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Background Tuberculosis (TB) is difficult to diagnose under complex clinical conditions as electronic health re-
cords (EHRs) are often inadequate inmaking an affirmative diagnosis. As exosomal miRNAs emerged as promis-
ing biomarkers, we investigated the potential of using exosomal miRNAs and EHRs in TB diagnosis.
Methods: A total of 370 individuals, including pulmonary tuberculosis (PTB), tuberculousmeningitis (TBM), non-
TB disease controls and healthy state controls, were enrolled. ExosomalmiRNAswere profiled in the exploratory
cohort using microarray and miRNA candidates were selected in the selection cohort using qRT-PCR. EHRs and
follow-up information of the patients were collected accordingly. miRNAs and EHRs were used to develop diag-
nostic models for PTB and TBM in the selection cohort with the Support Vector Machine (SVM) algorithm. These
models were further evaluated in an independent testing cohort.
Findings: Six exosomal miRNAs (miR-20a, miR-20b, miR-26a, miR-106a, miR-191, miR-486) were differentially
expressed in the TB patients. Three SVMmodels, "EHR+miRNA", "miRNA only" and "EHR only" were compared,
and "EHR+miRNA"model achieved the highest diagnostic efficacy,with anAUCup to 0.97 (95%CI 0.80–0.99) in
TBM and 0.97 (0.87–0.99) in PTB, respectively. However, "EHR only" model only showed an AUC of 0.67
(0.46–0.83) in TBM. After 2-month anti-tuberculosis therapy, overexpressed miRNAs presented a decreased ex-
pression trend (p= 4.80 × 10−5).
Interpretation: Our results showed that the combination of exosomal miRNAs and EHRs could potentially im-
prove clinical diagnosis of TBM and PTB.
Fund: Funds for the Central Universities, the National Natural Science Foundation of China.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Tuberculosis (TB) has exceeded HIV/AIDS to become the deadliest
single infectious disease [1], mainly due to the difficulties in achieving
an early and definitive diagnosis and subsequent timely treatment of
TB patients. Among active TB cases, pulmonary tuberculosis (PTB) ac-
counts for 80% of all forms of TB, while tuberculosis meningitis (TBM)
represents 1.6% of all TB cases. However, TBM is the most severe form
of TB and accounts for up to 50% of TB-associatedmortality [2]. Accurate
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early diagnosis of TB disease remains challenging because the symp-
toms and radiological features of TB overlap with those of many other
diseases. Currently available diagnostic methods for TB have inherent
limitations, such as long incubation times (weeks using culture-based
methods), high financial cost, inaccessibility in resource-poor settings
(e.g., use of GeneXpert), and low sensitivity (only 10%–20% when
using microscopy for paucibacillary TB) [1–3], and thus often do not
meet clinical requirements [4]. These situations highlight the pressing
need for new biomarkers or clinical approaches to improve TB diagno-
sis, especially for the most frequent form, PTB, and the most lethal
form, TBM.

In 2014, WHO (World Health Organization) announced that non-
sputum based diagnostic biomarkers for TB should be given a high pri-
ority [5]; subsequently a number of TB biomarkers had been reported by
using blood transcriptomic analyses [6]. These published TB signatures
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in Context

Evidence before this study

We systematically searched PubMed and Google, without date re-
strictions or limitations to English language publications, using the
terms "exosomal micorRNA or exosomal RNA" and "tuberculosis
or pulmonary tuberculosis or tuberculous meningitis". This search
identified five relevant studies, two ofwhich reported the differen-
tial exosomal miRNA profiles isolated from MTB-infected macro-
phages; and three of which were clinical studies that indicated
the role of exosomalmiRNAs in the differentiation between TB pa-
tients and healthy state controls or asthma patients. However,
current exosome miRNA research does not reflect the complex
clinical conditions that are highly similar to TB disease but are dif-
ficult to differentiate. Furthermore, no studies have evaluated the
diagnostic value of exosomal miRNAs in the tuberculous meningi-
tis diagnosis.

Added value of this study

We performed a prospective multi-stage study to assess the per-
formance of exosomal miRNAs and EHR data in the TBM and
PTB diagnoses. The results indicated that exosomal miRNAs had
the potential as diagnostic biomarkers for TBM and PTB disease.
To the best of our knowledge, our report is the first to assess the
diagnostic value of exosomal miRNAs in TBM. Notably, we re-
ported an innovative machine learning framework combining
exosomal miRNAswith patient's EHR data,with a superior perfor-
mance in differentiating TBM and PTB patients from those highly
suspected cases. The strengths of our study include its prospec-
tive andmultiple phase design, disease control and healthy control
setting, and the use of machine learning modeling.

Implications of all of the available evidence

Our findings, together with existing evidence, show that
exosomal miRNAs are potential biomarkers to promote the TB di-
agnosis, especially for TBM disease. The combination of miRNAs
and EHR data through machine learning algorithm could serve
as a feasible approach for improving the clinical diagnoses of the
TBM and PTB diseases. However, further validation is needed.
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often consist of dozens or hundreds of gene loci, such as the 393-
transcript signature reported by Berry and colleagues [7]. These signa-
tures have reasonable performances but are often expensive, technically
demanding and difficult to deploy in the clinic [6]. Aminimal set of gene
lociwith high diagnostic accuracy is urgently needed in thefield [6], and
several alternative approaches have been explored recently [8,9].
Sweeney and colleagues described a three-gene set (GBP5, DUSP3, and
KLF2) that effectively discriminated active TB from other diseases with
an area under the curve (AUC) of 0.83 [8]; however, their cohorts orig-
inated from public GEO datasets, and qPCR validation was not per-
formed. Maertzdorf and colleagues demonstrated the diagnostic
potential of a 4-gene set (GBP1, ID3, P2RY14, and IFITM3) for TB disease
[9]; this 4-gene signature had variable performances in different
datasets (AUC ranged of 0.58–0.94), and its performance for
extrapulmonary TB remains unclear.

Recently, exosomes have emerged as a powerful tool for biomarker
exploration in a number of diseases [10–14]. Exosomes are
microvesicles released from living cells into the circulation, typically
with a diameter of 30–100 nm and containing RNA and protein mole-
cules. Exosomes are thought to participate in cell-to-cell communica-
tion and immune modulation by transporting and delivering their
cargo molecules to target cells. Among different exosomal cargo mole-
cules, microRNAs (miRNAs) are considered the most promising candi-
date biomarkers due to their high abundance, inherent stability, ease
of sampling, and importance as global cellular regulators [11]. Indeed,
the diagnostic potential of exosomal miRNAs has been the target of an
extensive number of studies, especially in relation to cancer [10,12].
Exosomal miRNAs can pass through the blood-brain barrier [13] and
traffic to the lung [11]; thus, they can be released from the site of infec-
tion into the circulation and serve as sentinels of focus pathophysiology
and potential biomarkers. Until now, only a small number of TB studies
focusing on exosomalmiRNAs had been conducted. Singh et al. [15] and
Alipoor et al. [16] reported differential profiles of exosomal miRNAs iso-
lated from Mycobacterium tuberculosis (MTB)-infected macrophages,
which showed that exosomalmiRNAs had immunoregulatory and diag-
nostic potential during MTB infection. Two other studies also revealed
that exosomal miRNAs could be candidates to discriminate TB patients
from healthy state (HS, for short, including healthy controls and latent
tuberculosis infection [LTBI] patients) controls [17] or asthma patients
[18]. However, to the best of our knowledge, no published studies
have exploredwhether exosomalmiRNAs could be useful to distinguish
TB from other diseases that had similar symptoms, which is more rele-
vant and challenging than distinguishing TB from HS controls [19]. Fur-
thermore, no published studies have explored the diagnostic value of
exosomalmiRNAs in TBM, themost severe form of TB. Thus, amore sys-
tematic and comprehensive study of exosomal miRNAs with regard to
their potential as noninvasive TB biomarkers is still urgently needed.

In addition to exploring molecular and cellular biomarkers, re-
searchers have also investigated various analytical models that can di-
agnose TBM based on electronic health records (EHRs) [2]. One
example of such a model is the Thwaites' Vietnam model, which
established a five-feature scoring scheme with reported 86% sensitivity
and 79% specificity for TBM [2]. Despite these promising results, earlier
models often showed inconsistent performance and were difficult to
implement in different populations and settings. For example, the spec-
ificity of the Vietnammodel reportedly dropped to 43% in a Malawi co-
hort [2] and only 5% in a Chinese cohort [20]. It is increasingly
appreciated that, additional clinical data or approaches may be needed
to improve the performance of current TB diagnostic methods.

The work described in this article consists of four sequential steps
(Fig. 1). In the Exploratory Step, we identified 11 exosomal miRNAs
that were significantly differentially expressed between TB cases (in-
cluding both PTB and TBM) andHS controls, by using amicroarray plat-
form. In the Selection Step, by comparing PTB/TBMwith their respective
controls and using the qRT-PCRmethod, we further winnowed down to
6 miRNAs. In the Training Step, we trained machine learning Support
Vector Machine (SVM) models combining exosomal miRNAs with
EHR data by cross-validation to differentiate PTB/TBM patients from
their disease controls or HS controls. Finally, in the Testing Step, we
evaluated the performance of the models on new PTB/TBM cohort.
The combined "EHR+miRNA" model performed better than using
EHRdata andmiRNA data alone, which achieved a diagnostic sensitivity
of 0.94 (95% CI 0.84–1.00) and specificity of 0.95 (0.86–1.00) for TBM,
and 0.89 (0.84–1.00) for both sensitivity and specificity for PTB, respec-
tively. In addition, to the best of our knowledge, this study represents
the first time that exosomal miRNAs have been shown to be effective
biomarkers for TBM disease.

2. Materials and methods

Fig. 1 shows the flow chart of the study.

2.1. Study participants

The exploratory cohort included 11 active TB patients (7 PTB and 4
TBM) and 8 controls. They were 10 males and 9 females from ages 25
to 58 years, with no significant age and gender difference between TB
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Fig. 1. Overview of the strategy for investigating exosomal miRNAs and diagnostic models for TBM and PTB A total of 407 individuals were recruited, and 370 individuals were finally
included. PTB: pulmonary tuberculosis; TBM: tuberculosis meningitis; HS: healthy state; DE exosomal miRNAs: differentially expressed exosomal miRNAs; PTB-DC: non-PTB disease
control; TBM-DC: non-TBM disease control; Cq: cycle of quantification; EHR: electronic health record; PCA: principal component analysis; SVM: support vector machine.
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and control groups. The 11 TB patients were confirmed byMTB-culture,
and HIV-negative, and without other infectious diseases. The 8 controls
were household contacts, who were regarded as healthy after taking a
physical examination and had no history of TB. We prospectively inter-
rogated a selection cohort of 272 individuals and another independent
testing cohort of 116 individuals, and finally enrolled 246 and 105 par-
ticipants, respectively. The two cohorts were as follows: [1] The selec-
tion cohort consisted of 103 suspected PTB cases, 52 suspected TBM
cases and 91 HS controls; [2] The testing cohort included 44 cases
suspected of having PTB, 22 cases suspected of having TBM and 39 HS
controls.

Inpatients who underwent investigation for persistent highly
suspected PTB or TBM symptoms were recruited at the Department of
Tubercular Medicine, West China Hospital, between March 2016 and
January 2017. Demographic, clinical, and radiological data of patients
were obtained within 48 h of admission.MTB tests and other laboratory
examinations were conducted by the College of American Pathologists
(CAP)-certified central lab of West China Hospital. Details of inclusion
and exclusion of participants, the rationale for excluding subjects, and
patients' examination are in the Supplemental Material (Section 1).

For each patient, the final diagnosis was determined by a panel of
two experienced specialists according to the patient's discharge diagno-
sis and follow-up confirmation [21,22]. Highly suspected PTB cases
were further categorized as the PTB group and non-PTB disease control
(PTB-DC, for short) group. Highly suspected TBM cases were catego-
rized as the TBM group and non-TBM disease control (TBM-DC, for
short) group. TB cases were treated with a standard anti-TB regimen
and adjunctive therapy such as prednisone, and sudden situations and
urgent symptoms were treated according to the clinical protocol and
guideline [23], see Supplemental Material (Section 2). Patients were
evaluated every week initially for the first four weeks, and monthly
thereafter through outpatient follow-up or telephone interview; the
whole follow-up period lasted 12 months. HS individuals were re-
cruited from relatives or close contacts with no history of TB and a nor-
mal physical examination. Detailed diagnostic criteria for participants
are in the Supplemental Material (Section 2). The study was approved
by the Clinical Trials and Biomedical Ethics Committee of West China
Hospital, Sichuan University [No. 2014 (198)]. Informed consent was
obtained from the participants.

2.2. Exosome isolation and identification

A 5-ml EDTA-treated blood sample was collected from each partici-
pant and centrifuged for plasma isolationwithin 2h. Exosomeswere ex-
tracted from plasma using the ExoQuick Kit (System Biosciences, USA)
[12,24] and thromboplastin D (Thermo Fisher Scientific, USA) according
to manufacturer's instruction (the process is described in Supplemental
Fig. 1A). The exosome precipitation was re-suspended before Qiazol
buffer was added in for the preparation of RNA extraction. To determine
whether the extracted exosome was affected by extra-vesicular RNAs,
we treated purified exosome with RNase A and the detergent Triton
X-100 at 37 °C for 10 min before RNA extraction as described earlier
[25,26]. qRT-PCR analysis of miRNA expression remained unchanged
when treated with RNase A alone but decreased when simultaneously
treated with RNase A and Triton X-100 (Supplemental Fig. 2), which in-
dicated that the majority of our signal was derived from exosomal
miRNAs rather than extra-vesicular miRNA.

The isolated exosomes were verified by Nanoparticle Tracking Anal-
ysis (NTA), TransmissionElectronMicroscopy (TEM), andWestern blot-
ting. Particle size and concentration were measured by NTA with a
NanoSightNS300 instrument (Malvern Instruments, UK). Themorphol-
ogy of isolated exosomeswas examined by TEM (FEI Tecnai™ G2 Spirit,
Czech Republic) with a voltage of 80 kV. The extracellular vesicle pro-
tein markers CD63, CD81 and HSP70 were adequately detected in
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Western blotting, probed with corresponding antibodies (System Bio-
science, USA). GAPDH (Santa Cruz Biotechnology, USA) was used as an
internal control.

2.3. RNA isolation and cDNA preparation

Exosomal RNA was extracted by using the miRNeasy Serum/Plasma
Advanced Kit (Qiagen, Germany). Cel-miR-39 was added as a "spike-in"
normalization control for qRT-PCR quantification, as described in previ-
ous studies [27,28]. RNA concentration and purity were measured by
using a NanoDrop ND-1000 (Thermo Fisher Scientific, USA). Qualified
RNA samples had a 260/280-nm absorbance ratio N1.8 and a 260/230-
nm absorbance ratio N2.0. Only RNA samples of high quality were
used for subsequent experiments. We then used the miScript II RT Kit
(Qiagen, Germany) to prepare cDNA according to the standard reverse
transcriptional (RT) reaction protocol. Because the absolute number of
exosomes and the exosomal RNA content in plasma samples derived
from different individuals are difficult to quantify, it is inappropriate
to normalize themeasuredmiRNA expression level bymatching against
the amount of input RNA. We therefore used a fixed volume of plasma
sample and RNA eluate rather than a fixed mass of RNA, as input into
the RT reaction, and used cel-mir-39 to normalize potential sample-
to-sample variations and technical variations as described earlier [28].

2.4. miRNA profiling

Total RNAwas extracted and purified, and targets from blinded RNA
samples were prepared and hybridized with an Affymetrix Genechip
miRNA 4.0 Array (Affymetrix, USA), measuring 2578miRNAs according
to the GeneChip Expression Analysis Technical Manual. Quality control
of the gene expression data was performed using gene-specific probes.
Microarray quality assurancewas carried out by detecting outlier arrays
based on standard post-hybridization quality metrics such as the nor-
malized unscaled standard error (NUSE) plot, the relative log expres-
sion (RLE) plot, and the mean signal comparison of perfect match
probe and background probe, E. coli spike-in quality control, and raw
microarray images (Supplemental Fig. 3). Raw data was normalized
using robust multi-array average (RMA) algorithm and analyzed using
a random variance model (RVM) t-test in R packages. Differentially
expressed (DE) exosomal miRNAs with statistical significance were se-
lected based on the following criteria: an absolute expression fold
change N1.5 and a false discovery rate (FDR) value b0.05. DE exosomal
miRNAs were visualized using hierarchical clustering and principal
component analysis (PCA). The microarray profile data were submitted
to NCBI Gene Expression Omnibus (GSE116542, https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE116542).

2.5. miRNA qRT-PCR quantification

Exosomal miRNA expression was measured using the miScript
SYBR® Green PCR Kit and miRNA-specific primers (Qiagen, Germany).
Each 10 μl reaction mixture included 2 μl of RNase-free water, 0.5 μl of
miRNA-specific primer, 0.5 μl of 10 X Miscript Universal Primer, 5.0 μl
of 2 X QuantiTect SYBR Green PCR Master Mix, and 2 μl of template
cDNA. The reactions were performed with the following cycling param-
eters: 95 °C for 10min as an initial step followed by 40 cycles of 94 °C for
15 s, 55 °C for 30 s and 10 °C for 30 s. After amplification, a high-
resolution melting curve was generated (gradually increasing the
temperature from 65 °C to 95 °C at a rate of 0.1 °C/s and acquiring fluo-
rescence data every 0.3 °C) to analyze the purity of the amplification
products. qPCR amplification was carried out in the LightCycler® 480
Real-Time PCR System (Roche Diagnostics, Switzerland). All miRNAs
were measured in a blinded fashion. The obtained data were analyzed
using Gene Scanning software v1.2 (Roche Diagnostics). Double dis-
tilled water (PCR grade) was used as a no-cDNA template control in
each qPCR run, and in addition, reverse transcription negative controls
and the use of DNA as a qPCR template were tested to ensure the accu-
racy of the q RT-PCR process. All of the above negative controls showed
no detectable cycle of quantification (Cq) values, indicating the lack of
any contamination or nonspecific signal. Each sample was run in tripli-
cate, and a CV b 15% cutoff was established to validate the technical rep-
licates. The average Cqwas calculated, and 10 b Cq b 33 was considered
acceptable based on our prior qRT-PCR experience. The relative expres-
sion of eachmiRNAwas calculated using the 2-ΔΔ Cqmethod [29],where
△Cq= CqmiRNA – CqmiR-39,△△Cq=△Cq – average△Cq (healthy
states).

2.6. EHR and miRNA data used for modeling

EHR data, including the patients' demographic, clinical, laboratory,
and radiological findings, were collected separately by two authors
(LijuanWu and MinjinWang), who were blinded to the diagnostic cat-
egorization. DE exosomal miRNAs were determined and selected
through the Exploratory Step and Selection Step (Fig. 1, Discovery
Phase), and the expressions of DE exosomalmiRNAs amongparticipants
in the selection cohort were used for modeling. The initial EHR and
miRNA features before modeling are listed in Supplemental Material
(Section 3).

2.7. Data Pre-processing

We applied a 20% missing value and 2% difference between groups
as thresholds to remove incomplete and uninformative EHR and
miRNA features. A total of 41 out of 62 features in TBM patients vs
TBM-DC patients, 34 out of 50 features in PTB patients vs PTB-DC pa-
tients, and all 18 features in TBM or PTB patients vs HS controls
remained after this filtering step, including the log conversion of
miRNA expression, listed in Supplemental Material (Section 3). All var-
iables in both the selection and testing cohorts were normalized to a
mean of 0 and variance of 1. We tested the distribution of each feature
for verification purposes. We found that most features were normally
distributed, and themean andvariancewere largely consistent between
datasets.

2.8. Diagnostic modeling and further evaluation

In the Training Step, the linear kernel SVM algorithm was used
which was implemented using Python Scikit-learn script. SVM is con-
sidered a well-suited machine learning method for classification with
limited number of samples, high dimensional pattern recognition and
reasonable interpretability and has been applied inmultiple clinical sce-
narios [30,31]. We trained SVM model using exosomal miRNAs, EHR
data and their combination in the selection cohort for four tasks: PTB
versus PTB-DC, TBM versus TBM-DC, PTB versus HS and TBM versus HS.
We adjusted the parameter Penalty C of the error term for regulariza-
tion, which aimed to trade off themisclassification of training examples
against simplicity of the decision surface and reduce the redundancy be-
tween features. SVM hyper-parameter were tuned using k-fold (k= 3)
cross-validation. The hyper-parameter was selected based on its perfor-
mance in the internal validation sets, especially through AUC. A final
model was constructed through training on the whole selection cohort
with the best hyper-parameter. Considering our limited sample size and
relatively larger number of features during modeling, we further chose
the top 5, top 10, and top 15 features in the "EHR+miRNA"model to es-
tablish the diagnostic model, with the purpose of avoiding overfitting;
the top 10 features were selected due to their higher performances in
the re-established "EHR+miRNA" model. Feature coefficients in the
trainedmodelswere calculated to represent the contribution of individ-
ual feature to the diagnostic model. As the raw data were normalized,
feature with a higher absolute coefficient value was considered more
important. Unsupervised PCA with the top 10 features was used to as-
certain and visualize the classification capacity of the optimal model.

ncbi-geo:GSE116542
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116542
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116542
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In Testing Step, the final model from the Training Step was further
evaluated in the independent testing cohort. Diagnostic classifications
for patients using SVM algorithm were made by an author (Shun Liao),
who was blinded to the diagnoses made by the clinicians. Code and nor-
malized data are available from: https://github.com/shun1024/tb-
exosomal-mirna.

2.9. Bioinformatics analysis

We predicted in silico the target genes of the DE exosomal miRNAs
by intersecting the predicted targets of the TargetScan andmiRanda da-
tabases [32]. The predicted target genes were annotated with gene on-
tology (GO) terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways using the DAVID software. GOs and enriched path-
ways with FDR of b0.05 were significant. Networks of DE exosomal
miRNAs and related GO terms or pathways were constructed using
Cytoscape software.

2.10. Statistics

Categorical variableswith a Chi-square test and continuous variables
with the Mann-Whitney U test or t-test were used for two-group com-
parison. One-way Analysis of variance (ANOVA) or Kruskal-Wallis test
was used for comparing multiple groups. A Friedman test was used as
the non-parametric alternative to the one-way ANOVA with repeated
measures. The correlation between exosomal miRNAs and EHR features
were performed by Spearman rank correlation. FDR was used for
p-value adjustment. All statistical tests were 2-sided, and p b .05 was
considered significant. SPSS v20.0 and GraphPad Prism v6.0 were used
to analyze and graph the results.

3. Results

3.1. Characteristics of the prospective enrolled subjects

We prospectively enrolled a final number of 351 individuals (Fig. 1);
246 were included in the selection cohort (62 PTB, 41 PTB-DC, 32 TBM,
20 TBM-DC, and 91 HS) and 105 in the testing cohort (28 PTB, 16 PTB-
Table 1
Demographic and clinical features of participants in the prospective selection and testing coho

Clinical features Suspected PTB patients Suspe

PTB
(n = 90, 62 + 28)

PTB-DCs
(n = 57, 32 + 16)

p TBM
(n =

Gender, male 57 (63.3%) 36 (63.3%) 0.983 23 (4
Age (years) 42.3 ± 18.6 62.8 ± 16.8 b0.0001 34.4 ±
BMI (kg/m2) 20.1 ± 3.2 22.4 ± 3.3 b0.0001 21.3 ±
Smoking 32 (35.6%) 22 (38.6%) 0.709 14 (2
Radiologic pathology
detected

64 (71.1%) 37 (64.9%) 0.430 38/43

MTB tests, positive/detected
Bacteriologic test 59 (65.56%) – – 8 (17
MTB-DNA 32/71 (45.1%) – – 7 (14
Smear 30 (33.3%) – – 4 (8.5
Culture 23/45 (51.1%) – – 7 (14

Other related laboratory
tests
Positive TB-IGRA 41/59 (69.5%) 20/30 (66.7%) 0.786 25/47
C-reactive protein (mg/L) 15.3 (4.1–36.9) 43.7 (18.1–103.8) 0.072 5.7 (2
ESR (mm/h) 44.0 (23.0–65.0) 43.5 (19.0–64.8) 0.598 18.0 (
Hematocrit 0.4 ± 0.1 0.3 ± 0.1 0.008 0.3 ±
Platelets (×109/L) 244.0

(182.0–354.0)
259.5
(147.8–306.8)

0.008 190.0
(141.

Leucocytes (×109/L) 5.6 (4.4–7.4) 7.1 (4.5–10.4) 0.069 5.9 (3

The selection and testing cohorts are combined together. PTB: pulmonary tuberculosis; TBM: tub
trols; HS: healthy states; ESR: erythrocyte sedimentation rate. Among 47 TBMpatients, 22 had
tuberculosis interferon gamma release assay. p1: p-value for the comparison of suspected PTB p
HS controls.
DC, 15 TBM, 7 TBM-DC, and 39HS). Table 1 shows the participants' base-
line characteristics; the selection cohort and testing cohort were com-
bined together since they were statistically indistinguishable. A total of
58.1% of the participants were male (204/351). The PTB-DC patients
had older ages and higher BMIs than the PTB cases (both p b .0001), sim-
ilar to reported in a previous study [33]. Bacteriologic tests forMTB (TB-
DNA, smear, and/or culture) indicated a remarkably lower sensitivity for
TBMpatients (17.02%) than PTB patients (65.56%),mainly due to the low
bacillary load in TBM samples and limited sample volume [2]. Other sta-
tistical differences between TB patients and disease control cohorts in-
cluded higher hematocrit values and lower platelet counts in PTB
patients and increased abnormal radiologic detection in TBM than in dis-
ease controls. We noticed that the disease control groups had a similar
high level of C-reactive protein and a high percentage of positive TB-
IGRA result as PTB or TBM patients, which possibly due to a high rate
of active pulmonary infectious diseases and a high LTBI rate respectively
in our disease control participants [34]. In addition, there were signifi-
cantly different baseline indicators such as age, BMI, smoking, hemato-
crit, platelet counts, and leucocytes between HS controls and suspected
patients. Details regarding the PTB-DC and TBM-DC patients are summa-
rized in Supplemental Table 1.

3.2. Exosome isolation

NTA analysis showed that vesicles isolated from plasma had a diam-
eter size range of ~96.8 ± 1.6 nm (Supplemental Fig. 1B), consistent
with the known size of exosomes. The number of exosomes per 500 μl
of plasma was approximately 1.2 × 109. Round, cup-shaped
nanovesicles ranging from 90 to 100 nm in diameter were visualized
by TEM (Supplemental Fig. 1C). These vesicles were further confirmed
to be exosomes based on the expression of the protein markers CD63,
CD81 and HSP70 through Western blotting (Supplemental Fig. 1D).

3.3. Distinct exosomal miRNA profiles in TB

In the Exploratory Step, exosomal miRNA profiling yielded a total of
102 DE exosomal miRNAs (98 with upregulated expression and 4 with
downregulated expression) between the TB patients and HS controls.
rts.

cted TBM patients HS controls

(n= 130, 91 + 39)

p1 p2

47, 32 + 15)
TBM-DCs
(n = 27, 20 + 7)

p

8.9%) 16 (59.3%) 0.392 72 (55.4%)
16.7 33.6 ± 16.3 0.843 36.9 ± 10.5 b0.0001 0.191
3.1 21.8 ± 2.9 0.463 20.5 ± 3.8 0.125 0.013

9.8%) 8 (29.6%) 0.989 32 (24.6%) 0.030 0.426
(88.4%) 10/20 (50.0%) 0.003 – – –

.02%) – – – – –

.9%) – – – – –
%) – – – – –
.9%) – – – – –

– –

(53.2%) 8/12 (66.7%) 0.401 – – –
.7–16.8) 8.3 (1.7–18.3) 0.851 – – –
8.0–45.0) 35.0 (18.0–48.0) 0.741 – – –
0.1 0.4 ± 0.1 0.110 0.4 ± 0.03 b0.0001 b0.0001

0–275.0)
177.0
(154.0–283.0)

0.736 193.0
(164.8–220.8)

b0.0001 0.601

.7–8.7) 6.5 (5.4–11.0) 0.343 5.4 (4.6–6.4) 0.027 b0.0001

erculousmeningitis; PTB-DCs: non-PTB disease controls; TBM-DCs: non-TBMdisease con-
accompaniedwith PTB. Bacteriologic test includedMTB-DNA, smear, and culture. TB-IGRA:
atients versusHS controls. p2: p-value for the comparison of suspected TBMpatients versus
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Clear discrimination between TB cases and controls was observed in the
hierarchical clustering and PCA results (Supplemental Fig. 4).

The top 10 out of the 102 DE exosomal miRNAs that met the criteria
for fold change and statistical significance were selected, which in-
cluded 6 upregulated miRNAs (miR-191, 20b, 26a, 106a, let-7c, and
20a) and 4 downregulated miRNAs (miR-3128, 1468, 3201, and
8084). We also included another DE miRNA, miR-486, together with
these top 10 miRNAs. Although not in the top 10 (ranked as no. 22),
miR-486 still had a high fold change and an FDR-value of 0.003. Further-
more, miR-486 is known to have elevated expression from earlier blood
cell studies (GSE29190, GSE39163, and GSE34608) [35–37] and an
exosome study as well [15]. Details regarding the 11 candidate miRNAs
are provided in Fig. 2.

3.4. Identification of 6 differentially expressed miRNAs

In the Selection Step, we quantified the expression of these 11
exosomal miRNAs by using qRT-PCR in the prospective selection cohort
(62 PTB cases, 41 PTB-DC, 32 TBM cases, 20 TBM-DC, and 91 HS). Group
comparison was conducted for PTB/TBM (i.e., PTB vs PTB-DC, PTB vsHS,
TBM vs TBM-DC, and TBM vs HS). The DE exosomal miRNAs were fur-
ther selected based on the following criteria: median fold change N1.5
in any group comparison, age-adjusted p b .05, and 10 b Cq b 33. Five
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Fig. 2. Eleven candidate differentially expressed miRNAs were selected from the exploratory c
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miRNAs with very low or undetectable expression (Cq ≥ 33) or fold
change b1.5 were excluded from the subsequent study. The six remain-
ing miRNAs (miR-20a, 20b, 26a, 106a, 191, and 486) were upregulated
in PTB or TBM patients than in their disease controls or HS counterparts
(Supplemental Fig. 5). The increased expression of these miRNAs was
also reported in previous studies [15,19].

We next tested these 6 miRNAs in a prospective testing cohort,
consisted of 28PTB cases, 16 PTB-DC, 15 TBM, 7 TBM-DC, and 39HS con-
trols. When compared between PTB vs PTB-DC, PTB vs HS, and TBM vs
HS, all of these 6 miRNAs showed consistent upregulation in diseases
cases than in control cases, except for a nonsignificant change of miR-
486 in PTB vs HS. When compared TBM with TBM-DC, 3 miRNAs
(miR-20b, 191, and 486) remained a higher expression in TBM cases
(Supplemental Fig. 6).

3.5. Stability of exosomal miRNAs in plasma

Reasoning that an ideal miRNA biomarker should remain stable in
plasma, we evaluated the freeze-thaw stability and short-term
(bench-top) stability of samples, which were commonly encountered
in clinical practice [38]. We randomly selected plasma samples from 6
healthy individuals, and their plasma samples were subjected to differ-
ent conditions such as prolonged incubation at 4 °C (0 h, 1 h, 2 h, 6 h,
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Fig. 3. The alteration of exosomal miRNAs before and after 2-month intensive anti-TB
therapy The altered miRNA expression of 6 DE exosomal miRNAs was calculated using
log2 miRNA (post-treatment expression / pre-treatment expression ratio). The fold-
change threshold was set at 2. A total of 90 points were detected in 15 TB patients,
among which the expression of 55 points significantly declined (red lines), 29 points did
not obviously change (not shown in the figure for the sake of brevity), and only 6 points
increased (black lines). The Wilcoxon matched-paired rank test was used for
comparisons between paired samples (p = 4.80 × 10−5).
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12 h, and 24 h, respectively) and repeated freeze-thaw cycles (0, 1, 2,
and 4 times, respectively), as described in Supplemental Material (-
Section 6). Time point and freeze-thaw cycle were chosen according
to the prevailing storage and analysis conditions in many clinical labs
in China. We concluded that such treatment had minimal effect on the
levels of exosomal miRNAs (miR-20a, 20b, 26a, 106a, 191, and 486) as
measured by the qRT-PCR method (Supplemental Table 2–3, Friedman
test, p-values all N0.05), which was consistent with previous literature
[28,39].

3.6. Correlation between DE exosomal miRNAs and clinical features

We next evaluated whether the PTB or TBM patients' clinical fea-
tures ascertained upon admission were correlated with exosomal
miRNA abundance. No significant correlations were observed between
miRNA expression and age, gender, BMI, laboratory data, and radiolog-
ical data using Spearman's rank correlation (p-values all N0.05, data not
shown, available upon request).

3.7. Response to anti-TB treatment

We randomly selected 15 TB patients with typical and similar symp-
toms from the selection cohort and the testing cohort, and analyzed
their paired plasma samples before and after 2 months of intensive
anti-tuberculosis (anti-TB) therapy [23]. Good response to therapy
was defined as significant clinical and radiological relief as determined
independently by two experienced physicians. All the patients had a
good response to therapy except for 4 patients, who suffered from
drug-resistance or adverse drug reaction (see Supplemental Material.
Section 7). Using a 2-fold change as the cutoff, among a total of 90 points
(15 patients × 6 miRNAs), the expression levels of the 6 DE exosomal
miRNAs significantly declined in 55 points, statistically unchanged in
29 points, and increased in only 6 points (p = 4.80 × 10−5, Fig. 3).
These results suggested that the majority of the dysregulated miRNA
expression in these patients was restored after intensive anti-TB ther-
apy, albeit we only profiled 6 miRNAs in a small number of patients. It
is worth noting that, among the 4 patients who did not have a good re-
sponse, miR-191 was increased (4.10 fold) in a patient with anti-TB
drug-induced leucopoenia, and miR-286 was increased (3.54 fold) in
another patient with multiple drug resistance TB (see Supplemental
Material. Section 7).

3.8. Diagnostic models and features analysis

In the training and Testing Step, We developed analytical models to
investigate the feasibility of using exosomal miRNAs and EHRs as bio-
markers for TB diagnosis. The details on SVM construction can be
found in Materials and Methods. Overall, the "EHR+miRNA" model
achieved the best AUC inmost cases (see Table 2), for both the selection
and the testing cohorts.

3.8.1. TBM discriminative model and feature analysis
Fig. 4A shows the performance of the three models in the Training

Step, as evaluated by 3-fold cross-validation in the training cohort
(seeMaterials andMethods). We observed that miRNAs remarkably in-
creased themodel performance in distinguishingbetween TBMpatients
and TBM-DC patients. The "EHR+miRNA" model and "miRNA only"
models both achieved a maximum AUC of 0.97 (95% CI 0.88–0.99) in
the training cohort regarding Penalty C inside SVM, while the “EHR
only” model only obtained a value of 0.60 (0.46–0.72) (Fig. 4A,
Table 2). Fig. 4B shows that these three models had consistent perfor-
mances in the Testing Step on another independent testing cohort.
The "EHR+miRNA" model had an AUC of 0.97 (95% CI 0.80–0.99); sen-
sitivity of 0.94 (95% CI 0.84–1.00) and specificity of 0.95 (95% CI
0.86–1.00). This was slightly better than that of the "miRNA only"
model, and significantly better than that of "EHR only" model (Fig. 4B
and Table 2). Fig. 4C indicates the top 10 features of the "EHR
+ miRNA" and the "EHR only" model on TBM, which had the highest
contribution to the model (see Materials and Methods). Four features
of the "EHR + miRNA" model were miRNAs (miR-486, 20b, 191, and
106a), and the remaining 6 were EHR data. The most important feature
was miR-486, followed by miR-20b and the CSF/blood glucose ratio.
Fig. 4D shows an unsupervised PCA of the 32 TBM cases and 20 TBM-
DC cases of the selection cohort, calculated based on the aforemen-
tioned 10 features in the "EHR + miRNA" model. The TBM cases and
TBM-DC cases were clearly separated.

3.8.2. Comparison with existing TBM diagnostic models
Weapplied published EHRdiagnostic scoring schemes [2] to analyze

the TBM testing cohort used in our study (Supplemental Table 4). The
Vietnammodel had an excellent sensitivity (0.98) but lower specificity
(0.11), which was similar to the values reported in the literature [2,20].
The Turkey and Morocco models achieved moderate performances
(sensitivity: 0.62 and 0.64; specificity: 0.74 and 0.70, respectively).
The Chinese model had a sensitivity of 0.32 and specificity of 1.00 [20].

3.8.3. PTB discriminatory model and feature analysis
Among the three different models, the "EHR+miRNA" model

showed superior performance in PTB suspected cases, with an AUC ≥
0.94 in both the selection and testing cohorts (Supplemental Fig. 7A–
B). The sensitivity and specificity of the ‘"EHR+miRNA"model both in-
creased to 0.89 (0.80–0.98), shown in Table 2. The features of the "EHR
+ miRNA" model involved 3 miRNAs (miR-20b, 486, and 191) and 7
EHR factors, which completely overlapped the those of the "EHR only"
model. The most important factor was TB-smear, followed by miR-20b
and hematocrit (Supplemental Fig. 7C). Clear delineation between PTB
and PTB-DCs in the PCA also demonstrated the feasibility of modeling
(Supplemental Fig. 7D).

3.8.4. Discriminating TB from healthy states
Both "EHR+miRNA" and "EHR only" models had satisfactory dis-

criminative performance in distinguishing PTB or TBM fromHS controls,
indicating that current EHR informationwas sufficient for identifying TB
patients from the general population. The performances and features of
models are shown in Table 2 and Supplemental Figs. 8–9.



Table 2
Performances of the comparative diagnostic models.

Models Cross-validation in the selection cohort Testing cohort

(EHR + miRNA /miRNA / EHR) AUC Sensitivity Specificity AUC Sensitivity Specificity

TBM vs TBM-DCs 0.97/0.97/0.60 0.94/0.97/1 1/0.95/0.43 0.97/0.95/0.67 0.94/0.93/0.71 0.95/0.97/1
PTB vs PTB-DCs 0.94/0.80/0.89 1/0.62/0.97 0.84/1/0.70 0.97/0.87/0.93 0.89/0.70/0.93 0.89/1/0.82
TBM vs HS 0.94/0.86/0.88 1/1/1 0.91/0.77/0.91 0.98/0.85/0.96 1/1/0.93 0.86/0.81/0.95
PTB vs HS 0.99/0.78/0.98 1/0.96/0.91 0.98/0.70/0.98 0.99/0.81/0.99 0.95/0.95/1 0.98/0.76/0.98

Notes: The labeling ‘(EHR + miRNA / miRNA / EHR)’ indicates the model with EHR and miRNA data, the model with miRNAs only, and the model with EHR only, respectively. The 95%
confidence intervals are presented in the Supplemental Material. Section 8.
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3.9. miRNA functional analysis

A total of 186 genes were predicted to be targeted by the 6 DE
miRNAs (Supplemental Fig. 10). A total of 109 "biological processes"
are targeted by targeted by these 6 miRNAs, which included includ-
ing apoptosis, immune response, transcription, and neurotrophin re-
ceptor signaling (Supplemental Fig. 10B). A total of 52 unique KEGG
pathway were targeted; the top 10 ranked pathways included path-
ways related to cancer occurrence, inflammatory response, and mi-
gration of immune cells (Supplemental Fig. 10C). We speculated
that these 6 DE miRNAs may be involved in immunoregulatory func-
tions in the context of TB, although this hypothesis needs further
confirmation.
BA

C

Fig. 4.Modeling result for TBM versus TBM-DC (A) AUC values in the selection cohort with tunin
misclassification of training examples against the simplicity of the decision surface and reduce
concatenated validation sets was finally used to establish themodels. In detail, themodel predic
withmodels builtwith the best hyper-parameter set and trained on thewhole selection cohort.
were normalized, features with higher absolute coefficient values were considered more im
prediction, respectively. (D) Unsupervised PCA visualization for TBM differentiation based on t
4. Discussion

The discovery of biomarkers and diagnostic algorithms holds great
value for TB diagnostics, in which an increasing clinical concern is how
to distinguish active TB patients from thosewith highly similar diseases.
In this study, we identified 6 DE exosomal miRNAs in TB patients, 3 out
of which showed a significant discriminatory value for TBM and PTB.
We also integrated miRNAs with EHR data into a more comprehensive
model and achieved a superior performance in the differential diagnosis
of TBM and PTB.

Small biosignatures with robust discriminatory capacities could
transform omics data for field use and greatly facilitate translation into
clinical tests, as has been highly recommended in recent TB studies
AUC 0.97 (0.80-1.00)

AUC 0.67 (0.46-0.83)

AUC 0.95 (0.78-0.99)

D

g parameter Penalty C. Penalty C is a regularization parameter, which aims to trade off the
the redundancy between features. The hyper-parameter set with a maximum AUC in the
tions in each validation set (3-fold) are concatenated. (B) AUC values in the testing cohort
(C) The top 10 important features of themodels and their corresponding ranks. As rawdata
portant. A coefficient N0 and b0 means a positive and a negative correlation with TBM
he top 10 features of the trained "EHR+miRNA" model.
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[8,9]. Blood-based biomarkers have the potential to rapidly identify de-
layed responsiveness or no responsiveness to anti-TB treatment [40].
We also found that DE exosomalmiRNA expression decreased as the pa-
tient attained remission following anti-TB therapy, in accordance with
reported evidence that changes in miRNA levels may be potential
markers of treatment response [41,42]. Following validation in larger
studies, qRT-PCR-based 3 DE exosomal miRNA signatures represent a
diagnostic approach that is simple to perform, cost-effective and could
complement clinical settings for disease [28], especially for TBM
diagnosis.

We also investigated the utility of EHRdata for TBMdiagnosis. Previ-
ous TBMmodels did not performwellwith our EHRdata,most likely be-
cause our dataset involved a wider range of conditions that was highly
similar to TBM and was more representative of the population as a
whole for comparison. This finding contrasts with previous models
that considered one specific meningitis patient as the control. Similarly,
our "EHR only" model had a poor performance for TBM differentiation.
The disappointing performance of these models indicates that an EHR-
based TBM diagnosis is largely unsatisfactory to discern TBM patients
from suspected cases.

Notably, the "EHR+miRNA" model performed significantly better
than the "EHRonly" and "miRNA only"models in both TBMand PTB dis-
criminatory diagnoses. Although further large-scale validation is
needed, we consider our study the first proof of concept that signatures
combining gene data with EHR data could represent a more promising
approach to TB diagnosis. Apart from its satisfactory performance, the
dominant features of the "EHR + miRNA" model were also convincing
from a clinical perspective. For instance, CSF/blood glucose and blood
sodium were treated as traditional indicators for TBM prediction [2].
However, some well-known determinants, such as TB-DNA and MTB
culture, failed to rank as important features. This finding may be due
to their low yields for TBM patients. Paucibacillary cerebrospinal fluid
(CSF) volume is rarely adequate in the clinic and is used formultiple lab-
oratory tests [43]. Therefore, the lowdiagnostic yield obtained using tra-
ditional gold standards is hardly surprising.

Proper modeling is crucial to evaluate diagnostic accuracy because
erroneous results can mislead researchers and clinicians. For example,
modeling with small sample sizes usually triggers the overfitting prob-
lem; we alleviated this issue by using a series of standard strategies and
discrete model interpretation, including regularization and an indepen-
dent testing cohort. Unsupervised PCA illustrations supported the dis-
criminative power of our model. The inclusion of features in the
optimal model also made sense, including consistently elevated
exosomal miRNAs and reliable EHR indicators. Therefore, despite our
small sample size, our study provided sufficient robustness for our
models.

Additionally, the functional annotations of these 6 DE exosomal
miRNAs highlighted a possible regulatory role for genes involved in im-
munological processes and neurotrophin-related signaling, and these
annotations corroborated with recent TB studies reporting that the in-
nate immune response againstMTB is significantly regulated bymiRNAs
[15,19,44–46]. Although the underlying mechanisms are not well-
defined, these results demonstrate the consistency of our results with
previous findings.

This work represents one exploratory setup: a proof of concept that
signatures combining EHR informationwith exosomalmiRNA data via a
machine learning algorithm can improve TBM clinical diagnosis. If vali-
dated, such a patternmay be amore promising approach for disease di-
agnosis in clinical practice. Some limitations must be acknowledged.
Further evaluation using larger populations or multiple settings is war-
ranted due to the small sample size. A high percentage of patients were
clinically diagnosed rather thanmicrobiological reference standards,we
attempted to confirm the existence of MTB with CSF and sputum cul-
tures, but these were almost all negative because of limited sample vol-
ume and immediate antibiotic use on admission. Therefore, all patients
in our studywere followedup for 12months and evaluated by a panel of
experts to avoid the misclassification of cases and disease controls. In
addition, miRNA functional analysis remains hypothetical and will be
the focus of future experimental work.

5. Conclusion

In conclusion, our results suggest that exosomal miRNAs (miR-20b,
miR-191 and miR-486) are potential miRNA biomarkers for TB diagno-
sis. The combination of miRNA and EHR data through a machine learn-
ing algorithm could serve as a feasible approach to promote the
differential diagnosis of TBM and PTB and requires validation in larger
cohorts.
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