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ABSTRACT  
 
BACKGROUND፡ Malaria is one of the most severe public health 
problems worldwide with 300 to 500 million cases and about one 
million deaths reported to date of which 90% were from world 
health organization (WHO) Sub Saharan Africa (SSA) countries. 
The purpose of this study was to explore the spatial distribution of 
malaria parasite prevalence (MPP) among districts of Southern 
Nations Nationalities and Peoples Regional State (SNNRS) in 
Ethiopia by using 2011 malaria indicator survey (MIS) data 
collected for 76 districts and to model its relationship with 
different covariates. 
METHOD: Exploratory spatial data analysis (ESDA) was 
conducted followed by implementation of spatial lag model (SLM) 
and spatial error model (SEM) in GeoDa software. Queen 
contiguity second order type of spatial weight matrix was applied 
in order to formalize spatial interaction among districts. 
Results: From ESDA, we found positive spatial autocorrelation in 
malaria prevalence rate. Hot spot areas for MPP were found in 
the eastern and southeast parts of the region. Relying on 
specification diagnostics and measures of fit, SLM was found to 
be the best model for explaining the geographical variation of 
MPP. SLM analysis demonstrated that proportion of households 
living in earth/local dung plastered floor house, proportion of 
households living under thatched roof house, average number of 
rooms/person in a given district, proportion of households who 
used anti-malaria spray in the last 12 months before the survey, 
percentage household using mosquito nets and average number 
of mosquito nets/person in a given district  have positive and 
statistically significant effect on spatial distribution of  MPP 
across districts of SNNPRS. Percentage of households living 
without access to radio and television has negative and 
statistically significant effect on spatial distribution of MPP 
across districts of MPP. 
CONCLUSION: Malaria is spatially clustered in space. The 
implication of the spatial clustering is that, in cases where the 
decisions on how to allocate funds for interventions needs to have 
spatial dimension. 
KEYWORDS:  Spatial Dependency, Spatial Lag Model, Spatial 
Error Model, Malaria Prevalence, Pathologic character  
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INTRODUCTION  
 

Malaria is a deadliest parasite disease for human 
being which is caused by Plasmodium parasite 
infection. Malaria is one of the most severe 
public health problems worldwide with 300 to 
500 million cases and about one million deaths 
reported to date of which 90% were from world 
health organization (WHO) Sub Saharan Africa 
(SSA) countries (1). 
In developing countries, malaria is one of the 
major tropical disease ( usually called disease of 
poor people) adversly affecting its economic 
development and is the  fourth leading cause of 
death for children under the age of five years 
(2). 

Malaria is the major concern in Ethiopia 
since it is one of the leading causes of morbidity 
and mortality. Despite the current efforts to 
control malaria in Ethiopia, the situation has not 
improved mainly due to the incresing problems 
of parasite resistance to relatively cheaper anti-
malarial drugs, vector resistance to insecticide, 
low coverage of malaria preventive services, 
poor access to health care, rudilmentary health 
service infrastructure, large population 
movement and limited financial and human 
resource (3,4). 

Eventhough the exact number of people 
getting sick and dying of malaria every year in 
Ethiopia is unknwon, it is known that tens of 
thousands of people die due to malaria every 
year and that morbidity and mortality rates 
increse dramatically during the epidemics. The 
distribution of malaria in Ethiopia is not 
uniform. There are areas where the risk of 
malaria is high and there are areas where the risk 
of malaria is low despite 75% of the the country 
is malarious with about 68% of the total 
population living in areasat risk of malaria (5,6). 

Due to unstable and seasonal patter of 
malaria transmission, the protective immunity of 
the population is generally low and all age 
groups are at risk of infection and disease. Some 
small-scale studies have docummented on 
malaria parasite prevalence betwwen 10.4%-
13.5% in Gambela, 7.6%-14.1% in Tigray, 4.6% 
in Amhara, 0.9% in Oromia and 5.4% in 
Southern Nations, Nationalities and Peoples 
Regional State (SNNPRS) in all age groups. In 
addition to its impcat on health, malaria imposes 

a heavy economic barden on individuals and 
reduces economic output (7). 

Different studies use different categories of 
covariates in modeling malaria trasmission 
intensity, along with its temporal and spatial 
distribution in SSA. Climatic and 
environmental, socio-demographic, and malaria 
intervention covariates were usually used. The 
most common covariates in the environmental 
domain were temperature, humidity and rainfall 
(8, 9, 10, 11) while socio-demographic 
covariates include socioeconomic status (12), 
gender (14), age (14), population size (14, 15), 
livestock ownership (16), wealth index (12, 16) 
and building/housing material (14, 16). 

In addition, common covariates under 
malaria intervention domain include insecticide-
treated bed nets (ITN) ownership (13, 18), 
indoor residual spraying (IRS) (12, 13), 
artemisinin-based combined therapy (ACTs) 
(12, 17), treatment seeking rate (17, 18) and 
transmission seasonality (13, 17, 18). 
The levels of malaria risk and transmission 
intensity exhibit significant spatial and temporal 
variability related to variations in climate, 
altitude, topography, and human settlement 
pattern. The spatial and temporal patterns of 
malaria transmission at the local level (fixed 
spatial scale) in semi-arid and highland regions 
in Africa, and particularly in Ethiopia, have not 
been well investigated or accurately defined. 
Such research is needed in developing dynamic 
and area-specific risk maps to identify locations 
and populations at highest risk for appropriate 
planning and implementation of targeted and 
epidemiologically sound preventive and control 
measures 

The existing malaria risk maps have limited 
operational use to support programmatic 
activities since they were produced at coarse 
spatial scales (at continental and country levels). 
They are largely based on expert opinion, on 
climate-based models, and specific geo-
referenced point prevalence data. In this context, 
geographical information systems (GIS), remote 
sensing satellite imagery, geospatial techniques, 
and spatial statistics provide new methodologies 
and solutions to analyze the epidemiological and 
ecological context of malaria and other 
infectious diseases (19, 20). 
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Having this background, this study is intended to 
assess spatial dependence of malaria distribution 
and to fit suitable spatial regression model by 
incorporating environmental, socio-demographic 
and malaria intervention covariates across 
districts of SNNPRS in Ethiopia.  
 
METHODS 
 

Description of the Study Area and 
Population: SNNPRS is located in the southern 
and south-western part of Ethiopia. It is 
bordered with Kenya in south, Sudan in 
southwest, Gambella region in northwest and 
surrounded by Oromia region in northwest, 
north and east directions. It is one of the largest 
regions in Ethiopia, accounting for more than 
10% of the country's land area. Based on 2007 
census conducted by the Central Statistical 
Agency (CSA) of Ethiopia, the region has an 
estimated total population of 14,929,548 of 
whom 13,433,991(89.98%) are rural inhabitants 
while 1,495,557(10.02%) are urban which 
makes the region overwhelmingly rural. The 
region is administratively divided into 13 
administrative zones, 133 Woredas and 3512 
Kebeles (the smallest administrative units in 
Ethiopia), and its capital is Hawassa city (21). 
Data collection procedure: This work was 
based on data available from the 2011 Ethiopian 
malaria indicator survey (EMIS-2011) of 
Ethiopian Public Health Institution (EPHI) 
which was conducted from October 2011 GC to 
December 2011 GC. EMIS-2011 is a large, 
nationally representative survey of coverage of 
key malaria control interventions, treatment-
seeking behavior and malaria prevalence (22). 
A stratified two-stage cluster sample design was 
implemented in order to identify sample 
households. Census enumeration areas (EAs) 
were the primary sampling units (PSUs). 
Households within selected EAs were second-
stage sampling units.  Spatially aggregated data 
across SNNPRS on all variables were extracted 
and used for analysis Shape file map was 
obtained from Finance and Economic 
Development office of SNNPRS. 
Variables considered in the study: The 
dependent variable is malaria parasite 
prevalence (MPP) per districts of SNNPRS 
which indicates the proportion of positive 

malaria diagnosis test (RDT) result per districts 
of SNNPRS. Moreover, the following covariates 
were analyzed in the study:  
ALTITUDE: mean altitude of a district above 
sea level in meter  
DRW_100: proportion of households having 
piped water  
TOICOV_100: proportion of households having 
protected toilet  
ELEC_100: proportion of households having 
access to electricity 
RDTV_100: percentage of households having no 
access to radio and television 
NRM: average number of rooms/person in a 
given district 
WAL_100: proportion of households whose 
living house wall is mud/stick/wood  
ROF_100: proportion of households living 
under thatched roof house   
FLR_100: proportion of households living in 
earth/local dung plastered floor house 
UMN_100: percentage of households using 
mosquito nets  
 NMN: average number of mosquito nets/person 
in a given district 
ANMSP_100: proportion of households who 
used anti-malaria spray in the last 12 months 
before the start of EMIS-2011 
NHHDM: average number of household 
members (average family size)  
WEALTHIX: average wealth quintile of 
households in a given district  
 

Data analysis 
 

Geospatial analysis: Geospatial data was 
analyzed by geographic locations to evaluate 
geospatial distribution and identify hotspot areas 
for MPP at district level. Exploratory spatial 
data analysis (ESDA) was applied through the 
use of GeoDaTM software version 1.16.0.0 
(Spatial Analysis Laboratory, University of 
Illinois, Urbana Champaign, IL, USA) to 
determine measures of global spatial 
autocorrelation, local spatial autocorrelation and 
to fit spatial regression models (23,24). 
Spatial autocorrelation: To evaluate the 
existence of spatial autocorrelation, we used 
Queen Contiguity matrix that allows for the 
measurement of nonrandom association between 
the value of a variable observed in a given 
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geographical units and the value of variables 
observed in neighboring units (24, 25). Using 
Global Moran’s I index, MPP in each districts 
were calculated. Moran’s I index identifies if the 
value of MPP tends to be clustered (positive 
Moran I) or dispersed (negative Moran’s I) 
among geographical areas (24). 

Local indicators of spatial association 
(LISA) clustering method was applied for 
graphical depiction of spatial autocorrelation. 
The LISA maps identify significant spatial 
clusters throughout SNNPRS, with high or low 
association among the observed values for MPP 
(25). Clustered areas are categorized according 
to the pattern of characteristics in adjacent 
districts. High/high (HH) areas are a set of 
districts with high value of MPP surrounded by 
other districts with high value of MPP in 
univariate analysis. The same sense is applied to 
low/low (LL) set of districts, where districts 
with low characteristics are surrounded by other 
districts with low values for analyzed variables. 
When the inverse occurs, districts with low 
value of MPP are surrounded by districts with 
high value of MPP; LISA maps categorize them 
as low/high (LH) or high/low (HL) for the 
opposite pattern. 
Spatial regression: Spatial autocorrelation 
occurs when events occurring at different but 
nearby locations are correlated with each other. 
This phenomenon is quite likely to be observed 
for infectious diseases like malaria that is 
observed within districts. Spatially auto-
correlated data should not be analyzed by 
normal-regression analysis as the correlation 
violates the basic assumption of ordinary least 
squares (OLS) regression. Straightforward 
spatial regression analysis uses a spatial weight 
matrix and maximum likelihood estimation to 
minimize the possible bias resulting from 
spatially auto correlated data (26, 27, 28). 

Spatial regression models were introduced 
to address the spatial dependence existing in the 
data. The form of the general spatial model is 
(26) 

                               (1) 

 whre      
(2) 

Where Y, the dependent variable, is a 
vector of MPP in a given district, X is a 

matrix of K explanatory variables, and 
are spatial autoregressiove coefficients, 
and are  spatial weight matrices, 
is unobserved error term that incorporates 

spatial correlation through its first term, is a 
 vector of unobserved error term that are 

independently and identically distributed, MVN 
denotes the multivariate normal distribution, and 

 is the identity matrix. In Eq.(1), the 
model becomes a spatial lag model (SLM) when 
W2 is 0 and a spatial error model (SEM) when 
W1 is 0. 

In SLM, a dependent variable in a region is 
subject to a spill-over effect from the dependent 
variable in the neighboring regions. This effect 
is accounted for by the spatial with matrix W1. 
On the other hand, in the SEM model, the error 
in one region is dependent on the error in 
neighbouring regions through W2. In this study, 
the spatial weight matrices W1 and W2 were 
defined using Queen contiguity method of 
spatial weight matrix propossed by ( 26)  which 
defines neighbours such that if a portion of 
boundary (either edge or vertex) between two 
regions is shared, the corresponding element of 
spatial weight matrix Wij is 1 and 0 otherwise. 

Ethical clearance was obtained from 
Hawassa University Department of Statistics and 
permission was taken from Ethiopian Public 
Health Institute to extract secondary data from 
records. The data from the case were handled 
with confidentiality. 

 
RESULTS 
 

To identify districts that had below and above 
average MPP in SNNPRS, a box map was 
shown in Figure1. This map shows the location 
of every district within the overall geographical 
distribution MPP. The high bright and less 
bright blue color in the map indicates districts 
that had MPP lower than average of the region 
and these districts were clustered around the 
center, west and north outer border of the region, 
while the high dark and less dark red color 
represents districts that had above average MPP 
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which were concentrated in southern, south-east and eastern part of the region. 
 
 

  
 

Figure 1: Box plot map for MPP rate in SNNPRS 

This box map provided some indication of 
spatial clustering of MPP in SNNPRS, however 
the 'visual inspection' of maps has long been 
recognized by cartographers as unreliable in 
terms of detecting clusters and patterns in the 
data as human perception is not sufficiently 
rigorous to assess 'significant' clusters and 
indeed tends to be biased towards finding 
patterns, even in spatially random data (29). For 
that purpose, we should turn to a consideration 
of a global statistics for spatial autocorrelation 
and the results are presented in the next section. 
 

Exploratory spatial Data analysis (ESDA) of 
MPP: Moran's I statistics was applied to test the 
presence of global spatial autocorrelation 
patterns in the distribution of MPP among the 
districts of the SNNPRS.  The value of Moran's I 
statistics was 0.1147 and significant at 5% level, 
indicating positive spatial autocorrelation across 
districts. 

This is an indication that the distribution of 
MPP was not random among the districts rather 
there is a significant spatial clustering, that is; 
districts with low MPP (below average) were 
surrounded by districts with low MPP and/or 
districts with high MPP  (above average) were 
surrounded by districts with high MPP across 

the region. This result assumes of globally 
stationery spatial relationship of MPP in the 
region; however, it needs a support of high local 
spatial clusters instead of high local spatial 
outliers which are indicators of spatial 
heterogeneity (29). 
Local Measures of Spatial Association 
(LISA): Moran’s I statistics, as a global measure 
of spatial autocorrelation, indicated the presence 
of significant spatial clustering in the 
distribution of MPP. Often one wants to move 
beyond global measures of spatial 
autocorrelation to identify units that exhibit 
spatial autocorrelation with their neighbors (30). 
In this regard, to disaggregate the spatial 
dependence diagnosed with ESDA and identify 
local spatial autocorrelation, we employed LISA 
which were performed via Moran’s scatter plot 
and LISA maps 

As shown in Figure 2, the Moran scatter 
plot of MPP, which represent a standardized 
MPP of a district in the x-axis versus the 
weighted average (spatial lag) of standardized 
MPP of its own district in the y-axis, which 
disaggregate the global spatial autocorrelation 
into four types of association (HH, HL, LH, LL).  
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Fig 2:  Moran's Scatter Plot 

Points in quadrant I shows those districts with 
high MPP (i.e., relative to average of the 76 
districts) which were surrounded by districts of 
high MPP (HH), quadrant II shows districts with 
low MPP which were surrounded by districts 
with high MPP (LH), quadrant III shows 
districts with low MPP which were surrounded 
by districts with low MPP (LL), and quadrant IV 
shows districts with high MPP which were 

surrounded by those districts having low MPP 
(HL). There are more points in quadrant I and III 
indicating a positive spatial autocorrelation in 
the distribution of MPP among districts of the 
region. However, this needs a formal statistical 
test to conclude. 

Univariate LISA cluster and significance 
maps of MPP were presented in Figure 3 (a) and 
Figure 3 (b) respectively.  

 

 
Figure 3: LISA Maps: (a) Cluster Map, (b) Significance Map 
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In LISA cluster map which is useful in 
identifying the type of spatial association, the 
HH, LL, LH and HL association of malaria 
cases were shown in the figure by red, blue, 
green and yellow colors respectively (Figure 3 
(a)). Here when we say high or low values, we 
are saying high or low values relative to 
neighboring districts. Positive spatial 
autocorrelation or clustering of similar values 
were indicated by high-high or low-low 
locations where as negative spatial 
autocorrelation or spatial outlier is indicated by 
high-low or low-high locations. 

LISA significance map (Figure 3 (b)) 
shows results of local Moran's I test for local 
spatial autocorrelation patterns of MPP. In the 
map, the bright blue and green shade 
corresponds to location of MPP that had 
significant local spatial autocorrelation at 5% 
and 1% levels of significance respectively. 
There were about 19 districts (25%) that had 
significant local spatial autocorrelation pattern 
evidencing strong spatial autocorrelation. 

Hot spot locations are in the eastern and 
south-east parts of the region particularly in 

districts of Deta Daramalo, Arbaminch zuria, 
Hula, Arbegona and Humbo where as cold spot 
locations for MPP are around north and north-
west parts of the region namely Masha 
Anderacha, Silti, Dalocha, Enemor Ena Ener, 
Cheha, Eza Ena Welenie, Gorro, Gumer and 
Kokir Gedebano districts. Overall, 5 districts 
had HH, 10 had districts LL, 4 districts had LH 
and 1 district had HL association of MPP and 
among districts with significant local spatial 
association, 25% of them had local spatial 
clusters. This supports the evidence of positive 
spatial autocorrelation pattern in distribution of 
MPP across the region in the results of Moran's I 
statistics for testing of global spatial 
autocorrelation.  
Fitting Spatial Regression Models: Measures 
of fit and tests that are used to make 
comparisons between spatial regression models 
from their respective parts are presented in Table 
1.  A significant value of likelihood ratio test 
results together with slightly equal value of log-
likelihood test statistic indicates that that both 
SLM and SEM fit well to the data under 
consideration.  

 
Table 3: Maximum Likelihood Estimates for Factors of MPP Rate in SLM 

Variable Coefficient Std.Error z-value Probability 
WMR_100( ) 0.3463376 0.1849388 1.872714 0.0412* 
CONSTANT -1.489378 3.265984 -2.9161874 0.0359 
DRW_100 -0.008026851 0.04664729 -0.1720754 0.86338 
ALTITUDE 0.003187933 0.003316843 0.9611349 0.33648 
TOI_COV -0.1772313 0.09463082 -1.872871 0.06109 
RDTV_100 -0.1212584 0.05546446 -2.186236 0.02880* 
NRM 1.035586 2.670711 3.877568 0.00011* 
FLR_100 0.2659137 0.1682745 2.768771 0.00563* 
UMN_100 0.0993071 0.03809521 2.606813 0.00914* 
ROF_100 0.1006837 0.04977158 2.022915 0.04308* 
NMN 0.293876 2.039816 2.204984 0.02746* 
ANTMSP_100 0.1372591 0.0723726 1.896562 0.0501* 
WAL_100 0.1110026 0.2713261 0.4091114 0.68246 
NHHDM -1.042806 1.391595 -0.7493599 0.45364 
WEALTHIX -2.75393e-005 2.346996e-005 -1.173385 0.24064 
ELEC_100 -0.1311861 0.1855111 -0.7071606 0.47947 
*significant at 5% level 

 

r
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As recommended by (27), a means of 
discriminating between spatial lag and spatial 
error dependence is provided through the use of 
Lagrange multiplier (LM) diagnostics. The 
simple versions of LM test are powerful but not 
robust in local misspecification of the model, so 
the LM test for spatial lag dependence can be 
significant even if the form of the spatial 
dependence resembles spatial error dependence 
or vice versa. Thus, it is better to look at their 
robust part so as to come up with the correct 
identification of the form of spatial dependence 
in the data.  

The results in Table 1 shows that the spatial 
lag rather than spatial error dependence is 
evidenced by the robust measures, since the 
robust Lagrange multiplier test statistic for SLM 
has relatively higher value than that of SEM 
counterpart. This indicates that taking SLM as a 
good fit than the SEM is reasonable.  
 

Diagnostic tests results of SLM: The 
diagnostic tests for the assumptions of spatial 
autoregressive models are presented in (Table 
2). The non-singularity of the design matrix of 
explanatory variables is diagnosed using 
condition number. As a rule of thumb, a 
condition number larger than 30 is considered to 
be implication for the existence of 
multicollinearity (31). In Table 2 the condition 
number is 23.299 which indicate that multi-
collinearity is not severe problem. 
Highly insignificant value 33.78 (p-value 
0.1393) of Breusch-Pagan test for 
hetereschedasticity in the error terms suggests 
that heteroscedasticity is not serious problem. In 
addition, from Koenker-Basset and White test, 
since the p-values for both tests are not 
significant at the 5% level, we fail to reject the 
null hypothesis of homoscedasticity and 
conclude that the variance of the error is 
constant.  

 
Table 2: Spatial Regression Model Assumptions Diagnostics Test of SLM 

Test DF Value Probability 
Jarque-Bera test 2 132 0.0613 
Breusch-Pagan test 14 33.7866 0.1393 
Koenker-Basset test 14 9.6257 0.5643 
White test 119 77.000 0.0361* 
Condition Number - 23.299 - 
*significant at 5% level 

The hypothesis of normality of residuals is also 
not rejected, since the Jarque-Bera test have p-
value of 0.0613 which is greater than 5%.  Thus, 
as diagnostics result from Table 2 supports, the 
assumption of linearity, no multicollinearity, 
normality and homoskedasticity were met.  
 

Maximum likelihood estimation of 
coefficients of SLM for MPP: The maximum 
likelihood estimates of coefficients, their 
standard errors, test statistic and p-values of 
factors analyzed in MPP are displayed in Table 
3. The effect of individual explanatory variables 
on the geographical variations of MPP was 
tested by Z statistics on the control of effects of 
spatial lag dependence. 

The estimated coefficient for spatial lag of 
MPP ( ) was positive and significant 
indicating that MPP in one district depends 

directly on the MPP of its neighboring districts. 
In other words, MPP tend to be more clustered 
by districts than what would be expected by 
random distribution. This result supports what 
we have obtained using Moran's I statistics and 
cluster map in ESDA of MPP in the previous 
section. The importance of including spatial lag 
effects in SLM is supported by the positive and 
significant value of the coefficient.  

Proportion of households living in 
earth/local dung plastered floor 
house(FLR_100), proportion of households 
living under thatched roof house  (ROF_100), 
average number of rooms/person in a given 
district (NRM), proportion of households who 
used anti-malaria spray in the last 12 months 
before the survey (ANTMSP_100), percentage 
household using mosquito nets (UMN_100) and 
average number of mosquito nets/person in a

r
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Table 3: Maximum Likelihood Estimates for Factors of MPP Rate in SLM 

Variable Coefficient Std.Error z-value Probability 
WMR_100( ) 0.3463376 0.1849388 1.872714 0.0412* 
CONSTANT -1.489378 3.265984 -2.9161874 0.0359 
DRW_100 -0.008026851 0.04664729 -0.1720754 0.86338 
ALTITUDE 0.003187933 0.003316843 0.9611349 0.33648 
TOI_COV -0.1772313 0.09463082 -1.872871 0.06109 
RDTV_100 -0.1212584 0.05546446 -2.186236 0.02880* 
NRM 1.035586 2.670711 3.877568 0.00011* 
FLR_100 0.2659137 0.1682745 2.768771 0.00563* 
UMN_100 0.0993071 0.03809521 2.606813 0.00914* 
ROF_100 0.1006837 0.04977158 2.022915 0.04308* 
NMN 0.293876 2.039816 2.204984 0.02746* 
ANTMSP_100 0.1372591 0.0723726 1.896562 0.0501* 
WAL_100 0.1110026 0.2713261 0.4091114 0.68246 
NHHDM -1.042806 1.391595 -0.7493599 0.45364 
WEALTHIX -2.75393e-005 2.346996e-005 -1.173385 0.24064 
ELEC_100 -0.1311861 0.1855111 -0.7071606 0.47947 
*significant at 5% level 

given district (NMN) have positive and 
statistically significant effect on spatial 
distribution of MPP across districts of SNNPRS. 
The only variable having negative and 
statistically significant effect on MPP is the 
percentage of households living without an 
access to radio and television (RDTV_100).  
Positive effect means that a unit increase in 
explanatory variable increases MPP in a certain 
district and its neighboring districts by 
magnitude of estimate of coefficient for that 
particular explanatory variable keeping the 
effect of the other explanatory variables 
constant, whereas negative effect is to mean that 
a unit increase in the explanatory variable 
decreases MPP in a given district and its 
neighboring districts by a magnitude of estimate 
of coefficient for that particular explanatory 
variable keeping the effect of the other 
explanatory variables constant. 
For instance, 1% decreases in percentage of 
households having no access to radio and 
television (RDTV_100) in certain district 
increases MPP in that particular district and its 
neighboring districts by 0.1213% keeping the 
effect other variables constant. The parameter 
estimate of 0.0993 for percentage household 
using mosquito nets (UMN_100) indicates that 
1% decrease in percentage household using 
mosquito nets decreases the possibility of 

malaria infection in that particular district and its 
neighbors by 0.0993% keeping the effect of 
other explanatory variable constant. 
We can also interpret the coefficients of other 
variables in the same manner as a unit 
increase/decrease in independent variable 
increases/decreases MPP in a district (and its 
neighbor) by magnitude of coefficient estimate 
controlling for the effect of other explanatory 
variables. 

The parameter estimates for altitude, 
proportion of households having piped water, 
proportion of households having protected toilet, 
proportion of households whose living house 
wall is mud/stick/wood are not significant in 
SLM. This means that each of these explanatory 
variables does not contribute significantly to 
MPP in SNNPRS. However, the sign of the 
coefficients suggests the following. 
Controlling for the effect of spatial lag and other 
explanatory variables, altitude is positively 
related with the value of MPP in districts of 
SNNPRS indicating that districts with higher 
value of mean altitude above sea level tend to 
have higher value of MPP. 
 
DISCUSSION 
 

This study investigates the spatial pattern of 
MPP across districts of SNNPRS. A central 
feature of ESDA is the use of formal statistical 
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tests to assess the degree of spatial randomness 
observed in the data and spatial autocorrelation 
test is the most available tool for ESDA of 
aggregated data. The Moran's I, being the most 
available measure of global spatial 
autocorrelation pattern in MPP, showed the 
existence of positive spatial autocorrelation for 
MPP. Again we have seen in ESDA of this study 
that these spatial patterns are not random. The 
result is consistent with earlier studies that found 
significant spatial autocorrelations in spatial 
distribution of malaria prevalence in Ethiopia by 
(30) and by (32). 

The significance of spatially lagged 
dependent variable ( ) in MPP suggests that 
neighboring districts prevalence are important 
determinants of a district’s malaria infection 
possibility. A significant ( ) also indicate that 
the data under consideration is spatially 
dependent for morbidity studies and employing 
OLS models will result in inconsistent estimates 
due to spatial multiplier bias for the data under 
consideration. Moreover, these results are an 
indication that the coefficient estimates and 
standard errors of the OLS model assuming 
independent observations may result in spurious 
results.  

The diagnostics results of spatial regression 
models revealed that both SLM and SEM are 
equally important in modeling MPP. But based 
on the less significance of robust Lagrange 
multiplier (error) residuals in spatial error term, 
as compared to that of spatial lag model, we 
found the SLM better than the SEM in fitting 
spatial regression model for MPP data.  
The results of selecting spatial lag model for 
malaria prevalence as a better fit to the data 
agrees with what (33, 34) pointed out, i.e fitting 
classical regression model under presence of 
spatial dependence may result in inaccurate 
classical regression model. Also based on 
measure of fits, SLM was found better than the 
SEM in predicting the spatial pattern of malaria 
data, with less Akaike information criterion 
(AIC) and higher log-likelihood (LIK). This 
result is consistent with the study done in 
Cambodia by (35) and in northwestern Peruvian 
coast by (36).  Therefore, spatial lag model was 
a better way to understand the factors associated 
with the geographical variations of MPP in 

SNNPR and we limit the discussion to results of 
SLM. 

Among all the explanatory variables 
considered in the study, the spatial lags of MPP 
(WMR_100 (ρ)) have the largest effect on the 
spatial distribution of MPP relative to other 
explanatory variables considered under the 
study. The clustering of the underlying diseases 
dimensions might be due to a number of reasons 
including situations that has been applied to 
groups of areas or socio-economic issues that 
leading to spatial clustering of MPP. 

Proportion of households living in 
earth/local dung plastered floor house 
(FLR_100) and proportion of households living 
under thatched roof house (ROF_100) have 
significant and positive effect on MPP of 
districts. This imply that different types of 
housing materials have an influence on the risk 
of malaria transmission with those houses 
constructed of poor quality materials having an 
increased risk of malaria. This finding is similar 
with that of in Eastern Rwanda by (37), in 
northwestern Peruvian coast by (36) and in 
Ethiopia by (32, 38). 

Results also indicated that average number 
of rooms per person in a given district (NRM), 
proportion of households who used anti-malaria 
spray in the last 12 months before EMIS-
2011survey (ANTMSP_100), percentage 
household using mosquito nets (UMN_100) and 
average number of mosquito nets per person in a 
given district (NMN) have positive and 
statistically significant effect on MPP. The result 
is consistent with earlier studies in Ethiopia by 
(32), in northwestern Peruvian by (36) and in 
Eastern Rwanda by (37). Therefore, using 
mosquito nets and spraying anti-mosquito 
treatment on the walls of the house were also 
found to be a way of reducing the risk of 
malaria. In addition to this, with the correct use 
of mosquito nets, anti-mosquito spraying and 
other preventative measures, like having more 
rooms in a house, the occurrence of malaria 
could be decreased. 

The coefficient estimate of percentage of 
households having no access to radio and 
television is negative and significant at 5% level 
of significance indicating MPP will be greater in 
districts having less percentage of households 
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with access to radio and television. This result 
agrees with the finding of (32) who concluded 
that households with access to television were at 
lower risk of malaria compared to households 
having no television access. 

In conclusion, both explanatory spatial data 
analysis and spatial regression model results 
revealed positive spatial autocorrelation pattern 
of MPP meaning that MPP were clustered in 
space. The eastern and southeast parts of the 
region are found to be hot spot areas for MPP. 
Thus, peoples living in these areas are at higher 
risk of malaria infection. 

From results of model specification and 
measures of fits, the SLM was found to better fit 
to the data and explain the geographical 
variations of MPP in the region.  
Districts with higher proportion of households 
living under earth/local dung plastered floor 
house, higher proportion of households living 
under thatched roof house and higher proportion 
of households without an access to radio and 
television are at higher risk of malaria. 
Moreover, less number of rooms per person and 
less mosquito nets per person in households in a 
given districts puts that particular districts at 
higher risk of malaria. Spatial risk map also 
indicated that residents living in the eastern and 
southeastern parts of the region are at greater 
risk of malaria infection. 
Improving the housing condition of the 
household is one of the means of reducing the 
risk of malaria. The implication of the spatial 
dependence is that, in cases where the decisions 
on how to allocate funds for interventions needs 
to have spatial dimension. 
The limitation of the study is that the effect of 
temperature, precipitation and vegetation index 
is not estimated due to unavailability of the data. 
Thus further research is recommended by 
incorporating these variables. 
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