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ABSTRACT Sinorhizobium phage �M6 infects the nitrogen-fixing rhizobial bacte-
rium Sinorhizobium meliloti. �M6 most closely resembles marine phages, such as Pu-
niceispirillum phage HMO-2011, rather than previously sequenced rhizobial phages.
The 68,176-bp genome is predicted to encode 121 open reading frames, only 10 of
which have similarity to those of otherwise-unrelated Sinorhizobium phages.

Despite the gains of the genomics era, there are still large gaps in our knowledge
of the microbiomes of soils (1). Data are limited on the diversity of bacteriophages

that prey upon nitrogen-fixing soil bacteria, which are among the most important
microbes in agriculture. Our lack of knowledge of rhizobial phages also limits our
understanding of the effects of phage predation on rhizobial survival both in soil and
in crop bioinoculants (2–4). �M6 is a bacteriophage from a historical collection (2) and
infects Sinorhizobium meliloti SU47, a nitrogen-fixing symbiont of Medicago truncatula
(barrel medic), and Medicago sativa (alfalfa) (5, 6). Infection of S. meliloti by �M6 is
dependent on both lipopolysaccharide (7) and the outer membrane protein RopA1 (8).
On the S. meliloti SU47-derived laboratory strain S. meliloti 1021 (9), �M6 forms very
small plaques. It does not fully lyse Sm1021 cultures, reaching titers of only 0.5 � 106

to 3.0 � 106 PFU/ml. �M6 DNA was prepared by phenol-chloroform extraction and was
sequenced on an Illumina MiSeq platform, as described previously (10). Genome
assembly was performed with Lasergene SeqMan Pro version 11.2.1.25 (DNAStar,
Madison, WI) from 500,000 MiSeq 2 � 300-bp reads for each of two plaque isolates
(plaque isolate sequences were identical), with default read quality control parameters.
PhageTerm (11) predicts a 68,176-bp terminally redundant genome with an initiating
cleavage predicted at a pac site, set as position 1 in the genome. The �M6 genome has
42.9% G�C content with no predicted tRNAs (12). �M6 has 19 regions of homology
with its closest relative, the marine podovirus Puniceispirillum phage HMO-2011 (com-
prising 4% of the genome [13], aligned with the Mauve plugin [14] in Geneious version
10 [15]). �M6 is also similar to several uncultured marine viruses (16). The prediction of
121 open reading frames (ORFs) was performed with GeneMark.hmm (17) and RAST
(18). Functions are predicted for 22% of these ORFs (19, 20). The terminase large
subunit, portal protein, major capsid protein, and proximal tail proteins are most similar
to those of HMO-2011 (13). Because the type of terminase large subunit is often
predictive of the type of DNA termini possessed by a phage (21), we determined that
the �M6 terminase large subunit is a member of terminase superfamily 6 and is 28%
identical to that of Escherichia phage HK639. The HK639 genome is circularly permuted
with terminal redundancy (21, 22), which is consistent with the �M6 termini predicted
by PhageTerm. Similar to Pseudomonas phage PA11 (23) and Pseudoalteromonas phage
�RIO-1 (24), �M6 has a genome segment containing 7 ORFs predicted to be involved
in the synthesis of peptide bonds (25). This phage module has been proposed to be
involved in the modification of host peptidoglycan (24, 25). Although �M6 is otherwise
unrelated to the rhizobium-infecting myovirus phages �M12 (26) and �M9 (10), it has
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7 ORFs with similarity to those of the �M12/N3 genus and 2 with similarity to those of
�M9. ORF SmphiM6_19 is 32% identical to a predicted tail fiber ORF of �M12
(phiM12_124), suggesting that genes encoding host-binding tail fiber proteins may
have been shuttled between these phages.

Data availability. The genome sequence of Sinorhizobium phage �M6 is available
in GenBank under accession number MH700630. The fastq files containing the 2 �

300-bp paired-end Illumina MiSeq reads are available from GenBank under Sequence
Read Archive (SRA) numbers SRR7788541 for plaque isolate phiM6.1 and SRR7788540
for plaque isolate phiM6.2.
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