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Abstract
One of the central goals of the field of population ecology is to identify the drivers of 
population dynamics, particularly in the context of predator–prey relationships. 
Understanding the relative role of top-down versus bottom-up drivers is of particular 
interest in understanding ecosystem dynamics. Our goal was to explore predator–prey 
relationships in a boreal ecosystem in interior Alaska through the use of multispecies 
long-term monitoring data. We used 29 years of field data and a dynamic multistate 
site occupancy modeling approach to explore the trophic relationships between an 
apex predator, the golden eagle, and cyclic populations of the two primary prey spe-
cies available to eagles early in the breeding season, snowshoe hare and willow ptar-
migan. We found that golden eagle reproductive success was reliant on prey numbers, 
but also responded prior to changes in the phase of the snowshoe hare population 
cycle and failed to respond to variation in hare cycle amplitude. There was no lagged 
response to ptarmigan populations, and ptarmigan populations recovered quickly from 
the low phase. Together, these results suggested that eagle reproduction is largely 
driven by bottom-up processes, with little evidence of top-down control of either 
ptarmigan or hare populations. Although the relationship between golden eagle repro-
ductive success and prey abundance had been previously established, here we 
established prey populations are likely driving eagle dynamics through bottom-up pro-
cesses. The key to this insight was our focus on golden eagle reproductive parameters 
rather than overall abundance. Although our inference is limited to the golden  
eagle–hare–ptarmigan relationships we studied, our results suggest caution in inter-
preting predator–prey abundance patterns among other species as strong evidence 
for top-down control.
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1  | INTRODUCTION

Identifying the drivers of population dynamics is a central goal in 
the field of population ecology (Williams, Nichols, & Conroy, 2002), 
particularly in the context of predator–prey dynamics. Population 
dynamics are influenced by biotic and abiotic factors, although the 
role of predation in driving prey populations has received particular 
attention (e.g., Arditi & Ginzburg, 1989; Holt, 1977; Sinclair, Mduma, & 
Brashares, 2003). Predators limit prey populations through top-down 
mechanisms in many systems (Baum & Worm, 2009; Frank, Petrie, 
Choi, & Leggett, 2005; McLaren & Peterson, 1994; Therrien, Gauthier, 
Korpimaki, & Bety, 2014), although bottom-up limitation can also play 
a role (Frederiksen, Edwards, Richardson, Halliday, & Wanless, 2006; 
Schmidt et al., 2017; Ware & Thomson, 2005). Identifying the relative 
roles of top-down versus bottom-up forces is crucial in understanding 
ecosystem dynamics and the population dynamics of both predators 
and their prey.

Boreal ecosystems are generally less productive and structurally 
simpler than those at lower latitudes, providing an opportunity to 
investigate predator–prey relationships in the context of fewer con-
founding trophic relationships (Krebs, Boonstra, Boutin, & Sinclair, 
2001; Krebs, Boutin, & Boonstra, 2001). The dominant prey species in 
the boreal forest across much of North America is the snowshoe hare 
[Lepus americanus], which exhibits regular 9–11 year population cy-
cles (Hodges et al., 2001; Keith, Cary, Rongstad, & Brittingham, 1984; 
Keith & Windberg, 1978). The hare cycle is closely tracked by their 
primary predator, the Canada lynx [Lynx canadensis] (Krebs, Boonstra, 
et al., 2014; O’Donoghue et al., 2001). The willow ptarmigan [Lagopus 
lagopus] is another important prey species whose population cycles in 
phase with snowshoe hare populations in many boreal systems (Boutin 
et al., 1995; McIntyre & Schmidt, 2012). Predation is the proximate 
cause of a majority of mortalities in hares (Krebs, 2011; Krebs, Boutin, 
et al., 2001; Krebs, Boonstra, et al., 2001), and although less well un-
derstood, ptarmigan as well (Martin, Doyle, Hannon, & Mueller, 2001; 
Nielsen, 1999; Sandercock, Nilsen, Broseth, & Pedersen, 2011; Smith 
& Willegrand, 1999). While predators and prey populations often 
cycle together in the north, determining the causal factors for these 
patterns remains one of the central questions in ecology (Boonstra 
& Krebs, 2012; Krebs, 2011, 2013; Krebs et al., 1995; Krebs, Boutin, 
et al., 2001; Krebs, Boonstra, et al., 2001; Stenseth, 1999).

Raptors represent one component of a suite of predators in bo-
real systems (Boutin et al., 1995; Krebs, Boutin, et al., 2001; Krebs, 
Boonstra, et al., 2001), although they often receive less attention than 
their mammalian counterparts. Due to their territorial nature and life 
history characteristics (i.e., use of readily observable nests for breed-
ing), assessments of reproduction are much more feasible for some 
raptors than for many free-ranging mammals. Detailed information on 
reproductive dynamics relative to important prey resources provides 
unique opportunities to investigate the trophic relationships between 
raptors and their prey as part of the larger ecosystem.

Much of the research on predator–prey dynamics focuses on 
changes in the overall abundance of predators and their prey, although 
raptor research has revealed that reproductive effort and success are 

often linked to fluctuations in prey resources (e.g., great-horned owls 
[Bubo virginianus], Rohner, Doyle, & Smith, 2001; gyrfalcons [Falco rus-
ticolus], Nielsen, 2011; Tengmalm’s owls [Aegolius funereus], Korpimaki, 
1992; golden eagles [Aquila chsaetos], Steenhof, Kochert, & McDonald, 
1997; McIntyre & Schmidt, 2012). These findings suggest study of the 
reproductive dynamics of raptors relative to their prey might reveal 
some of the mechanisms behind these relationships.

We monitored a breeding population of golden eagles and their 
primary spring prey, snowshoe hare (hare), and willow ptarmigan 
(ptarmigan), in Denali National Park and Preserve (Denali) over a 29-
year period (1988–2016). This long-term dataset provides a unique 
opportunity to assess the relationships between this apex predator 
and its primary spring prey. Eagles in this population are migratory, 
wintering at more southern latitudes and returning to their breeding 
grounds in late winter or early spring (Kochert, Steenhof, McIntyre, 
& Craig, 2002; McIntyre, Douglas, & Collopy, 2008). During the nest 
initiation period (late March, early April), snowshoe hare and willow 
ptarmigan are the only golden eagle prey species that are function-
ally available and widely distributed on the landscape. Accordingly, 
these two species make up the majority of the diet of golden eagles in 
Denali during the prelaying and early incubation periods. While arctic 
ground squirrels (Spermophilus parryii) constitute a major portion of the 
diet of nesting eagles in Denali, they do not become readily available 
until well after most eagles have completed their clutches (McIntyre 
& Schmidt, 2012). Correspondingly, hare and ptarmigan were identi-
fied as important correlates of eagle reproductive success (McIntyre & 
Adams, 1999; McIntyre & Schmidt, 2012); however, the mechanisms 
behind this relationship have not been assessed. To assess whether 
eagles were more likely limiting (i.e., top-down) or limited by (i.e., bot-
tom-up) their spring prey populations in Denali, we used a dynamic 
multistate occupancy modeling framework (MacKenzie, Nichols, 
Seamans, & Gutiérrez, 2009) to: 1) quantify the relationship between 
eagle reproductive dynamics and hare and ptarmigan abundance, 2) 
assess whether eagle reproductive parameters responded to variation 
in prey cycle amplitude, and 3) assess whether eagle reproductive 
metrics simply tracked prey abundance or changed prior to shifts in 
prey resources (i.e., lagged effects).

2  | METHODS

2.1 | Study area

Our study area encompassed 2,522 km2 in the northern foothills of 
the Alaska Range within Denali in interior Alaska, USA (Figure 1). The 
study area encompasses boreal–montane ecosystems including coni-
fer and mixed forests in the lowlands ranging upward into subalpine 
shrublands and then through an alpine tundra zone into barren rock 
and ice in the highest elevations (Roland, Schmidt, & Nicklen, 2013). 
The topography ranges from rugged mountainous terrain to broad gla-
cial valleys, as well as upland areas. Elevations ranged from ~400 m to 
1,400 m. The area experiences long, cold, dry winters and short, warm 
summers. The average annual temperature is −3°C, with an average 
high of 20°C and an average low of −22°C (Shulski & Wendler, 2007). 
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Average annual precipitation is 38.1 cm (Shulski & Wendler, 2007). 
Annual snowfall averages 206 cm, which is usually concentrated in 
the months of November and December (Sousanes, 2008).

2.2 | Field methods

From 1988 to 2016, we collected data on the occupancy state of 
nesting territories using two standardized aerial and ground surveys 
(see McIntyre & Schmidt, 2012). The first survey was conducted in 
late April and early May after clutch completion but before hatch-
ing. We attempted to observe all known nests and actively searched 
for unknown or new nests within each territory during the first sur-
vey. Each territory was observed in one of four mutually exclusive 
occupancy states: unoccupied, occupied (territorial pair present with 
no evidence of reproductive activity), nesting attempted (egg laying 
without success), or successful reproduction (≥1 fledgling observed). 
When the occupancy state of a territory was inconclusive, we con-
ducted additional aerial or ground surveys to assure assignment to 
the appropriate occupancy state. We completed the second survey in 

mid-July to late July to revisit all nests that were initially assigned to 
the “nesting attempted” state to document nest success (McIntyre & 
Schmidt, 2012). The second author conducted surveys of up to 90 of 
the 103 known territories by small helicopter and foot travel annually 
throughout the study period (Figure 1). Further details regarding field 
methods can be found in McIntyre and Schmidt (2012).

We indexed annual hare and ptarmigan abundance from 1988 to 
2016 as the average number of adults of each species observed per 
day during routine fieldwork conducted throughout the study area 
from mid-April to late June. Ptarmigan indices were based primarily 
on observations of territorial males. All observations were made and 
recorded by the same individual (C. McIntyre) using a standardized ap-
proach for the entire period (see McIntyre & Adams, 1999; McIntyre 
& Schmidt, 2012). While the annual indices could not be converted to 
true abundance, we are confident that this measure accurately repre-
sented relative abundance between years and the frequency and rel-
ative amplitude of the hare and ptarmigan cycles in Denali (see Krebs 
et al., 2013). The hare index was in general agreement with an assess-
ment of the hare cycle in an adjacent area (Arthur & Prugh, 2010), 

F IGURE  1 Location of Denali National Park and Preserve within the state of Alaska (inset) and the approximate locations of the golden eagle 
territories monitored from 1988 to 2016
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further supporting our assertion that our data accurately represented 
the relative abundance of these species in Denali.

2.3 | Statistical analysis

We used dynamic multistate site occupancy models (e.g., MacKenzie 
et al., 2009; Martin et al., 2009) to assess the detailed occupancy 
dynamics of eagle territories relative to variation in hare and ptar-
migan indices. Detection probability for each visit was quite high, 
and multiple visits to individual territories ensured that identifica-
tion of occupancy state was ≈1.0 (Martin et al., 2009; McIntyre 
& Schmidt, 2012). Therefore, for the purposes of analysis, we as-
sumed that errors in the classification of occupancy state did not 
occur.

We used a model parameterization similar to that presented by 
Kéry and Schaub (2012) and Schmidt, Flamme, and Walker (2014), 
extended to include four mutually exclusive occupancy states, Ψ[k]: 
[1] unoccupied, [2] occupied, [3] nesting attempted, and [4] success-
ful reproduction. Our notation generally follows that of Schmidt et al. 
(2014) where the probability of a territory occurring in each of the four 
potential states in yeart can be written as:

where ϕ represents the probability of remaining in the same state 
as in yeart−1. The probability of transitioning from one state to another 
between yeart−1 and yeart is γ. The first superscript on γ indicates the 
true state in yeart−1, and the second represents the true state in yeart. 
Further details on model structure and notation can be found in Kéry 
and Schaub (2012) and Schmidt et al. (2014).

Each ϕ and γ was modeled as a function of covariates. These sub-
models can be written as:

where k* represents the true state in yeart−1. We began by assuming 
that the relative numbers of hares and ptarmigan (ptarm), as well as 
trends through time (year), would be the predominant drivers of oc-
cupancy dynamics based on the work of McIntyre and Schmidt (2012). 
However, in contrast to previous work, we also considered the abun-
dance of both prey species in yeart−1 relative to the reproductive state 
of each territory in yeart. This allowed us to assess whether patterns 
in golden eagle occupancy states tracked prey populations directly or 

prior years’ prey numbers as well. We fit models with and without 
the lagged prey covariates and trend and used model selection proce-
dures based on DIC to select the most parsimonious model. Models 
were fit using program R (v. 2.14.2, R Development Core Team 2012) 
and OpenBUGS (Thomas, O’Hara, Ligges, & Sturtz, 2006). We ran 
two independent Markov chains for 10,000 iterations each, discard-
ing the first 7,000 as burn-in. The remaining 3,000 were retained for 
inference.

3  | RESULTS

The full model was the next best model compared to our top model 
(ΔDIC = 13), indicating little model selection uncertainty relative to 
the current and lagged effects of these two prey species on oc-
cupancy state. The probability of eagles successfully raising fledg-
lings was positively related to the indices of hare and ptarmigan 
abundance (Table 1, Figure 2), as we expected. Territories with at-
tempted or successful nests in yeart−1 were more likely to remain 
in the same state in yeart when hare and ptarmigan numbers were 
high in yeart. For example, the positive value of β

[2][3]
1γ

 indicated 
that the probability of transitioning from occupied in yeart−1 to at-
tempted nesting in yeart was higher in years when the hare index 
was higher (Table 1). Territories were also more likely to transition 
from occupied to attempted or successful nesting when hare and 
ptarmigan numbers were higher in yeart. However, there was a 
negative relationship between hare abundance in yeart−1 and the 
probability of a territory transitioning from an occupied state to 
either attempted nesting (β[2][3]

2γ
 = −0.39) or successful reproduc-

tion in yeart (β
[2][4]
2γ

 = −0.52). This indicated that the probability 
of golden eagle nesting attempts and successful reproduction did 
not track current hare numbers alone, but began to slow prior to 
each peak in the hare cycle and increase more rapidly after the 
hare cycle reached its nadir than would be expected based on hare 
and ptarmigan numbers in yeart alone. There was no correspond-
ing lagged response to ptarmigan numbers. Trends in occupancy 
states over time indicated that occupancy without reproduction 
increased, while nesting attempts and successful reproduction 
decreased after accounting for prey abundance. Interestingly, the 
proportion of territories with attempted nesting did not vary ap-
preciably in relation to prey abundance, although the probability 
of nesting declined slowly through time (Table 1, Figure 2). In ad-
dition, although the third hare peak was ~fourfold larger than the 
previous two, golden eagle reproductive parameters did not show 
a corresponding response (Figure 2). In contrast, both attempted 
nesting and successful reproduction actually declined through time 
despite the large increase in the amplitude of the hare cycle during 
the latter part of the study. Overall, golden eagle reproductive ef-
fort (i.e., nesting attempted and successful reproduction) declined 
through time, while territory occupancy increased. The lack of a 
direct response to the increased amplitude of the third hare peak 
indicated that eagles failed to fully respond to large increases in 
prey resources.

Ψ[1] =1−
(

ϕ[2] +γ[1][2] +γ[3][2] +γ[4][2]
)

Ψ[2] =
(

ϕ[2] +γ[1][2] +γ[3][2] +γ[4][2]
)

∗
(

1−
(

ϕ[3] +γ[1][3] +γ[2][3] +γ[4][3]
))

∗
(

1−
(

ϕ[4] +γ[1][4] +γ[2][4] +γ[3][4]
))

Ψ[3] =
(

ϕ[2] +γ[1][2] +γ[3][2] +γ[4][2]
)

∗
(

ϕ[3] +γ[1][3] +γ[2][3] +γ[4][3]
)

∗
(

1−
(

ϕ[4] +γ[1][4] +γ[2][4] +γ[3][4]
))

Ψ[4] =
(

ϕ[2] +γ[1][2] +γ[3][2] +γ[4][2]
)

∗
(

ϕ[3] +γ[1][3] +γ[2][3] +γ[4][3]
)

∗
(

ϕ[4] +γ[1][4] +γ[2][4] +γ[3][4]
)

logit
(

ϕ[k]
)

=β
[k]
0ϕ

+β
[k]
1ϕ

harest+β
[k]
2ϕ

harest−1+β
[k]
3ϕ

ptarmt+β
[k]
4ϕ

ptarmt−1

+β
[k]
5ϕ

βϕ5yeart

logit
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γ[k
∗][k]

)
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2γ

harest−1+β
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+β
[k∗][k]
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5γ

βγ5yeart
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4  | DISCUSSION

Long-term datasets on the dynamics of naturally occurring popula-
tions of both predators and their primary prey within a single sys-
tem are rare. Golden eagle population ecology in Denali has been 
studied extensively for almost 30 yrs (e.g., McIntyre & Adams, 1999; 
McIntyre & Collopy, 2006; McIntyre, Collopy, & Lindberg, 2006), 
and a direct relationship between eagle reproduction and prey abun-
dance has been established (McIntyre & Schmidt, 2012). The unique 
findings in our current work were that eagle reproduction was also 
negatively related to hare production in the previous year and failed 

TABLE  1 Estimates for coefficients in the top dynamic multistate 
model representing golden eagle occupancy dynamics

Parameter Mean 95% CI

�
[2]
0�

2.58 (2.30, 2.88)

�
[3]
0�

0.51 (0.28, 0.77)

�
[4]
0�

−0.67 (−0.86, −0.47)

�
[1][2]
0�

−1.02 (−1.25, −0.81)

�
[3][2]
0�

3.14 (2.58, 3.93)

�
[4][2]
0�

3.26 (2.80, 3.74)

�
[1][3]
0�

0.69 (0.25, 1.13)

β
[2][3]
0γ

0.12 (−0.07, 0.31)

�
[4][3]
0�

0.42 (0.24, 0.60)

�
[1][4]
0�

−0.46 (−0.91, −0.04)

�
[2][4]
0�

−0.81 (−0.99, −0.63)

�
[3][4]
0�

−0.57 (−0.83, −0.35)

β
[2]
1ϕ

−0.35 (−0.85, 0.14)

β
[3]
1ϕ

0.35 (−0.05, 0.71)

�
[4]
1�

0.56 (0.31, 0.84)

β
[1][2]
1γ

−0.01 (−0.39, 0.38)

β
[3][2]
1γ

0.84 (−0.46, 2.49)

β
[4][2]
1γ

0.52 (−0.06, 1.14)

β
[1][3]
1γ

0.31 (−0.42, 1.12)

�
[2][3]
1�

0.74 (0.44, 1.05)

�
[4][3]
1�

0.41 (0.14, 0.66)

β
[1][4]
1γ

0.37 (−0.29, 1.03)

�
[2][4]
1�

0.80 (0.49, 1.13)

�
[3][4]
1�

0.41 (0.08, 0.78)

β
[2]
2ϕ

−0.15 (−0.63, 0.39)

β
[3]
2ϕ

−0.03 (−0.40, 0.41)

β
[4]
2ϕ

−0.11 (−0.39, 0.17)

β
[1][2]
2γ

0.13 (−0.27, 0.53)

β
[3][2]
2γ

0.49 (−0.66, 1.81)

β
[4][2]
2γ

−0.59 (−1.11, 0.00)

β
[1][3]
2γ

−0.17 (−0.84, 0.60)

�
[2][3]
2�

−0.39 (−0.68, −0.09)

β
[4][3]
2γ

0.04 (−0.21, 0.31)

β
[1][4]
2γ

0.07 (−0.58, 0.71)

�
[2][4]
2�

−0.52 (−0.89, −0.18)

β
[3][4]
2γ

−0.06 (−0.43, 0.27)

β
[2]
3ϕ

0.29 (−0.06, 0.68)

Parameter Mean 95% CI

�
[3]
3�

0.47 (0.20, 0.77)

�
[4]
3�

0.58 (0.38, 0.79)

β
[1][2]
3γ

−0.02 (−0.26, 0.23)

β
[3][2]
3γ

−0.44 (−0.97, 0.08)

β
[4][2]
3γ

−0.30 (−0.73, 0.13)

�
[1][3]
3�

0.90 (0.33, 1.55)

�
[2][3]
3�

0.56 (0.37, 0.74)

�
[4][3]
3�

0.60 (0.38, 0.82)

�
[1][4]
3�

0.73 (0.25, 1.27)

�
[2][4]
3�

0.51 (0.34, 0.69)

�
[3][4]
3�

0.30 (0.01, 0.58)

�
[2]
5�

0.38 (0.06, 0.71)

�
[3]
5�

−0.41 (−0.70, −0.14)

�
[4]
5�

−0.47 (−0.72, −0.23)

β
[1][2]
5γ

0.16 (−0.10, 0.41)

β
[3][2]
5γ

0.37 (−0.15, 0.86)

β
[4][2]
5γ

0.45 (−0.06, 0.98)

β
[1][3]
5γ

−0.19 (−0.67, 0.27)

�
[2][3]
5�

−0.35 (−0.52, −0.19)

�
[4][3]
5�

−0.43 (−0.65, −0.20)

�
[1][4]
5�

−0.69 (−1.25, −0.16)

�
[2][4]
5�

−0.32 (−0.51, −0.14)

�
[3][4]
5�

−0.44 (−0.77, −0.16)

Subscripts on model parameters, β, indicate effect of: intercept (0), hare 
index in yeart (1), hare index in yeart−1 (2), ptarmigan index in yeart (3), and 
trend through time (5) on the probability of remaining in the same state 
between yeart and yeart−1, ϕ, and the probability of transitioning among 
states between yeart and yeart−1, γ. Superscripts in brackets represent true 
occupancy states: 1 = unoccupied, 2 = occupied, 3 = occupied with nest-
ing, 4 = occupied with successful reproduction. All estimates are presented 
on the logit scale, and all covariates were scaled prior to analysis. Bolded 
rows indicate estimates with 95% credible intervals that do not overlap 0.

TABLE  1  (Continued)

(Continues)
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to fully respond to the 2006–2010 extreme hare high, in contrast 
to what would be predicted for a system under top-down control. 
These findings indicated that eagle reproductive effort began to 
slow prior to the hare peak and then increase prior to the start of the 
recovery of the hare population. In addition, eagle reproductive met-
rics quickly began to recover in apparent response to the increase 
phase of the ptarmigan cycle, without “controlling” the ptarmigan 
population at low levels. Our results illustrate that eagle reproduc-
tive output in Denali (i.e., fledgling production) is largely controlled 
by bottom-up forces rather than predation by eagles acting to limit 
hare and ptarmigan populations through top-down mechanisms (e.g., 
White, 2013).

The boreal forest ecosystem in North America is dominated by 
the hare–lynx cycle which is generally thought to be driven primarily 
by lynx predation (e.g., Krebs, Boonstra, et al., 2001; Krebs, Boutin, 
et al., 2001; Krebs, Boonstra, et al., 2014). Top-down forces may reg-
ulate prey densities in many systems (Fauteux, Gauthier, & Berteaux, 
2016; Krebs, Boonstra, et al., 2001; Krebs, Boutin, et al., 2001; Sinclair 
et al., 2000); however, much of the existing predator–prey literature 
from this region is focused on the relationship between predator 
and prey abundance (but see Brommer, Pietiainen, & Kolunen, 2002; 
Millon & Bretagnolle, 2008) rather than assessments of the individ-
ual components of population dynamics (e.g., survival or reproduc-
tion). Additionally, data are often limited to coarse, indirect measures 
of abundance such as fur harvest records (Stenseth et al., 1998; 
Stenseth, Chan, et al., 1999) or track counts (Korpimaki, Norrdahl, 
& Rinta-Jaskari, 1991; Krebs, Boonstra, et al., 2014; Krebs, Bryant, 

et al., 2014; O’Donoghue, Boutin, Krebs, & Hofer, 1997; O’Donoghue 
et al., 2001) containing little or no information on demographic rates. 
We argue that more detailed assessments of key demographic rates 
themselves may reveal apparently contrasting relationships between 
the vital rates of predators and their prey. Our results support this ar-
gument by providing evidence that an apex predator in our subarctic 
system, the golden eagle, is limited by bottom-up processes through 
variation in prey resources. This finding suggests that further assess-
ments of survival and reproductive rates in other predator species 
could reveal similar patterns.

Further investigation into demographic rates is needed for other 
predator populations in this system, particularly for lynx. Declines in 
predator abundance often lag behind those of prey (Krebs, Boonstra, 
et al., 2014; O’Donoghue et al., 1997, 1998, 2001; Stenseth et al., 
1998) creating a pattern where predator populations remain high 
as prey decline, suggesting top-down control of prey populations. 
Due to the coarse nature of the abundance indices available, it is 
plausible that demographic responses similar to those we observed 
in golden eagles may also occur in other predator species. We ac-
knowledge that assessing individual vital rates in other important 
predators such as lynx is difficult; however, abundance-based as-
sessments of system dynamics may conceal important mechanistic 
relationships between predators and their prey. Although our infer-
ence is limited to the golden eagle–hare–ptarmigan relationships we 
studied, our results at least suggest caution in interpreting pred-
ator–prey abundance patterns among other species as strong evi-
dence for top-down control.

F IGURE  2 Annual proportion of each of the 103 monitored GOEA territories in one of four occupancy states: unoccupied, occupied, nesting 
attempted, and successful reproduction in Denali National Park and Preserve, Alaska, USA. Annual hare (blue) and willow ptarmigan (red) indices 
(scaled for presentation) are also included for reference
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Strong associations between raptors and their prey have been ob-
served in a variety of systems (e.g., Hoy, Millon, Petty, Whitfield, & 
Lambin, 2016; Resano-Mayor et al., 2016; Salamolard, Butet, Leroux, 
& Bretagnolle, 2000), and although raptors may exhibit top-down con-
trol (e.g., Thirgood, Redpath, Rothery, & Aebischer, 2000; Thirgood, 
Redpath, Haydon, et al., 2000), bottom-up control has been identified 
in many raptor-dominated systems. For example, reproduction in gos-
hawk populations in Finland is limited by bottom-up processes through 
heterogeneity in habitat composition and prey density (Byholm, 
Nikula, Kentta, & Taivalmaki, 2007). Furthermore, lifetime reproduc-
tive success in Tengmalm’s owls is directly related to prey abundance 
(Korpimaki, 1992). Although we did not measure hare reproductive 
rates directly, hare productivity generally declines as the cycle nears 
the peak and begins to increase near the end of the low period (Krebs, 
Boonstra, et al., 2014), suggesting that golden eagles in Denali may be 
responding to the juvenile hare component of the population. It is also 
plausible that declines in reproductive output in hares may be related 
to density and/or food resources, further suggesting bottom-up driv-
ers. However, rigorous assessments of these hypotheses are certainly 
required before such linkages can be established.

Golden eagles have several life history characteristics that differ 
from those of other apex predators in our study area, potentially fo-
cusing the effects of prey on specific vital rates such as reproduction. 
First, although golden eagles may be classified as generalist predators 
in the sense that they utilize a variety of prey species throughout the 
year (Kochert et al., 2002; Watson, 2010), they specialize on hare and 
ptarmigan during the early part of the breeding season in Denali. Very 
few territories in our study area remained or transitioned to an un-
occupied state, regardless of variation in prey abundance, suggesting 
that food resources in Denali are generally sufficient to maintain adult 
eagles (i.e., no decrease in survival), while eagle reproduction is lim-
ited by the abundance of primary prey. In contrast, both survival and 
recruitment rates for lynx, a nonmigratory species, vary dramatically 
depending on the phase of the hare cycle (Poole, 1994). The migra-
tory nature of Denali’s eagles may mitigate the effects of limited prey 
resources on adult survival, suggesting that the cost of migration may 
be mitigated by avoiding periods when prey availability may be further 
limited (i.e., winter). In contrast, resident specialist predators including 
lynx might be expected to experience large changes in multiple vital 
rates in response to variation in prey populations because they are 
unable to migrate to areas where prey are more available.

Overall, our work contributes to the basic understanding of pred-
ator–prey dynamics in boreal ecosystems. The dependence of golden 
eagle reproductive success on prey abundance has been well estab-
lished (e.g., McIntyre & Adams, 1999; McIntyre & Schmidt, 2012; 
Steenhof et al., 1997), but our current work revealed the bottom-up 
nature of this relationship in Denali. Although we focused on a sin-
gle set of predator–prey relationships, our findings suggest that sim-
ilar interactions may drive other predator–prey systems and that 
abundance-based assessments might obscure the mechanisms driving 
changes in populations. We acknowledge that there are many other 
linkages that must be investigated before a full understanding of the 
dynamics of this system is realized; however, our work indicates that a 

more detailed investigation of vital rates (i.e., reproduction) may reveal 
unexpected relationships between prey resources and predator popu-
lations, possibly providing more conclusive evidence of the directional 
drivers (i.e., top-down vs. bottom-up) in a variety of predator–prey 
systems.
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