictive accuracy of ancient 

polygenic scores under a simple demographic model of a constant population size. 

Previous work has shown that the loss of alleles contributes to a decrease in the predictive 

accuracy of traits evolving under a neutral scenario and a directional selection scenario 

in a constant population size scenario17. Our results are consistent with that claim and, 

additionally, here we contrast how the predictive accuracy of ancient polygenic scores 
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varies between neutral traits and traits that evolve under stabilizing and directional 

selection. Understanding the action of stabilizing selection is particularly important given 

its widespread effect on complex traits19,20. We additionally show that the action of natural 

selection acting on the trait impacts the alleles that tend to be lost based on their effect 

sizes. Finally, our simulations show that the predictive accuracy of traits can decrease on 

ancient samples that come from sampling times that are reflective of the period where we 

have more information from ancient DNA. 

Finally, we acknowledge that population demographic history is an important factor 

impacting phenotypic variation among present-day individuals12,14,32 and that population 

demographic history coupled with natural selection can significantly impact ancient 

polygenic scores accuracy. We encourage future studies on ancient traits predictions to 

take the demographic history of each population and the impact of natural selection acting 

on complex traits into account. Software that can jointly model demographic history and 

the impact of natural selection acting on traits, e.g. SLiM21, should help to perform realistic 

simulations where the reliability of the phenotypic predictions can be quantified. We also 

encourage future simulation studies to include as much information as possible regarding 

the genetic architecture of the trait being studied. These considerations would lead us 

towards a more rigorous assessment of complex traits evolution.  
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Figures 

 

Figure 1. Our modeling framework to compute ancient polygenic scores (aPS). 100 

individuals are sampled at a time point 𝜏 from the same population where a GWAS was 

conducted at time 𝜏 = 0 (present day). Ancient polygenic scores are computed for each 

individual at time 𝜏 using both their genotype data at time 𝜏 and the effect sizes 𝛼(𝜏 = 0) 

from the present-day GWAS. Purple and solid circles represent observed values at time 

𝜏 = 0 while black and solid circles represent observed values at time 𝜏. The dashed circle 

represents the estimated ancient polygenic scores at time 𝜏. This figure is inspired by 

Figure 1C from 17. 
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Figure 2. Ancient polygenic scores (aPS) accuracy (r2) and Mean Squared Error 
(MSE) for a trait evolving under neutrality. We simulated a population with a neutral 

trait that has a heritability value of ℎ+ = 1.0 (pink) and ℎ+ = 0.5 (yellow). Boxplots show 

the distribution of A) 𝑟+(𝑌, 𝑌T), and B) the Mean Squared Error (MSE), 𝑀𝑆𝐸(𝑌, 𝑌T), between 

the true phenotypic values and their predicted ancient polygenic scores in a sample of 

100 individuals taken at five different points in times 𝜏 = 0, 100, 200, 300, 400 generations 

before the present. We performed 100 simulation replicates for both a heritability value 

ℎ+ = 1 and ℎ+ = 0.5 . Red crosses represent outliers. 
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Figure 3. Ancient polygenic scores (aPS) accuracy (r2) and Mean Squared Error 
(MSE) for a trait evolving under stabilizing selection. We simulated a population with 

a trait evolving under stabilizing selection that has heritability value of ℎ+ = 1.0 (left) and 

ℎ+ = 0.5 (right). The trait is evolving under stabilizing selection at five different strengths 

of selection based on the parameter 𝑤 = 1, 2, 3, 4, 5 ranging from strong to weak selection, 

respectively. Boxplots show the distribution of A) 𝑟+(𝑌, 𝑌T), and B) the Mean Squared Error 

(MSE), 𝑀𝑆𝐸(𝑌, 𝑌T), between the true phenotypic values and their predicted ancient 

polygenic scores in a sample of 100 individuals taken at different points in time, 𝜏 =

0, 100, 200, 300, 400 generations before the present in 100 simulation replicates. 

Simulations with a highest strength of stabilizing selection, i.e. smaller 𝑤 values, reduce 

phenotypic variation and decrease 𝑀𝑆𝐸(𝑌, 𝑌T) as seen in Figure S3 and explained on the 

main text. 
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Figure 4. Ancient polygenic scores (aPS) accuracy (r2) and Mean Squared Error 
(MSE) for a trait evolving under directional selection. We model a trait with a 

heritability value of ℎ+ = 1.0 (left) and ℎ+ = 0.5 (right) evolving under directional selection 

with an optimum shift from 𝑌0 = 0 to 𝑌0′ = 1 over a 400 generation time span. We tested 

three different standard deviations of the QTL mutations effect sizes, 𝑄𝑇𝐿	~	𝑁(𝜇 = 0, 𝜎 =

	{0.25, 0.025, 0.0025}), represented in orange, yellow and green, respectively. Boxplots 

show the distribution of A) 𝑟+(𝑌, 𝑌T), and B) the Mean Squared Error (MSE), 𝑀𝑆𝐸(𝑌, 𝑌T), 

between the true phenotypic values and their predicted ancient polygenic scores of a 

sample of 100 individuals at different points in times 𝜏 = 0, 100, 200, 300, 400 generations 

before the present in 100 simulation replicates. Red crosses represent outliers. 
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Figure 5. Ancient polygenic scores (aPS) accuracy (r2) and Mean Squared Error 
(MSE) for Height and BMI evolving under stabilizing selection. We simulated the 

evolution of height (yellow) and BMI (green). We used heritability values of ℎ+ = 0.8 and 

ℎ+ = 0.7, respectively. We determined the strength of stabilizing selection acting on each 

trait, 𝑤, based on Sanjak et al., 2017 selection gradients estimated from the UK Biobank. 

Boxplots show the distribution of A) 𝑟+(𝑌, 𝑌T), and B) the Mean Squared Error (MSE), 

𝑀𝑆𝐸(𝑌, 𝑌T), between the true phenotypic values and their predicted ancient polygenic 

scores of a sample of 100 individuals at different points in times 𝜏 = 0, 100, 200, 300, 400 

generations before the present over 100 simulation replicates. Red crosses represent 

outliers. 
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Figure 6. The number of conserved QTL mutations divided by the total number of QTL 

mutations (conserved QTLs plus lost QTLs) (Y-axis) per effect size bin (X-axis) between 

the earliest sampling time and the present-day sampling time (𝜏 = 400, 0 generations ago, 

respectively). Results are shown for 100 replicates at heritability values of ℎ+ = 1.0 for 

traits evolving under A) Neutrality, B) Stabilizing selection with a parameter 𝑤 = 1 and C) 
Directional selection with a QTLs effect sizes distribution 𝑄𝑇𝐿	~	𝑁(𝜇 = 0, 𝜎 = 	 {0.025}). 

Red crosses represent outliers. 
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Data availability 

Code used to generate simulations, process output and plot figures can be found at: 

https://github.com/vagaribay/ancient-pheno-pred/. 
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