
RESEARCH ARTICLE

Speeding up profiling program’s runtime

characteristics for workload consolidation

Lin Wang1,2, Depei Qian1,2,3, Zhongzhi Luan1,2*, Guang Wei1,2, Rui Wang1,2,

Hailong Yang1,2

1 Sino-German Joint Software Institute, Beihang University, Beijing, China, 2 School of Computer Science

and Engineering, Beihang University, Beijing, China, 3 School of Data and Computer Science, Sun Yat-sen

University, Guangzhou, China

* 07680@buaa.edu.cn

Abstract

Workload consolidation is a common method to increase resource utilization of the clusters

or data centers while still trying to ensure the performance of the workloads. In order to get

the maximum benefit from workload consolidation, the task scheduler has to understand the

runtime characteristics of the individual program and schedule the programs with less

resource conflict onto the same server. We propose a set of metrics to comprehensively

depict the runtime characteristics of programs. The metrics set consists of two types of met-

rics: resource usage and resource sensitivity. The resource sensitivity refers to the perfor-

mance degradation caused by insufficient resources. The resource usage of a program is

easy to get by common performance analysis tools, but the resource sensitivity can not be

obtained directly. The simplest and the most intuitive way to obtain the resource sensitivity

of a program is to run the program in an environment with controllable resources and record

the performance achieved under all possible resource conditions. However, such a process

is very much time consuming when multiple resources are involved and each resource is

controlled in fine granularity. In order to obtain the resource sensitivity of a program quickly,

we propose a method to speed up the resource sensitivity profiling process. Our method is

realized based on two level profiling acceleration strategies. First, taking advantage of the

resource usage information, we set up the maximum resource usage of the program as the

upper bound of the controlled resource. In this way, the range of controlling resource levels

can be narrowed, and the number of experiments can be significantly reduced. Secondly,

using a prediction model achieved by interpolation, we can reduce the time spent on profiling

even further because the resource sensitivity in most of the resource conditions is obtained

by interpolation instead of real program execution. These two profiling acceleration strate-

gies have been implemented and applied in profiling program runtime characteristics. Our

experiment results show that the proposed two-level profiling acceleration strategy not only

shortens the process of profiling, but also guarantees the accuracy of the resource sensitiv-

ity. With the fast profiling method, the average absolute error of the resource sensitivity can

be controlled within 0.05.

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Wang L, Qian D, Luan Z, Wei G, Wang R,

Yang H (2017) Speeding up profiling program’s

runtime characteristics for workload consolidation.

PLoS ONE 12(4): e0175861. https://doi.org/

10.1371/journal.pone.0175861

Editor: Yongtang Shi, Nankai University, CHINA

Received: October 8, 2016

Accepted: March 31, 2017

Published: April 27, 2017

Copyright: © 2017 Wang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: We have made the

code, the raw experiment data, and the experiment

environment configuration publicly available on

https://github.com/yishaou/ARCPTool.

Funding: This work is supported by National Key

Research and Development Program of China

(Grant No. 2016YFB1000503) and National Natural

Science Foundation of China (Grant No. 61133004,

61361126011, 61502019).

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0175861
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175861&domain=pdf&date_stamp=2017-04-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175861&domain=pdf&date_stamp=2017-04-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175861&domain=pdf&date_stamp=2017-04-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175861&domain=pdf&date_stamp=2017-04-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175861&domain=pdf&date_stamp=2017-04-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175861&domain=pdf&date_stamp=2017-04-27
https://doi.org/10.1371/journal.pone.0175861
https://doi.org/10.1371/journal.pone.0175861
http://creativecommons.org/licenses/by/4.0/
https://github.com/yishaou/ARCPTool


Introduction

Workload consolidation refers to running multiple programs simultaneously on one server

[1]. As a tradeoff between workload performance and resource utilization, workload consoli-

dation is very popular in the clusters and data centers. Though improving the resource utiliza-

tion [2], workload consolidation introduces new challenges to the performance of individual

program and the throughput of the whole system. First, co-running programs tend to compete

for the shared resources, resulting in performance degradation of some programs [3–6]. Sec-

ond, the co-running programs may interfere with each other because of the different runtime

behaviors, which makes the performance prediction difficult [7–11]. Third, a co-running pro-

gram may be blocked due to the shortage of a single shared resource, which ruins the through-

put of the entire server or cluster [12].

In order to get the maximum benefit from workload consolidation, the programs allocated

to the same server should have no or less resource demand conflict. To achieve this goal, the

scheduler for workload consolidation needs to clearly understand the program runtime

behavior.

For the purpose of sufficient understanding of the program runtime behavior, we propose a

novel metrics system to comprehensively depict the runtime characteristics of programs. The

metrics system includes (1) the resource usage of the program, and (2) the resource sensitivity

of the program. Resource usage refers to the amount of the resource required by the program

execution, and resource sensitivity is defined as the program performance degradation when

some of the required resources are not available. This metrics system can help in predicting

the performance degradation of a program when it is co-running with other programs, in safe

and efficient scheduling of co-running programs, and in improving program performance,

system throughput and resource utilization at the same time.

Though the resource usage of a program can be obtained by common performance analysis

tools, acquisition of the resource sensitivity is not so straightforward. To our best knowledge,

there is no specific tools to measure the resource sensitivity, and the resource sensitivity

obtained by existing methods is not able to reflect the sensitivity to multiple resources. The

simplest and the most intuitive way to obtain program’s resource sensitivity is to run the pro-

gram in an environment with controllable resource provision and record the performance of

program under different levels of resource conditions. To achieve this, we take advantage of

Cgroups [13] to set up a control group with tunable resources. Cgroups is a mechanism within

Linux kernel which provides the ability of allocating resources among user-defined groups.

The program being profiled is put into the control group for execution under various resource

conditions. The program performance obtained from execution in the control group is called

the performance with resource restriction. According to its definition, the resource sensitivity

of a program is calculated as the ratio of the performance with resource restriction to the per-

formance without resource restriction. Sensitivity acquisition is time-consuming, especially

when multiple resources are involved and the resources are controlled in fine granularity. In

that case, a great number of program executions have to be conducted to get the program

resource sensitivity under all possible resource conditions.

In order to speed up the process of obtaining the resource sensitivity of a program, we pro-

pose a fast profiling method in this paper to reduce the number of program executions

required for profiling the resource sensitivity. Our method consists of two levels of profiling

acceleration strategies. First, taking advantage of the maximum resource usage information,

we set up the maximum resource used as the upper bound of the resource level, called resource

ceiling, in the profiling process. By doing so, we only need to conduct the experiment up to the

resource ceiling, eliminating profiling executions over the whole range of the available

Speeding up profiling program’s runtime characteristics for workload consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 2 / 21

https://doi.org/10.1371/journal.pone.0175861


resources. This will reduce the number of profiling executions significantly. Secondly, by

means of a prediction model supported by interpolation we can cut the number of the experi-

ments even further. Resource sensitivity at sparse points over the resource range are obtained

by real profiling executions, while the resource sensitivity values at other denser points can be

calculated by the prediction model. These two profiling acceleration strategies have been

implemented and applied to our practice in profiling program runtime characteristics. The

experiment results show that the proposed fast profiling method can reduce the number of

experiments while still guaranteeing required accuracy of resource sensitivity.

Motivation and challenges

Necessity of understanding the program run-time characteristics

In order to fully exploit the advantages of workload consolidation [14, 15] while still maintain-

ing a satisfactory program performance, programs with less resource demand conflict should

be co-scheduled to the same server. For the purpose of optimal scheduling in the case of work-

load consolidation, the task scheduler has to fully understand the program’s runtime charac-

teristics [16].

We define a multi-resource multi-perspective metrics system to depict the runtime charac-

teristics of a program. Five different resources are selected as shared resources which are com-

peted by co-running programs. Those resources include CPU, disk read bandwidth, disk write

bandwidth, memory capacity and network bandwidth. Two perspectives, resource usage and

resource sensitivity, are used to describe the program runtime behavior on the resource usage.

After labeling the programs with this multi-resource multi-perspective metrics, the task sched-

uler can do a better job in metrics system advised scheduling than the traditional least load

scheduling. In order to understand the importance of using the resource usage and resource

sensitivity in scheduling, we realized an example of metrics system advised scheduling shown

in Fig 1. Fourteen programs selected from NAS Parallel Benchmark [17], SPEC CPU2006 [18],

PARSEC [19], Cloudsuite [20] and SysBench [21] are scheduled to four servers using two

scheduling strategies. ll-2 is the most common least load scheduling strategy [22] which maps

the programs to the server according to their CPU and memory usage. ll-sen is the scheduling

strategy based on the multi-resource and multi-perspective metrics system, which maps the

programs by considering the resource usage and resource sensitivity over the five shared

resources mentioned above. We define the performance of running-alone program as 1, which

is the case of using the resource exclusively. We find that different scheduling strategies result

in quite different performance. When using ll-sen in scheduling, the performance of most of

the programs such as games, gobmk, blackScholes, Data Caching, darwin1, fileiord1, fileiord2

and fileiowr are improved compared with the case of using ll-2, only mg.c.4, ft.c.4 and ferret

suffer a slight decrease of performance. Note those programs with performance loss are all

cpu-demanding programs, it is because when doing the mapping decision, ll-sen considers

both the usage and sensitivity of five kinds of resources. By sacrificing a little performance of

CPU-intensive programs, ll-sen can significantly increase the performance of other kinds of

programs. This example shows that scheduling considering both the resource usage and the

resource sensitivity can improve the performance of workload consolidation.

Difficulty in profiling the resource sensitivity

We define the resource sensitivity of a program at a specific resource condition as the ratio of

the performance obtained with the restricted resources to the performance without resource

Speeding up profiling program’s runtime characteristics for workload consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 3 / 21

https://doi.org/10.1371/journal.pone.0175861


restriction, which is formulated by Eq (1).

SC½i�;Dr½j�;Dw½r�;M½s�;N½t� ¼
PC½i�;Dr½j�;Dw½r�;M½s�;N½t�

PR½res� unlimited�
ð1Þ

Here, PR[res−unlimited] is the program performance without resource restriction, that is, the per-

formance achieved with the maximum resource. PC[i],Dr[j],Dw[r],M[s],N[t] is the program perfor-

mance under a specific resource condition of the number of CPU cores (C[i]), the specific disk

read bandwidth (Dr[j]), the specific disk write bandwidth (Dw[r]), the size of memory (M[s])

and the specific network bandwidth (N[t]). It is easy to perceive that with one kind of control-

lable resource, the resource sensitivity of a program is a curve. Fig 2 shows an example of

resource sensitivity curve against CPU. Five programs selected from the benchmarks PARSEC

and CloudSuite are profiled and the results are shown in Fig 2. It is also easy to understand

that the resource sensitivity against two resources forms a surface, Fig 3 shows the sensitivity

surface of the program Data Caching from CloudSuite against varied memory capacity and

network bandwidth. In a more general case, the program resource sensitivity against more

Fig 1. Example of metrics system advised scheduling. Fourteen programs are scheduled to four servers using two

scheduling strategies. Compared with ll-2, by making use of ll-sen the average performance of programs improves

22.7%.

https://doi.org/10.1371/journal.pone.0175861.g001

Speeding up profiling program’s runtime characteristics for workload consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 4 / 21

https://doi.org/10.1371/journal.pone.0175861.g001
https://doi.org/10.1371/journal.pone.0175861


than two varied resources forms a hyperplane. In the case of above five-resource metrics sys-

tem, the resource sensitivity is a 5-dimensional hyperplane.

We have developed our method for profiling the resource sensitivity of a program against

the five shared resources. This method does not need the knowledge of source code of the pro-

filed program, and does not rely on the programming environment. It is based on Linux kernel

with Cgroups. We set up a control group by Cgroups and control the amount of resources allo-

cated to the control group for program execution. Each resource is divided into multiple levels,

from the minimum to the maximum of the resource capacity. The program execution environ-

ment is adjusted by providing all possible combinations of resources at different resource

levels.

The simplest and the most intuitive way to obtain the sensitivity hyperplane of a program is

to let the program run in the control group under the all possible resource conditions and rec-

ords the performance achieved in each resource condition. The pseudo-code to perform the

profiling executions is in Fig 4. An array is used to describe all resource restriction on one

resource, and five arrays represent five resources respectively. The experiment will execute

with nesting iterations over each of the resource, and record the performance of the program.

However, if the resource is adjusted in fine granularity, the iterations will go through many

steps. For example, if the five resources are controlled in 7, 24, 21, 13 and 17 levels respectively,

taking the brute force approach, the number of iteration steps to complete profiling is

7�24�21�13�17. We take the program Data Serving as an example and use the throughput as

the performance criteria. It takes 550 seconds to accomplish one execution of Data Serving

with non-restricted resources. With restricted resources, it will take more than 550 seconds to

complete one step of the profiling process. Therefore, with the brute force method, the time

required to complete the profiling process will be longer than 550�7�24�21�13�17 = 428828400

seconds (i.e., 119119 hours!). It can be seen that getting the resource sensitivity hyperplane of a

program is a very tedious work, especially when multiple resources are involved and each

resource is controlled in fine granularity. We need to find more efficient approaches to obtain

the resource sensitivity hyperplane while still keeping reasonable accuracy of the profiling

result.

Fig 2. Program sensitivity curve on CPU. With one kind of controllable resource, the resource sensitivity of

the program is a curve.

https://doi.org/10.1371/journal.pone.0175861.g002

Speeding up profiling program’s runtime characteristics for workload consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 5 / 21

https://doi.org/10.1371/journal.pone.0175861.g002
https://doi.org/10.1371/journal.pone.0175861


Fig 3. Data caching’s sensitivity on memory & network bandwidth. With two kind of controllable resource, the resource sensitivity of the

program is a surface.

https://doi.org/10.1371/journal.pone.0175861.g003

Fig 4. Pseudo-code of obtaining program resource sensitivity. An array is used to describe all resource

restriction on one resource, and five arrays represent five resources respectively. The experiment will execute

with nesting iterations over each of the resource, and record the performance of the program.

https://doi.org/10.1371/journal.pone.0175861.g004

Speeding up profiling program’s runtime characteristics for workload consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 6 / 21

https://doi.org/10.1371/journal.pone.0175861.g003
https://doi.org/10.1371/journal.pone.0175861.g004
https://doi.org/10.1371/journal.pone.0175861


The fast profiling method

From the above discussion we can learn that the time required for profiling the resource sensi-

tivity increases with the increase of the shared resource types and the resource control levels.

The cost of going through all resource level combinations by means of the brute force method

will be unacceptable. An intuitive way of speeding up the profiling process is to reduce the

number of iteration steps in the profiling execution. In this paper, we propose a fast profiling

method which implements two levels of optimization: (1) narrowing the scope of experiments

and eliminating the program execution in the resource conditions above the maximum

resource usage, and (2) executing the program at only sparse points and calculating the sensi-

tivity values of other points by interpolation.

Profiling acceleration based on resource ceiling

The resource ceiling of a program is defined as the resource usage of the program execution.

In our study, it is denoted as

resource ceiling ¼ ðRCPU� ceiling ;RDr� ceiling ;RDw� ceiling ;RM� ceiling ;RN� ceilingÞ ð2Þ

In many cases, the resource ceiling is lower than the physically available resources. Adding

more resources beyond the resource ceiling is useless and will not improve the performance of

the program execution. This fact can be utilized to eliminate unnecessary profiling execution.

We propose a fast profiling strategy using the resource ceiling instead of the maximum

resource capacity as the upper bound of the profiling scope. Profiling execution in resource

conditions beyond the resource ceiling can be avoided, thus the process of determining the

resource sensitivity can be accelerated. Taking the program Data Caching as an example, the

actual maximum memory usage of Data Caching is 4 GB, so we take 4GB instead of 8GB as

the memory resource ceiling of this program. The resource ceiling based profiling algorithm

includes four steps.

1. The resource ceiling is obtained by running the program with unrestricted resources, (i.e.,

the maximum resources available on the server). This is realized by running the program

alone on a server, recording its performance, and monitoring its resource usage using the

performance monitoring tool collectl [23]. The maximum resource usage monitored will be

used as the resource ceiling in the following steps. The performance achieved in this execu-

tion is recorded at the same time and used as PR[res−unlimited] in Eq (1).

2. Set up the experiment points. For each resource, the resource ceiling value obtained in step

1 is used as the upper bound of the controlled resource. The lower bound of the resource is

set to be 20% of its capacity. Then we uniformly set the resource level points between the

lower bound and the upper bound with a predefined resource increment. The resource

increments are denoted by DCPU, DDr, DDw, DM, and DN, representing the resource level

change of CPU, disk Read, disk write, memory and network, respectively in each experi-

ment step. Taking the CPU resource as an example, the experiment points between the

lower and upper bound are set as (RCPU−lowerbound, RCPU−lowerbound + DCPU, RCPU−lowerbound

+ 2 DCPU, � � �, RCPU−upperbound). An experiment execution is required at each point. The pro-

cess of obtaining the resource sensitivity is organized as nesting loops shown in Fig 5. The

number of nesting loops equals to the number of different resources, and the number of

iterative executions within each loop equals to the number of resource levels between the

lower bound and the upper bound of the corresponding resource.

Speeding up profiling program’s runtime characteristics for workload consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 7 / 21

https://doi.org/10.1371/journal.pone.0175861


3. Perform the profiling process with iterative executions of the program over each resource.

The pseudo-code of the algorithm for profiling is shown in Fig 5. It executes the program at

every resource level point in the loop and records the corresponding program performance

at each point as PC[i],Dr[j],Dw[r],M[s],N[t] in Eq (1). This process continues until the iterations

over all resources are finished.

4. Calculate the program resource sensitivity using Eq (1).

It can be learned from the above algorithm that the time spent on conducting the profiling

executions is proportional to the number of resources and the size of resource level increment.

With a fixed size of the resource increment, reducing the range of resource will reduce the

number of profiling executions. Therefore, using the resource ceiling to limit the scope of

resource will speed up the process of resource sensitivity profiling.

Interpolation-based profiling acceleration

In order to get more precise resource sensitivity, profiling at denser resource level points is

preferred. On the other hand, selecting dense resource level points means more steps in the

iterative execution and therefore prolongs the profiling process. One intuitive thought in fur-

ther reducing the profiling time is to use the sensitivity prediction based on interpolation tech-

nique. The concept is to select a small number of points as the sample set and execute the

program at those points. The results obtained from the executions on the sample set are used

to generate the fitting functions by interpolation. The fitting functions are then used as a

Fig 5. Pseudo-code of obtaining the resource sensitivity base on program’s resource ceiling. Using

the resource ceiling of a program to narrow the scope of the restricted resources. Compared with the simplest

method, profiling acceleration based on resource ceiling takes the resource usage as the max point.

https://doi.org/10.1371/journal.pone.0175861.g005

Speeding up profiling program’s runtime characteristics for workload consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 8 / 21

https://doi.org/10.1371/journal.pone.0175861.g005
https://doi.org/10.1371/journal.pone.0175861


prediction model to calculate the resource sensitivity values at the points where no real profil-

ing execution has been conducted. So the sensitivity prediction can be defined as taking a

small number of points with known sensitivity value as the input to predict other points with

unknown sensitivity value. In order to effectively implement the interpolation-based accelera-

tion, we have to answer two questions: how to quickly generate the sampling set? and how to

generate a fitting function which fits the real sensitivity well?

A quick method for generating the sampling set. A method similar to binary search [24]

is adopted for generating the sampling set of the five resources. We name it binary recursive

search. Initially the sampling set is empty. We put the minimum point and the maximum

point (resource ceiling) into the sampling set and execute the program to get the resource sen-

sitivity at these two points. If the difference between the resource sensitivity values at these two

points is smaller than a predefined value ε, the job is done. Otherwise, find the mid-point

between the minimum point and the maximum point, put the mid-point into the sampling set

and form two search subsets minimum point, mid-point and mid-point, maximum point.

Then perform the binary search recursively on those two subsets. We can adjust the value of ε
to control the time of generating the sampling set. Usually, a larger ε will result in a short time.

The pseudo-code of the method is shown in Fig 6.

Generating the interpolation functions and calculating the unknown values. The basic

idea of interpolation [25] is the following: assume function y = f(x) is defined on [a, b], and the

function’s value on a� x0 < x1 < � � �< xn� b are y0, y1, � � �, yn, then build a simple function P
(x), making P(xi) = yi(i = 0, 1, � � �, n) established, then P(x) is the interpolation function of f(x).

Making use of P(x), the value at a new point x can be calculated, and the value P(x) is an

approximated value of the function f(x) at the point x.

We choose piecewise cubic Hermite interpolation as the interpolation function. Compared

with other interpolation functions such as Spline interpolation, the Hermite interpolation

matches better to the resource sensitivity curve, which is smooth and monotonicity. The basic

definition of 1-dimensional piecewise cubic Hermite interpolation [26] is the following:

Fig 6. The pseudo-code of generating the sampling set. Putting the minimum point and the maximum

point (resource ceiling) into the sampling set and execute the program with resource restriction at these two

points. If the difference in resource sensitivity at these two points is smaller than a predefined value ε, the job

is done, otherwise, find the mid-point between the minimum point and the maximum point and form two

subsets {minimum point, mid-point} and {mid-point, maximum point}.

https://doi.org/10.1371/journal.pone.0175861.g006

Speeding up profiling program’s runtime characteristics for workload consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 9 / 21

https://doi.org/10.1371/journal.pone.0175861.g006
https://doi.org/10.1371/journal.pone.0175861


Assume that there are a series of points x0, x1, � � �, xn, and a = x0 < x1 < � � �< xn = b, yi = f(xi)

and yi
0 ¼ f 0ðxiÞ ði ¼ 0; 1; � � � ; nÞ is defined on [a, b]. If there are functions

HðxÞ ¼

H1ðxÞ; x 2 ½x0; x1Þ

H2ðxÞ; x 2 ½x1; x2Þ

� � � � � �

HnðxÞ; x 2 ½xn� 1; xnÞ

8
>>>>>>><

>>>>>>>:

meet:(1) In each sub range [xk, xk+1](k = 0, 1, � � �, n), H(x) is the three order polynomial, and H
(xi) = yi, H 0ðxiÞ ¼ yi

0 ði ¼ 0; 1; � � � ; nÞ. (2)H(x), H0(x) are continuous on [a, b]. Then H(x) is

the Hermite function of f(x) on x0, x1, � � �, xn.

The most important work described in this section is to achieve multi-dimensional interpo-

lation by piecewise cubic Hermite interpolation. Multi-dimensional interpolation is the exten-

sion of 1-dimensional interpolation and the interpolation should be performed on every

effective dimension. In this paper an effective dimension is defined as the dimension in which

the resource usage is higher than the lower bound, while a non-effective dimension is defined

as the dimension in which the resource usage is below the lower bound. The non-effective

dimension means the corresponding resource is used a little or even not used at all by the pro-

gram. The non-effective dimension can be bypassed during profiling because it will not affect

the resource sensitivity value. For the non-effective dimension, we execute the program only

once at the lower bound point and use the obtained sensitivity value of that point for all other

points of that dimension. Bypassing the non-effective dimension will speed up the profiling

process because the time-consuming program execution is avoided. The interpolation in one

dimension is conducted in iterative loops in which all other dimensions will go through the

predefined resource level points one by one. Interpolation is performed in every effective

dimension. The pseudo-code of interpolation in one dimension is shows in Fig 7. It shows the

interpolation in the dimension of CPU. For every vector in the CPU dimension, an interpola-

tion function Hci are trained, and then Hci are used to predict unknown point in this vector.

After that, the newly predicted points are updated as known point. The interpolation in other

dimensions uses the similar algorithm as the CPU dimension interpolation.

Evaluation

Experiment setup

Table 1 shows the configuration of the server used in our experiment. The server is equipped

with two Intel Xeon E5506 (Westmere) processors and 8GB memory, more details can be

found in Table 1. The server runs CentOS 6.5 with Linux kernel version 2.6.32.

Table 2 shows the capacity of the five resources and the number of capacity points repre-

senting different resource levels. The capacity points are set uniformly within the range of

resources provided by the server, for example, 7 points on the number of CPU cores, 24 points

on the disk read bandwidth, 21 points on the disk write bandwidth, 13 points on the memory

capacity and 17 points on the network bandwidth.

Several kinds of programs are selected from multiple benchmarks for verifying the effective-

ness of our method. Data Caching and Data Serving are selected from Cloudsuite. Different

from traditional scale-up parallel programs, Data Caching and Data Serving are scale-out in

nature and have complicated resource demand patterns, so they represent the typical workload

of data centers [27][28], which is the major target of our study. In order to show the effect of

our work in dealing with different workloads, programs with different resource usage patterns

Speeding up profiling program’s runtime characteristics for workload consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 10 / 21

https://doi.org/10.1371/journal.pone.0175861


should be included in our experiment. For this purpose, more programs are selected from the

NAS Parallel Benchmark, PARSEC, and SysBench. All selected programs are listed in Table 3

and categorized into groups according to the resources they demand the most. For different

programs, the performance to be optimized and measured can be different, for example, Data

Caching emphasizes the average latency, Data Serving concerns the operations per second,

and the programs from NAS Parallel Benchmark and PARSEC pursues the instructions per

cycle. These different performance criteria are abstracted into performance in the resource

sensitivity definitions but different measurement methods are used in the individual profiling

experiment.

In order to ensure the accuracy and reality of the evaluation experiments, we repeat an

experiment ten times to get average value as the experiment results. Our experiments evaluate

the two-level profiling acceleration strategies from different aspects. First, the numbers of

Table 1. Configuration of the server used in experiments.

CPU Type Intel Xeon E5506

Cores 4 cores@2.13G

Threads per core 1 thread

Sockets 2

Memory 8GB, DDR3

Disk read bandwidth 1-135 MB/s

Disk write bandwidth 1-120 MB/s

Network bandwidth 1-100 MBit/s

https://doi.org/10.1371/journal.pone.0175861.t001

Fig 7. The pseudo-code of multi-dimensional interpolation for obtaining sensitivity. It shows the

interpolation in the dimension of CPU. For every vector in the CPU dimension, an interpolation function Hci is

trained, and then used to predict unknown points in this vector. After that, the newly predicted points are

updated as known points.

https://doi.org/10.1371/journal.pone.0175861.g007

Speeding up profiling program’s runtime characteristics for workload consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 11 / 21

https://doi.org/10.1371/journal.pone.0175861.t001
https://doi.org/10.1371/journal.pone.0175861.g007
https://doi.org/10.1371/journal.pone.0175861


iteration step with different profiling acceleration strategies are compared. Second, the accura-

cies of the prediction models with different sampling methods are evaluated. Third, the effect

of ε to the sampling set generation is discussed.

The number of iteration steps

We use the number of iteration steps in profiling as a criterion to evaluate the efficiency of our

fast profiling method. The original brute force strategy for obtaining the resource sensitivity

needs to execute the program with all resource combinations. In the case of our resource levels

definition, to get the resource sensitivity of a program, the program has to be executed for

7�24�21�13�17 times within the iteration loops of the experiment. As mentioned above, it

takes a long time and may not be realistic in many cases. The numbers of iteration steps is

reduced by applying the two-level profiling acceleration strategies, which is shown in Fig 8 and

Table 4. In Fig 8 the columns represent the number of iteration steps of the original brute

force strategy, of the profiling acceleration strategy base on the resource ceiling, and of the pro-

filing acceleration strategy based on both resource ceiling and prediction, respectively. Note,

the Y axis values, i.e., the iteration steps, are represented in logarithmic scale for clear display.

We can see that both fast profiling strategies, especially the two-level acceleration strategy, sig-

nificantly reduce the iteration steps and therefore shorten the experiment time. At the same

time, we find that programs depending mainly on one resource need fewer iteration steps to

complete the experiment than the programs depending on more than one resource. Programs

blackscholes, facesim, x264, bodytrack, ferret and freqmine depend mainly on CPU, they need

only 2-3 iteration steps to complete the experiment. Program fileiord depends mainly on Disk

I/O, it need 5 iteration steps to complete the experiment. Programs mg.C.8, mg.C.4, ft.C.8, ft.

C.4 and Data Serving depend mainly on CPU and memory, they need 10-30 iteration steps to

complete the experiment. Program Data Caching depends on CPU, memory and network I/O,

it needs 40 iteration steps to complete the experiment. We also find that the resource ceiling

strategy performs better in reducing the iteration steps for the programs depending mainly on

Table 2. The capacity and capacity points of the five resources.

Parameters Control file in Cgroups Experiment range Number of capacity point

Number of cores C CPUset.CPUs 2-8 7

Disk read bandwidth Dr blkio.throttle.read_bps_device 20-135 MB/s 24

Disk write bandwidth Dw blkio.throttle.write_bps_device 20-120 MB/s 21

Memory size M memory.limit_in_bytes 2-8GB 13

Network bandwidth N net_cls.classid 20-100MBit/s 17

https://doi.org/10.1371/journal.pone.0175861.t002

Table 3. Workloads selected.

Suites Programs Resource demanded

Cludsuite DataCaching, DataServing CPU, mem, network

bandwidth

NAS Parallel

Benchmark

mg.C.8, mg.C.4, ft.C.8, ft.C.4 CPU, mem

PARSEC blackscholes, facesim, x264, bodytrack, ferret,

freqmine

CPU

SysBench fileiord, fileiowr disk bandwidth

https://doi.org/10.1371/journal.pone.0175861.t003

Speeding up profiling program’s runtime characteristics for workload consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 12 / 21

https://doi.org/10.1371/journal.pone.0175861.t002
https://doi.org/10.1371/journal.pone.0175861.t003
https://doi.org/10.1371/journal.pone.0175861


Fig 8. Comparison of the number of iteration steps. The two-level acceleration strategy can significantly reduce the

iteration steps and therefore shorten the experiment time. Note, the Y axis is represented in logarithmic scale for clear

display.

https://doi.org/10.1371/journal.pone.0175861.g008

Table 4. The number of iteration steps.

Programs Brute force Ceiling Ceiling and Prediction

Data Caching 779688 595 40

Data Serving 779688 91 10

mg.C.8 779688 35 20

mg.C.4 779688 20 16

ft.C.8 779688 91 30

ft.C.4 779688 52 24

blackscholes 779688 3 2

facesim 779688 3 3

x264 779688 3 3

bodytrack 779688 3 2

ferret 779688 3 3

freqmine 779688 3 3

fileiord 779688 19 5

fileiowr 779688 4 4

https://doi.org/10.1371/journal.pone.0175861.t004

Speeding up profiling program’s runtime characteristics for workload consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 13 / 21

https://doi.org/10.1371/journal.pone.0175861.g008
https://doi.org/10.1371/journal.pone.0175861.t004
https://doi.org/10.1371/journal.pone.0175861


only one resource, while the two-level strategy based on both resource ceiling and prediction

model gets better results in the case of programs depending on more than one resource.

The accuracy of interpolation-based acceleration

In our experiments, the prediction value obtained by our interpolation method is compared

with the real value obtained by program execution and the prediction value obtained with

other sampling methods. Fig 9 shows the absolute error of the prediction value with the real

value. The absolute error is defined as abs(predicted data − real data), and the average absolute

error of a program is defined as

PN

i¼1
absðpredicted data� real dataÞ

N . The columns represent the real value

and the predicted value respectively. The Y axis represents the sensitivity value and the X axis

represents the experiment points of different resource conditions represented by Cartesian

product. There are five elements in the Cartesian product, they represent CPU, disk read band-

width, disk write bandwidth, memory and network bandwidth, respectively. Some elements

expressed as “�” mean the usage of the corresponding resource is below the low bound of the

experiment. Fig 9(a) shows the case of Data Serving. We can see that in most cases the pre-

dicted data are smaller than the real data. It is because the curvature of predicted data curve

determined by the derivative method of Hermite interpolation is smaller than that of the real

data curve, resulting in a relatively flat curve. In the case of Data Serving, the average absolute

error of the predicted data from the real data is 0.0257, as shown in Table 5. Fig 9(b) shows the

case of Data Caching whose performance is influenced by CPU, memory capacity and network

bandwidth. Because there are too many Cartesian product items which are impossible to be

shown in the figure, we show only part of the experiment data with memory restriction of

3.5GB, and the average absolute error between the predicted value and the real data is 0.0664.

Fig 9(c) shows the case of program fileiord. In this case, the Hermite interpolation curve well

fits the real data curve, the average absolute error is very small, only 0.0041. Fig 9(d) and 9(e)

show the cases of programs ft.c.8 and mg.c.8 from NPB, respectively. The source of the error

in both cases is similar as in the case of DataServer, that is, the curvature of the real data is

larger than that of the predicted data. The average absolute errors in the case of ft.c.8 and mg.

c.8 are 0.0465 and 0.0472 respectively. The overall average absolute error of the five programs

is 0.038.

The size of the sampling set influences the efficiency of the interpolation-based acceleration

strategy. The binary-search-like approach for generating the sampling set is evaluated in our

experiments. For comparison, we use Latin hypercube sampling [29] as the reference in gener-

ating the sampling set for the five resources. Latin hypercube sampling is a commonly used

heuristic method to explore a multi-dimensional parameter space. In order to ensure interpo-

lation, when using Latin hypercube, we put the boundary points into the sampling set and gen-

erate other points by Latin hypercube. The number of resource condition points in the two

sampling sets generated by the binary-search-like approach and Latin hypercube sampling are

kept the same to make the comparison fair. The prediction results based on the two sampling

sets are shown in Fig 10. The columns represent the average absolute error with the sampling

set generated by the binary-search-like approach and Latin hypercube, respectively. It can be

seen that the average absolute error with the sample set generated by the binary-search-like

approach in the case of ft.c.4 and mg.c.4 is zero. It is because all nonzero value are in the sam-

ple set with the binary-search-like approach. The average absolute error of fileiord by both

sample methods is close to zero. It is because the curve of fileiord is almost a straight line, the

prediction accuracies of both sampling methods are very good. The overall average absolute

error of using the sample set by the binary-search-like approach (i.e., 0.0462) is smaller than

that of using Latin hypercube sampling (i.e., 0.0953). The reason is that Latin hypercube

Speeding up profiling program’s runtime characteristics for workload consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 14 / 21

https://doi.org/10.1371/journal.pone.0175861


Fig 9. The average absolute error of the interpolation-based acceleration. Fig 9(a), 9(b), 9(c), 9(d) and 9(e) shows the absolute error of the

interpolation-based prediction on Data Serving, Data Caching, fileiord, ft.c.8 and mg.c.8. The overall average absolute error of the five programs is 0.038.

https://doi.org/10.1371/journal.pone.0175861.g009

Speeding up profiling program’s runtime characteristics for workload consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 15 / 21

https://doi.org/10.1371/journal.pone.0175861.g009
https://doi.org/10.1371/journal.pone.0175861


sampling is a random sampling, but the binary-search-like approach generates more points in

the range with greater performance change and fewer points in the range with small perfor-

mance change, making points with higher risk of prediction error real value points.

The effect of ε
ε has a direct effect on accuracy. As discussed in 4.1, a larger ε will result in a shorter sampling

time and a higher absolute error in interpolation. Fig 11 shows the absolute error with different

Fig 10. Comparison of methods for generate sampling set. The overall average absolute error of using the sample set

by the binary-search-like approach (i.e., 0.0462) is smaller than that of using Latin hypercube sampling (i.e., 0.0953).

https://doi.org/10.1371/journal.pone.0175861.g010

Table 5. The average absolute error of the interpolation-based acceleration.

Programs The average absolute error

Data Serving 0.0257

Data Caching 0.0664

mg.C.8 0.0472

ft.C.8 0.0465

fileiord 0.0041

average 0.038

https://doi.org/10.1371/journal.pone.0175861.t005

Speeding up profiling program’s runtime characteristics for workload consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 16 / 21

https://doi.org/10.1371/journal.pone.0175861.g010
https://doi.org/10.1371/journal.pone.0175861.t005
https://doi.org/10.1371/journal.pone.0175861


ε values, here ε is chosen as 0.2, 0.3, 0.4, and 0.5. Fig 12 shows the total number of steps to gen-

erate the sampling sets (that is, the number of sampling points) for the benchmark programs

with different ε. We find when ε is 0.2, the accuracy is better, but the number of steps required

to generate the sampling set is large. When ε is 0.3 and 0.4 the accuracy is moderate. When ε is

0.5 the accuracy is low even though the sampling set can be generated quickly. From our

experiments, we believe 0.3 or 0.4 might be the proper value of ε for most programs.

Related works

This paper proposes a new metrics system to characterize the program’s performance degrada-

tion when it is co-running with other programs, and proposes a two-level profiling accelera-

tion strategy to accelerate the profiling process. This section reviews representative profiling

approaches and program characteristics based task scheduling to illustrate the difference

between our method and other approaches.

Methods for profiling program runtime characteristics. There are a number of profiling

tools or methods to obtain program runtime characteristics. The purpose of using the perfor-

mance profiling tools such as VTune [30], OProfile [31], Gprof [32] is analyzing the hot-spot

Fig 11. Prediction accuracy with different ε value. When ε is 0.2, the average absolute error is 0.0456; when ε is 0.3, the

average absolute error is 0.0851; when ε is 0.4, the average absolute error is 0.0866; when ε is 0.5, the average absolute

error is 0.092.

https://doi.org/10.1371/journal.pone.0175861.g011

Speeding up profiling program’s runtime characteristics for workload consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 17 / 21

https://doi.org/10.1371/journal.pone.0175861.g011
https://doi.org/10.1371/journal.pone.0175861


code and call relationship in the program and locating performance bottleneck. Several OS-

level performance profiling tools such as collectl [23], iostat [33] and vmstat [34] are used for

analyzing the resource usage of the system. Ferdman et al. [35] introduced the benchmark

suite CloudSuite and analyzed the characteristics of those scale-out workloads, finding that

today’s predominant processor micro-architecture is inefficient for running those workloads.

Jia et al. [36] characterized the micro-architectural characteristics of data analysis applications.

They have found that the data analysis applications share many inherent characteristics and

presented several recommendations for architecture and system optimizations. Yasin et al.

[37] studied the characteristics of a Big Data Analytics workload, aiming at understanding the

essential causes of the CPU bottlenecks. Jia [38] studied the workload characteristics with dif-

ferent software stacks and pointed out that the software stacks do have influence to application

characteristics. Seo et al. [39] classified application programs based on IO characteristics, and

verified the classification with examples. To our best knowledge, there is no mature ruler-like

method so far for the cluster or data center operators to measure the performance change of a

program when it is co-running with other programs.

Fig 12. The number of steps for generating the sampling set with different ε value. ε is chosen as 0.2, 0.3, 0.4, and

0.5, and the number of steps are 179, 149, 142, 117 respectively. The conclusion is that larger ε result in fewer number of

steps.

https://doi.org/10.1371/journal.pone.0175861.g012

Speeding up profiling program’s runtime characteristics for workload consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 18 / 21

https://doi.org/10.1371/journal.pone.0175861.g012
https://doi.org/10.1371/journal.pone.0175861


Program characteristics based task scheduling for workload consolidation. Delimitrou

et al. [22, 40] classified application programs respect to scale-up, scale-out, heterogeneity and

interference by a technique called collaborative filtering. They map the application programs

to proper execution environment to maximize program performance and resource utilization.

They have studied how performance varies with different CPU, memory and storage capacity.

But the constraint of the collaborative filtering method is that the number of server configura-

tions must be smaller than the number of shot runs, which is much smaller than what we get

by our method. Heracle [41] used an isolation mechanism to parallelize the batch tasks and

latency-sensitive tasks. But they only explored the program performance variation with a single

resource. Mars et al. [42] tested program’s sensitivity to the shared resource on chip instead of

shared resource on a server such as disk I/O and network I/O, therefore the method is not rele-

vant to data center workload consolidation.

Conclusion

Efficient workload consolidation relies on good understanding of the runtime characteristics

of co-running programs. With the knowledge of the resource usage and of the relationship

between the performance and the resource condition, we could schedule the programs with

less resource usage conflict to the same server for execution. The relationship of performance

and resources is defined by resource sensitivity. However, getting the resource sensitivity of a

program is time consuming, especially when the program relies on multiple resources and

each resource is controlled with fine-grain levels. This paper proposes a two-level profiling

acceleration strategy for speeding up the process of acquiring the resource sensitivity. The first

level of the strategy uses the maximum resource usage, called resource ceiling, as the upper

bound of the controlled resource and eliminates the need of performing profiling executions

in the whole rage of the resources. The second level of the strategy reduces the number of

experiment points further by interpolation and generates the resource sensitivity at the non-

sampling points by prediction. Hermite interpolation is used as the prediction model. As far as

we know, there has not been a profiling tool for obtaining co-running program characteristics

on the resource dimensions of CPU, memory capacity, the disk read/write bandwidth and the

network bandwidth. The proposed method is evaluated by comparing the number of steps

required by profiling and the difference between the predicted data with the real data, using

different acceleration strategies and different sampling methods. The evaluation results show

that the Hermite interpolation reduces the number of steps in generating the sampling set.

Our method significantly shortens the time for profiling the resource sensitivity of a program

while still maintaining a reasonable accuracy.

Our future work will focus on three aspects. The first is to apply our fast profiling method

to more versatile programs to see their feasibility in supporting general program profiling. The

second is to integrate the resource sensitivity information into the scheduler for workload con-

solidation, and use the scheduler to schedule real workloads to verify its effectiveness in

improving system throughput, resource utilization and program performance. The third is to

expand our method to cover more server configurations. Since in a modern data center there

are multiple types of servers and different server configurations, adapting our method to dif-

ferent server types and configurations is necessary for its real usage in the data center.

Acknowledgments

This work is supported by National Key Research and Development Program of China (Grant

No. 2016YFB1000503) and National Natural Science Foundation of China (Grant No.

61133004, 61361126011, 61502019).

Speeding up profiling program’s runtime characteristics for workload consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 19 / 21

https://doi.org/10.1371/journal.pone.0175861


Author Contributions

Conceptualization: LW DQ ZL RW HY.

Data curation: LW GW.

Formal analysis: LW DQ.

Funding acquisition: DQ HY.

Investigation: LW.

Methodology: LW DQ ZL RW HY.

Project administration: ZL.

Resources: DQ ZL RW HY.

Software: LW.

Supervision: DQ.

Validation: LW.

Visualization: LW.

Writing – original draft: LW.

Writing – review & editing: DQ LW.

References
1. Moraveji R, Taheri J, Reza M, Rizvandi NB, Zomaya AY. Data-intensive workload consolidation for the

Hadoop distributed file system. Proceedings of the 2012 ACM/IEEE 13th International Conference on

Grid Computing; 2012: IEEE Computer Society.

2. Uddin M, Rahman AA. Server consolidation: An approach to make data centers energy efficient and

green. arXiv preprint arXiv:10105037. 2010.

3. Ye K, Wu Z, Wang C, Zhou BB, Si W, Jiang X, et al. Profiling-based workload consolidation and migra-

tion in virtualized data centers. Parallel and Distributed Systems, IEEE Transactions on. 2015; 26

(3):878–90. https://doi.org/10.1109/TPDS.2014.2313335

4. Zhuravlev S, Blagodurov S, Fedorova A. Addressing shared resource contention in multicore proces-

sors via scheduling. ACM SIGARCH Computer Architecture News; 2010: ACM.

5. Moreto M, Cazorla FJ, Ramirez A, Sakellariou R, Valero M. FlexDCP: a QoS framework for CMP archi-

tectures. ACM SIGOPS Operating Systems Review. 2009; 43(2):86–96. https://doi.org/10.1145/

1531793.1531806

6. Nathuji R, Kansal A, Ghaffarkhah A. Q-clouds: managing performance interference effects for qos-

aware clouds. Proceedings of the 5th European conference on Computer systems; 2010: ACM.

7. Govindan S, Liu J, Kansal A, Sivasubramaniam A. Cuanta: quantifying effects of shared on-chip

resource interference for consolidated virtual machines. Proceedings of the 2nd ACM Symposium on

Cloud Computing; 2011: ACM.

8. Dwyer T, Fedorova A, Blagodurov S, Roth M, Gaud F, Pei J. A practical method for estimating perfor-

mance degradation on multicore processors, and its application to HPC workloads. Proceedings of the

International Conference on High Performance Computing, Networking, Storage and Analysis; 2012:

IEEE Computer Society Press.

9. Pacheco-Sanchez S, Casale G, Scotney B, McClean S, Parr G, Dawson S. Markovian workload char-

acterization for qos prediction in the cloud. Cloud Computing (CLOUD), 2011 IEEE International Confer-

ence on; 2011.

10. Li A, Zong X, Kandula S, Yang X, Zhang M. CloudProphet: towards application performance prediction

in cloud. ACM SIGCOMM Computer Communication Review; 2011: IEEE.

11. Zhang Y, Laurenzano MA, Mars J, Tang L. Smite: Precise qos prediction on real-system smt proces-

sors to improve utilization in warehouse scale computers. Proceedings of the 47th Annual IEEE/ACM

International Symposium on Microarchitecture; 2014: IEEE Computer Society.

Speeding up profiling program’s runtime characteristics for workload consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 20 / 21

https://doi.org/10.1109/TPDS.2014.2313335
https://doi.org/10.1145/1531793.1531806
https://doi.org/10.1145/1531793.1531806
https://doi.org/10.1371/journal.pone.0175861


12. Blagodurov S, Gmach D, Arlitt M, Chen Y, Hyser C, Fedorova A. Maximizing server utilization while

meeting critical SLAs via weight-based collocation management. Integrated Network Management (IM

2013), 2013 IFIP/IEEE International Symposium on; 2013: IEEE.

13. https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

14. Pham C, Chen D, Kalbarczyk Z, Iyer RK. Cloudval: A framework for validation of virtualization environ-

ment in cloud infrastructure. 2011 IEEE/IFIP 41st International Conference on Dependable Systems &

Networks (DSN); 2011: IEEE.

15. Gmach D, Rolia J, Cherkasova L. Resource and virtualization costs up in the cloud: Models and design

choices. 2011 IEEE/IFIP 41st International Conference on Dependable Systems & Networks (DSN);

2011: IEEE.

16. Urgaonkar B, Shenoy P, Roscoe T. Resource overbooking and application profiling in a shared internet

hosting platform. ACM Transactions on Internet Technology (TOIT). 2009.

17. http://www.nas.nasa.gov/publications/npb.html

18. http://www.spec.org/cpu2006/

19. http://parsec.cs.princeton.edu/parsec3-doc.htm

20. http://parsa.epfl.ch/cloudsuite/cloudsuite.html

21. https://github.com/akopytov/sysbench

22. C. Delimitrou and C. Kozyrakis. Paragon: Qos-aware scheduling for heterogeneous datacenters. In

Proceedings of the eighteenth international conference on Architectural support for programming lan-

guages and operating systems(ASPLOS), 2013.

23. http://collectl.sourceforge.net

24. Hopcroft JE. Data structures and algorithms. Addison-Wesley Boston, MA, USA. 1983.

25. Davis PJ. Interpolation and approximation. Courier Corporation. 1975.

26. Lorentz RA. Multivariate Birkhoff Interpolation.1992.

27. Di S, Kondo D, Cappello F. Characterizing cloud applications on a Google data center. Parallel Process-

ing (ICPP), 2013 42nd International Conference on; 2013: IEEE.

28. Di S, Kondo D, Cirne W. Characterization and comparison of cloud versus grid workloads. 2012 IEEE

International Conference on Cluster Computing; 2012: IEEE.

29. Loh W-L. On Latin hypercube sampling. The annals of statistics. 1996; 24(5):2058–80. https://doi.org/

10.1214/aos/1069362310

30. https://software.intel.com/en-us/intel-vtune-amplifier-xe

31. http://oprofile.sourceforge.net/news/

32. https://sourceware.org/binutils/docs/gprof/

33. http://linux.die.net/man/1/iostat

34. http://linuxcommand.org/man_pages/vmstat8.html

35. Ferdman M., Adileh A., Kocberber O., Volos S., Alisafaee M., Jevdjic D., et al.. Clearing the clouds: a

study of emerging scale-out workloads on modern hardware. The 17th Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), 2012.

36. Jia Z, Wang L, Zhan J, Zhang L, Luo C. Characterizing data analysis workloads in data centers. Work-

load Characterization (IISWC), 2013 IEEE International Symposium on; 2013: IEEE.

37. Yasin A, Ben-Asher Y, Mendelson A. Deep-dive analysis of the data analytics workload in cloudsuite.

Workload Characterization (IISWC), 2014 IEEE International Symposium on; 2014: IEEE.

38. Jia Z, Zhan J, Wang L, Han R, McKee SA, Yang Q, et al. Characterizing and subsetting big data work-

loads. Workload Characterization (IISWC), 2014 IEEE International Symposium on; 2014: IEEE.

39. Seo B, Kang S, Choi J, Cha J, Won Y, Yoon S. IO workload characterization revisited: A data-mining

approach. Computers, IEEE Transactions on. 2014; 63(12):3026–38. https://doi.org/10.1109/TC.2013.

187

40. C. Delimitrou, C. Kozyrakis. Quasar: resource-efficient and QoS-aware cluster management. In Pro-

ceedings of the nineteenth international conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS), 2014.

41. Lo D, Cheng L, Govindaraju R, Ranganathan P, Kozyrakis C. Heracles: improving resource efficiency

at scale. ACM SIGARCH Computer Architecture News; 2015: ACM.

42. Mars J, Tang L, Hundt R, Skadron K, Soffa ML. Bubble-up: Increasing utilization in modern warehouse

scale computers via sensible co-locations. Proceedings of the 44th annual IEEE/ACM International

Symposium on Microarchitecture; 2011: ACM.

Speeding up profiling program’s runtime characteristics for workload consolidation

PLOS ONE | https://doi.org/10.1371/journal.pone.0175861 April 27, 2017 21 / 21

https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
http://www.nas.nasa.gov/publications/npb.html
http://www.spec.org/cpu2006/
http://parsec.cs.princeton.edu/parsec3-doc.htm
http://parsa.epfl.ch/cloudsuite/cloudsuite.html
https://github.com/akopytov/sysbench
http://collectl.sourceforge.net
https://doi.org/10.1214/aos/1069362310
https://doi.org/10.1214/aos/1069362310
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://oprofile.sourceforge.net/news/
https://sourceware.org/binutils/docs/gprof/
http://linux.die.net/man/1/iostat
http://linuxcommand.org/man_pages/vmstat8.html
https://doi.org/10.1109/TC.2013.187
https://doi.org/10.1109/TC.2013.187
https://doi.org/10.1371/journal.pone.0175861

