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Background and objectives: Patient–ventilator asynchronies (PVAs) are common in

mechanically ventilated patients. However, the epidemiology of PVAs and its impact

on clinical outcome remains controversial. The current study aims to evaluate the

epidemiology and risk factors of PVAs and their impact on clinical outcomes using big

data analytics.

Methods: The study was conducted in a tertiary care hospital; all patients with

mechanical ventilation from June to December 2019 were included for analysis. Negative

binomial regression and distributed lag non-linear models (DLNM) were used to explore

risk factors for PVAs. PVAs were included as a time-varying covariate into Cox regression

models to investigate its influence on the hazard of mortality and ventilator-associated

events (VAEs).

Results: A total of 146 patients involving 50,124 h and 51,451,138 respiratory cycles

were analyzed. The overall mortality rate was 15.6%. Double triggering was less likely to

occur during day hours (RR: 0.88; 95% CI: 0.85–0.90; p < 0.001) and occurred most

frequently in pressure control ventilation (PCV) mode (median: 3; IQR: 1–9 per hour).

Ineffective effort was more likely to occur during day time (RR: 1.09; 95% CI: 1.05–1.13;

p < 0.001), and occurred most frequently in PSV mode (median: 8; IQR: 2–29 per hour).

The effect of sedatives and analgesics showed temporal patterns in DLNM. PVAs were

not associated mortality and VAE in Cox regression models with time-varying covariates.

Conclusions: Our study showed that counts of PVAs were significantly influenced by

time of the day, ventilation mode, ventilation settings (e.g., tidal volume and plateau

pressure), and sedatives and analgesics. However, PVAs were not associated with the

hazard of VAE or mortality after adjusting for protective ventilation strategies such as tidal

volume, plateau pressure, and positive end expiratory pressure (PEEP).

Keywords: patient ventilator asynchrony, mortality, deep learning, mechanical ventilalion, critical care

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2020.597406
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2020.597406&domain=pdf&date_stamp=2020-11-25
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zh_zhang1984@zju.edu.cn
mailto:pqpq@zjut.edu.cn
https://doi.org/10.3389/fmed.2020.597406
https://www.frontiersin.org/articles/10.3389/fmed.2020.597406/full


Ge et al. Patient-Ventilator Asynchrony and Clinical Outcomes

INTRODUCTION

Patient–ventilator asynchrony (PVA) is common in intensive
care unit (ICU) patients (1, 2). PVA can be defined as a
mismatch between patient respiratory effort and ventilator
support. Most prevalent types of asynchrony include ineffective
efforts, double triggering (DT), and early/late cycling off (3).
Well-known risk factors for PVA include inappropriate level
of inspiratory assist, ventilator mode, and the level of sedation
(3). Several techniques have been used clinically to evaluate
patient–ventilator interaction, including esophageal pressure,
diaphragm electrical activity (4), and software algorithms
analyzing ventilator flow and pressure curves (2). There
is evidence showing that PVA is associated with adverse
clinical outcomes, including mortality (5). However, previous
epidemiological studies have important limitations. First, most
techniques for the detection of PVA requires the physical
presence of an expert physician at the bedside and is thus only
feasible during short periods (3, 6–8). Second, risk factors were
explored in a simplified time-fixed manner (9, 10). In reality,
both well-known risk factors and PVAs are time varying; in
addition, some risk factors may take time (lag) to take effect. In
this situation, both the magnitude and time lag between exposure
and PVA should be accounted for. Third, the association of PVA
and mortality risk was mainly explored in small studies (5, 11),
and the association was explored by dividing patients into groups
with different degrees of PVA severity as represented by the
asynchrony index (AI) (2). Since PVA is a time-varying covariate,
it is important to appropriately account for the time-varying
property of the PVA, while avoiding the immortal time bias (12).

The current study employed high-granularity data from
multiparameter monitors and ventilators to explore the risk
factors of PVA, the association with ventilator-associated events
(VAEs), and mortality. We hypothesized that time of day,
ventilation mode, ventilator settings, and sedatives could affect
the PVA. In a multivariable regression model, we adjusted the
sedatives and analgesics to see whether time of day was still
independently associated with PVA. Secondly, we hypothesize
that PVA has a negative impact on clinically important outcomes
such as VAE and mortality.

METHODS

Study Design and Setting
The study was conducted in an academic medical center from
June 2019 to December 2019. The last follow-up date was on
December 31, 2019, when the last patient was discharged home.
Patients’ electronic medical records (EMRs) were retrospectively
reviewed. The study was approved by the ethics committee
of the Sir Run Run Shaw Hospital (20190916-16). Informed
consent was waived by the institutional review board due to
the retrospective nature of the study. The study was conducted
in accordance with the Helsinki declaration. The study was
reported in accordance to the REporting of OBservational
studies Conducted using Observational Routinely-collected Data
(RECORD) checklist (13).

Participants
Patients receiving invasive mechanical ventilation (IMV) at ICU
admission were potentially eligible for the study. Patients were
excluded if they (1) were younger than 15 years; (2) signed a do-
not-resuscitate order; (3) were transferred from other ICUs for
long-term care; (4) were terminally ill with an expected length
of ICU stay of <48 h; (5) had no mechanical ventilation (MV)
waveforms available. Since volume-controlled ventilation was
seldom used in our institution (<5% ventilation hours), effective
identification of PVA was impossible by our deep learning
algorithms. Thus, patients with volume-controlled ventilation
was excluded.

Variables
Variables were extracted from EMR including demographics,
reasons for MV, sequential organ failure assessment (SOFA)
score, source of ICU admission, and vital status on hospital
discharge. Time-varying covariates were recorded during MV,
including VAE, ventilation mode, ventilator setting, sedatives,
and analgesics. VAE was defined as either two or more baseline
days of stable or decreasing daily minimum positive end
expiratory pressure (PEEP) values followed by at least 2 days of
daily minimum PEEP values 3 cm H2O above each of the two
baseline days’ values or two or more baseline days of stable or
decreasing daily minimum FiO2 values followed by at least 2
days of daily minimum FiO2 values 0.20 above each of the 2
baseline days’ values (14). VAE was used as a study end-point
because (1) VAE can be included as a time-varying covariate in
our longitudinal dataset; (2) it can be more objectively defined
than ventilator-associated pneumonia; and (3) the impact of PVA
on mortality might be mediated via VAE. Missing values were
handled with single imputation.

Identification of Four Types of Asynchrony
A one-dimensional interpretable convolutional neural network
(1D-CNN) model was developed to detect DT, ineffective
inspiratory effort during expiration (IEE), prolonged cycling
(PC), and short cycling (SC). The model follows the classical
AlexNet structure, which has excellent performance for image
processing (15). The features in the ventilator waveforms
were extracted by the convolutional layers, concatenated,
and processed by a global averaging pooling (GAP) layer
and a softmax layer for the final binary classification. The
GAP layer allows us to highlight which segments contribute
to the classification results mostly, thus providing a visual
interpretation of the PVA classification. Individual deep learning
models were developed under all ventilation modes. Under each
ventilation mode, four models were established for detecting DT,
IEE, PC, and SC. Each model uses the raw ventilator waveforms
(airway pressure and flow) as input for a binary classification
(PVA or non-PVA). Datasets were annotated by a group of
clinical professionals for training and validating the models
following the same approach proposed in our previous study
(16). Fivefold cross-validation shows that the PVA recognition
accuracy reached above 95% for all types of PVA in all the
ventilation modes. Details of the data annotation, algorithm
development, and validation are described in the ESM.
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Statistical Methods
Descriptive statistics were reported and compared by convention.
Continuous data were expressed as mean and standard deviation
(SD) or median and interquartile range (IQR) as appropriate.
They were compared between survivors and non-survivors by
using t-test or rank sum test. Categorical data were expressed as
the number and percentage andwere compared between different
outcome groups by chi-square test or Fisher’s exact test (17).

Potential risk factors associated with PVA such as ventilator
mode, time of day, and ventilator settings were explored using
the negative binomial regression because it is suitable for the
description of the probabilities of the occurrence of whole
numbers ≥0. Unlike Poisson regression, it does not require
for the variance and the mean of the outcome count to be
equivalent (18).

The association of sedatives/analgesics with PVAwas explored
using the distributed lag non-linear model (DLNM), which
allows for lagged effect of these drugs (19). Drug exposure was
considered in two dimensions of drug dose and time lag after
the exposure. All other factors such as ventilator type, clock
hours, and ventilator setting were adjusted in the model as a
unidimensional variable.

The potential impact of PVA on clinical outcomes (VAE and
mortality) was explored with the Cox regression model with

TABLE 1 | Comparisons between survivors and non-survivors.

Variables Total

(n = 146)

Survivors

(n = 123)

Non-

survivors

(n = 23)

p

Age (years), median

(IQR)

69 (56, 77) 67 (56.5,

75.5)

72 (54, 84.5) 0.289

BMI (kg/m2 ), median

(IQR)

61.5 (33.25,

91.75)

64 (34.5, 93) 42 (31.5, 79) 0.267

Reasons for MV, n (%) 0.545

Cardiac disease 16 (11) 13 (11) 3 (13)

Neuromuscular

disease#
48 (33) 44 (36) 4 (17)

Post-operation 17 (12) 13 (11) 4 (17)

COPD 12 (8) 9 (7) 3 (13)

Sepsis 30 (21) 25 (20) 5 (22)

Systemic disease* 13 (9) 10 (8) 3 (13)

Trauma 9 (6) 8 (7) 1 (4)

SOFA, median (IQR) 7 (5, 10) 6.5 (5, 9) 9.5 (7, 13.25) 0.009

APACHE II, mean ± SD 22.42 ± 8.34 22.06 ± 8 24.22 ± 9.91 0.334

VAE, n (%) 26 (18) 19 (15) 7 (30) 0.132

ICU LOS (days), median

(IQR)

12.91 (7.72,

22.12)

12.91 (7.95,

22.66)

12.48 (5.92,

19.38)

0.271

NUTRIC score, mean ±

SD

5.27 ± 2.17 4.94 ± 2.06 6.62 ± 2.2 0.077

MV, mechanical ventilation; IQR, interquartile range; SD, standard deviation; SOFA,

sequential organ failure assessment; COPD, chronic obstructive pulmonary disease;

APACHE, Acute Physiology and Chronic Health Evaluation; LOS, length of stay; ICU,

intensive care unit; NUTRIC, nutrition Risk in the Critically ill.
#Neuromuscular disease included disorders such as respiratory failure caused by

neuromuscular disorder like stroke and Guillain–Barre syndrome. *Systemic disease

included autoimmune diseases such as SLE.

time-varying covariates (20, 21). That is, the PVA counts were
entered into the model for every hour before the occurrence of
the outcome. Other time-varying covariates included ventilator
parameters such as plateau pressure, PEEP, tidal volume, and
work of breathing (WOB). Time-fixed variables included age,
BMI, gender, admission type, reasons for MV, and SOFA score.

RESULTS

Participants and Descriptive Data
A total of 160 patients were screened during the study period.
After the exclusion of 14 patients due to missing waveform
data, ventilation of <24 h, presence of volume-controlled
ventilation, and presence of a do-not-resuscitate order, we finally
included 146 patients for analysis. A total of 50,124 h involving
51,451,138 respiratory cycles was analyzed (e.g., an average
of 51,451,138/50,124/60 = 17 cycles per minute). The overall
mortality rate was 15.6%. Non-survivors showed greater SOFA
[9.5 (7, 13) vs. 6.5 (5, 9); p = 0.009] and NUTRIC score (6.62
± 2.2 vs. 4.94 ± 2.06; p = 0.077, Table 1), but there was no
difference in mortality rate between VAE and non-VAE groups

TABLE 2 | Clinical outcomes between VAE and non-VAE groups.

Variables Total

(n = 147)

Non-VAE

(n = 121)

VAE (n = 26) p

ICU LOS (days),

median (IQR)

12.91 (7.72,

22.12)

12.24 (7.18,

18.99)

21.82 (17.01,

29.82)

<0.001

MV days, median (IQR) 9.93 (6.05,

15.9)

8.46 (5.93,

12.6)

18.18 (13.83,

25.94)

<0.001

Mortality, n (%) 23 (16) 16 (13) 7 (27) 0.132

IQR, interquartile range; MV, mechanical ventilation; LOS, length of stay; ICU, intensive

care unit; VAE, ventilator associated events.

TABLE 3 | The performance of the PVA detection models under different

ventilation modes.

Modes ACC SEN SPE

IEE PCV 0.972

± 0.001

0.975

± 0.003

0.969

± 0.003

PSV 0.993

± 0.003

0.994

± 0.002

0.991

± 0.005

DT PCV 0.986

± 0.001

0.992

± 0.004

0.979

± 0.006

PSV 0.985

± 0.002

0.986

± 0.008

0.984

± 0.006

Prolonged cycling PCV 0.979

± 0.002

0.977

± 0.007

0.982

± 0.005

PSV 0.973

± 0.004

0.973

± 0.004

0.973

± 0.008

Short cycling PCV 0.970

± 0.005

0.975

± 0.008

0.966

± 0.004

PSV 0.985

± 0.003

0.987

± 0.003

0.984

± 0.005

ACC, accuracy; SPE, specificity; SEN, sensitivity; PCV, pressure control ventilation; PSV,

pressure support ventilation; DT, double triggering; IEE, ineffective effort.
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(Table 2). The VAE group showed longer ICU length of stay
[21.82 (17.01, 29.82) vs. 12.24 (7.18, 18.99) days; p < 0.001] and
MV duration [18.18 (13.83, 25.94) vs. 8.46 (5.93, 12.6) days; p <

0.001] than did the non-VAE group (Table 2).

The Performance of the PVA Detection
Models Under Different Ventilation Modes
Eight independent binary classifiers were developed for different
types of PVA under different ventilation modes, i.e., HPCV−IEE,
HPCV−DT, HPCV−Prol, HPCV−Short, HPSV−IEE, HPSV−DT,
HPSV−Prol, and HPSV−Short. The performance of the models was
evaluated by a fivefold cross-validation. The average accuracy,
sensitivity, and specificity are given in Table 3. We intended
to interpret the PVA recognition using a class activation map
(CAM) technique (22). The technique replaced the FC layer in
the CNN model with a GAP layer to allow visualization of the
sections that the CNN model focuses on. In other words, the
sections that contribute mostly to the classification results will
be highlighted. In this way, we may understand why the CNN
model decides a certain breath manifests PVA. The interpretation
of the classification under the three involved ventilation modes
is illustrated in Figure 1.

Risk Factors of PVA
With the ML model used to detect PVA, the occurrence of PVA
varied depending on the time of day (Figure 2). DT, PC, and
SC were less likely to occur during 0–3 o’clock (Figure 2). To
examine whether the difference in the effect of day vs. night
was attributable to the difference of the use of sedatives and
analgesics, we adjusted for the use of analgesics and sedatives
in the negative binomial regression model (Figure 2). DT was
less likely to occur during day hours (RR: 0.88; 95% CI: 0.85–
0.90; p < 0.001). IEE (RR: 1.09; 95% CI: 1.05–1.13; p <

0.001), PC (RR: 2.23; 95% CI: 2.14–2.32; p < 0.001), and SC
(RR: 1.27; 95% CI: 1.21–1.32; p < 0.001) were more likely to
occur during daytime. Ventilator mode (PSV vs. PCV) was also
significantly associated with the incidence of PVA (Figure 3).
DT was more likely to occur in PCV than in PSV (median
[IQR]: 3 [1–9] vs. 2 [1–6] per hour), whereas IEE occurred
more frequently in PSV than in PCV (8 [2–29] vs. 3 [0–17] per
hour). In the DLNM model, each drug was considered in two
dimensions of dosage and time after exposure (time lag after
instantaneous exposure to a certain dose of the drug). Propofol
was able to reduce the incidence of DT 30–60min after exposure
(i.e., the drug was discontinued after infusion at a dose of 1–
3 mg/kg/h); however, the count of DT increased after 2–4 h
following discontinuation after infusion at a dose of 1–4 mg/kg/h
(Figure 4). The effects of midazolam and sufentanil are shown
in SEM (Supplementary Figures 1, 2). Finally, all risk factors
were entered into negative binomial regression models with each
asynchrony type as the response variable (Table 4). The result
showed that day hour, ventilator mode, tidal volume, PEEP, and
WOB were all associated with PVAs.

Impact of PVA on Clinical Outcomes
PVA was entered into a Cox regression model as a time-varying
covariate. After adjusting for baseline characteristics and other

FIGURE 1 | Interpretation of the cycles classified as PVA under PCV mode

(A,C,E,G) and PSV mode (B,D,F,H).
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FIGURE 2 | Impact of day hours on four types of asynchrony. AI was defined as the percentage of respiratory cycles with the presence of relevant types of PVA. A

negative binomial regression model was built to adjust for the confounding effect of analgesics and sedatives. IEE, ineffective effort; DT, double triggering; SC, short

cycling, PC, prolonged cycling.
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FIGURE 3 | Violin plot showing the impact of ventilation mode on four types of asynchrony. Violin-and-box plots are used to visualize the distribution of the

asynchrony counts (transformed by natural logarithms) and their probability density. The table at the bottom shows the number of asynchrony counts per hour. IEE,

ineffective effort; DT, double triggering; SC, short cycling; PC, prolonged cycling; PCV, pressure control ventilation; PSV, pressure support ventilation.

time-varying covariates, PVA was not associated with increased
risk of mortality or VAE (Table 5). Interestingly, high plateau
pressure (>30 cm H2O) was a significant risk factor for both
mortality (HR: 26.95; 95% CI: 1.95–372.59; p = 0.014) and
VAE (HR: 9.30; 95% CI: 1.34–64.38; p = 0.024). Large tidal
volume (>10 ml/kg) was associated with increased risk of fatality
(HR: 11.22; 95% CI: 1.27–99.28; p = 0.03). Other significant
risk/protective factors for VAE were admission from emergency
department (HR: 0.23; 95% CI: 0.07–0.83; p= 0.024), SOFA (HR:
1.21; 95% CI: 1.03–1.43; p = 0.019), and MV due to systematic
disorders such as systematic lupus erythematosus (HR: 0.04; 95%
CI: 0.00–0.44; p= 0.008).

DISCUSSION

This is the most comprehensive study to investigate the
epidemiology and clinical consequences of PVA in ICU patients.
The main findings can be summarized as follows: First, our study
shows that day hours, ventilation mode, ventilator parameters,
sedatives, and analgesics were important risk factors for all types
of asynchrony. The effect of sedatives and analgesics showed
time-dependent patterns. Second, PVAs were not associated
with either VAE or mortality after adjusting for covariates.
Third, ventilator parameters such as tidal volume and plateau
pressure were significantly associated with VAE and mortality in
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FIGURE 4 | Impact of propofol on four types of asynchrony. Propofol was entered into the distributed lag non-linear model with two dimensions: dose and time lag.

The y-axis shows the time after instantaneous exposure of propofol, so the drug was assumed to be discontinued after a certain dose exposure. Other covariates

including tidal volume, WOB, PEEP, plateau pressure, mode of ventilation, and day hours were adjusted. The red color shows increased risk of asynchrony, and the

green color shows reduced risk of asynchrony. (A) Impact on DT, (B) Impact on IEE, (C) Impact on PC, and (D) Impact on SC. IEE, ineffective effort; DT, double

triggering; SC, short cycling; PC, prolonged cycling.

a Cox regression model with time-varying covariates. Our study
indicates that although protective ventilation strategies such as
low tidal volume and low plateau pressure were associated with
increased PVA, it is unwise to increase the TV and plateau
pressure in order to reduce PVA, because increasing TV and
plateau pressure would increase the hazard of VAE andmortality.

Our deep learning algorithm can be used in a standard ICU for
real-time monitoring of PVAs. High frequency or intensity of
PVAs can trigger warnings from the machine, and measures can
be taken to modify some risk factors as identified in our study.

One strength of our study was that different types of
PVAs were identified by using deep learning algorithms and
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TABLE 4 | Negative binomial regression model exploring the risk factors for the four types of asynchronies.

Variables RR for IEE (95% CI) p RR for DT (95% CI) p RR for SC (95% CI) p RR for PC (95% CI) p

Day hours (night as reference)* 1.063 (1.026, 1.101) <0.001 0.994 (0.964, 1.024) 0.666 0.963 (0.923, 1.006) 0.084 1.243 (1.196, 1.293) <0.001

Ventilation mode (PCV as reference) 1.186 (1.111, 1.267) <0.001 0.402 (0.381, 0.424) <0.001 1.388 (1.285, 1.499) <0.001 4.398 (4.103, 4.715) <0.001

TV (<6 ml/kg as reference)

6–8 ml/kg 0.654 (0.612, 0.699) <0.001 0.718 (0.684, 0.753) <0.001 1.139 (1.06, 1.223) <0.001 1.43 (1.339, 1.526) <0.001

8–10 ml/kg 0.425 (0.392, 0.46) <0.001 0.541 (0.511, 0.573) <0.001 1.47 (1.349, 1.6) <0.001 1.87 (1.725, 2.026) <0.001

>10 ml/kg 0.239 (0.215, 0.267) <0.001 0.419 (0.387, 0.454) <0.001 1.519 (1.346, 1.715) <0.001 5.159 (4.575, 5.818) <0.001

WOB (<10 J/ml/kg as reference)

10–15 J/ml/kg 1.26 (1.182, 1.343) <0.001 0.948 (0.904, 0.995) 0.04 0.473 (0.442, 0.506) <0.001 0.415 (0.388, 0.444) <0.001

15–20 J/ml/kg 1.167 (1.068, 1.275) <0.001 1.239 (1.162, 1.322) <0.001 0.556 (0.507, 0.61) <0.001 0.216 (0.197, 0.237) <0.001

>20 J/ml/kg 0.867 (0.776, 0.969) 0.008 2.114 (1.949, 2.292) <0.001 1.206 (1.067, 1.364) 0.003 0.154 (0.136, 0.174) <0.001

PEEP (≤5cm H2O as reference)

5–10 cm H2O 0.638 (0.61, 0.668) <0.001 1.236 (1.191, 1.282) <0.001 1.218 (1.155, 1.286) <0.001 1.443 (1.369, 1.521) <0.001

>10 cm H2O 1.063 (0.94, 1.205) 0.313 2.018 (1.823, 2.238) <0.001 6.702 (5.722, 7.869) <0.001 4.446 (3.875, 5.116) <0.001

Plateau pressure (<20cm H2O as reference)

20–30 cm H2O 1.39 (1.317, 1.467) <0.001 0.64 (0.613, 0.668) <0.001 0.538 (0.506, 0.571) <0.001 1.354 (1.271, 1.441) <0.001

>30 cm H2O 0.768 (0.703, 0.838) <0.001 0.318 (0.296, 0.341) <0.001 0.079 (0.071, 0.088) <0.001 0.96 (0.87, 1.06) 0.401

RR, relative risk; CI, confidence interval; DT, double triggering; IEE, ineffective effort; SC, short cycling; PC, prolonged cycling; PEEP, positive end expiratory pressure; WOB, work of

breathing; VCV, volume control ventilation; PCV, pressure control ventilation; VC+, volume control plus; APRV, airway pressure release ventilation; PSV, pressure support ventilation;

CPAP, continuous positive airway pressure; TV, tidal volume. Four negative binomial regression models were built by using each type of asynchrony as the dependent variable. All

variables in the table were entered into the models to adjust for confounding effects. *Day hours were categorized by visually inspecting the asynchrony–day hour trend curve.

were analyzed separately (16). We believe that different PVAs
have different underlying mechanisms, and risk factors and
its consequences can be different (3). Previous studies have
analyzed PVAs as a composite outcome that all types of PVAs
were aggregated as a single index called AI (2, 10). Our study
found that risk factors for different PVAs were different. For
example, while IEE, PC, and SC were more likely to occur
during daytime, DT was less likely to occur during daytime after
adjustment for the use of sedatives and analgesics (Figure 1).
Pathophysiologically, DT is the result of high inspiratory demand
and excessive inspiratory effort (23). Inspiratory demand can be
high during daytime because of the diurnal variation pattern
(24). Furthermore, patients are more likely to be awake and
influenced by medical procedures during day hours. Propofol
also showed differing effects on IEE and DT. At 30–60min
after propofol discontinuation, the risk of DT decreased, but the
risk of IEE increased (Figure 3). Propofol could reduce patient
inspiratory efforts and thus DT. Recall that DT could be the result
of excessive inspiratory efforts (25). However, when there is too
much sedative, some normal inspiratory efforts are reduced such
that they fail to trigger a respiratory cycle, leading to increased
IEE. Such differing effects on different types of PVAs were also
noted in another randomized controlled trial (26).

A novel finding in our study was that the effect of sedatives and
analgesics on PVA followed distinct temporal patterns. Although
previous studies have shown that sedatives were associated with
reduced IEE (9), data from 1 day were binned in their studies,
making it difficult to explore the causal/temporal relationship
of sedatives and PVA. For example, the attending physician
may give more sedative for a patient with increased PVAs, and
sedatives may also change the risk of PVAs. The sedatives and

PVAs construct a cyclic causal diagram. Our study employed
DLNM to explore the temporal effect of sedatives on different
types of PVA. It was interesting to find that the risk of DT
first decreased at 30–60min after propofol infusion and then
increased at 3–4 h after propofol discontinuation, which was
probably due to the short half-life of the drug (30–60min)
and increased risk of delirium after propofol infusion (27).
In a controlled experimental study, Vaschetto and colleagues
showed that deep propofol sedation increased asynchronies,
while light sedation did not (25). Our finding was consistent
with Vaschetto’s study in that high-dose propofol was associated
with increased risk of DT at the same hour of propofol infusion
(Figure 3).

Our study was the first to systematically explore the
association of protective ventilation strategy on PVAs. We found
that protective ventilation strategies such as low tidal volume, low
plateau pressure, and high PEEP were all significantly associated
with the risk of PVAs, after adjusting for other risk factors in
negative binomial regressionmodels. Other studies also observed
some patients with strong inspiratory effort and patient–
ventilator mismatch when the tidal volume was given below 6.5
ml/kg (28). The protective ventilation strategy usually cannot
meet patient requirements, and thus PVAs are common; thus,
more sedatives and neuromuscular blocking agents are usually
required to deliver protective ventilation strategies (29). In Cox
regression models with PVAs and ventilation parameters as time-
varying covariates, we did not find independent associations
between PVAs and the hazard of mortality and VAE, which
was consistent with other studies (10, 11, 30). However, this
finding does not mean that we shall no longer pay attention to
the PVA phenomenon. The reasons for our study not finding
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TABLE 5 | Cox regression model with time-varying covariates.

Variables HR for VAE

(95% CI)

p HR for mortality

(95% CI)

p

Age (for every 1-year

increase)

0.97 (0.92, 1.02) 0.246 1.01 (0.97, 1.05) 0.509

BMI (for every 1-point

increase)

0.98 (0.96, 1.00) 0.010 1.00 (0.99, 1.01) 0.674

Gender (female as

reference)

0.83 (0.25, 2.74) 0.765 1.96 (0.46, 8.38) 0.364

Admission type (from ward as reference)

Emergency room 0.23 (0.07, 0.83) 0.024 2.41 (1.05, 5.52) 0.038

Others 0.84 (0.13, 5.49) 0.859 1.67 (0.30, 9.20) 0.558

SOFA (for every

1-point increase)

1.21 (1.03, 1.43) 0.019 1.23 (0.99, 1.53) 0.065

Reasons for MV (cardiac disease as reference)

Neuromuscular

disease

0.35 (0.04, 3.13) 0.347 0.64 (0.10, 4.18) 0.644

Post-operation 0.25 (0.04, 1.75) 0.162 0.78 (0.11, 5.41) 0.804

COPD 0.39 (0.06, 2.64) 0.331 1.87 (0.34, 10.42) 0.474

Sepsis 0.31 (0.07, 1.33) 0.114 1.75 (0.35, 8.63) 0.494

Systemic disease 0.04 (0.00, 0.44) 0.008 1.19 (0.26, 5.46) 0.821

Trauma 2.98 (0.38, 23.19) 0.297 1.24 (0.12, 12.95) 0.857

IEE (for every increase

per hour)

1.00 (1.00, 1.01) 0.250 1.00 (0.99, 1.00) 0.139

DT (for every increase

per hour)

1.00 (0.99, 1.01) 0.687 1.00 (0.98, 1.01) 0.677

SC (for every increase

per hour)

1.02 (0.99, 1.04) 0.183 0.83 (0.61, 1.13) 0.239

PC (for every increase

per hour)

0.69 (0.40, 1.21) 0.197 0.70 (0.39, 1.27) 0.242

WOB (<10 J/ml/kg as reference)

10–15 J/ml/kg 0.27 (0.03, 2.12) 0.215 0.27 (0.02, 3.04) 0.289

15–20 J/ml/kg 0.88 (0.12, 6.54) 0.899 0.14 (0.01, 2.43) 0.179

>20 J/ml/kg 0.98 (0.09, 10.63) 0.988 0.06 (0.00, 1.91) 0.111

TV (<6 ml/kg as reference)

6–8 ml/kg 2.43 (0.13, 46.21) 0.554 3.07 (0.77, 12.30) 0.113

8–10 ml/kg 2.86 (0.14, 60.39) 0.499 2.26 (0.38, 13.34) 0.370

>10 ml/kg 5.31 (0.19,

145.37)

0.323 11.22 (1.27,

99.28)

0.030

Plateau pressure (<20cm H2O as reference)

20–30 cm H2O 4.03 (1.20, 13.58) 0.025 5.63 (0.64, 49.22) 0.118

>30 cm H2O 9.30 (1.34, 64.38) 0.024 26.95 (1.95,

372.59)

0.014

HR, hazard ratio; CI, confidence interval; WOB, work of breathing; TV, tidal volume; IEE,

ineffective effort; DT, double triggering; SC, short cycling; PC, prolonged cycling; SOFA,

sequential organ failure assessment; COPD, chronic obstructive pulmonary disease; BMI,

body mass index.

statistically significant results might be that there are numerous
factors that can influence mortality and that the effect size of a
single variable is very small. The sample size or statistical power
must be very large to reach the statistical significance level. PVA
can cause patient discomfort and may be a sign of inappropriate
ventilation setting. However, the use of protective ventilation
strategy was associated with mortality and VAE. These results

indicate that we should not increase tidal volume or plateau
pressure in order to reduce PVAs. If VAE is the primary concern,
we could use sedatives and neuromuscular blocking agents to
safely deliver the protective ventilation strategy while avoiding
PVAs (31).

Several limitations must be acknowledged in the study. First,
reverse triggering was not distinguished fromDT, because we did
not have data on esophageal pressure monitoring. There has been
evidence that reverse triggering is different from other types of
PVAs from a pathophysiological view (3, 32). Ideally, it should
be analyzed independently. Clinical findings of the present study
are based on the accuracy of the method for detecting PVA
coming from a machine learning model, and the results are
limited by its accuracy. Second, the study included heterogeneous
MV patients including those with ARDS and COPD. Although
we have adjusted our results by disease type, the sample sizes
in some disease groups were limited. Third, the study was
carried out in a single center, and it is unknown whether
the results are generalizable to other hospitals. The limited
sample size and small number of mortality event make our
model preliminary, especially the results related to the mortality
outcome. The model should be verified in studies with a larger
sample size. Finally, the models trained in our study were not
externally validated. Thus, further studies are required to validate
current findings.

In conclusion, with the ML model used to detect PVA,
our study showed that counts of PVAs were significantly
influenced by day hours, ventilation mode, ventilation
parameters, and the use of sedatives and analgesics.
However, PVAs were not associated with the hazard
of VAE and mortality after adjusting for protective
ventilation strategies such as tidal volume, plateau pressure,
and PEEP.

TAKE HOME MESSAGE

• Our study showed that counts of PVAs were significantly
influenced by time of day, ventilation mode, ventilation
settings (e.g., tidal volume and plateau pressure), and sedatives
and analgesics.

• PVAs were not associated with the hazard of VAE
or mortality after adjusting for protective ventilation
strategies such as tidal volume, plateau pressure,
and PEEP.
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