
Frontiers in Oncology | www.frontiersin.org

Edited by:
Naranamangalam Raghunathan

Jagannathan,
Chettinad University, India

Reviewed by:
Amit Mehndiratta,

Indian Institute of Technology
Delhi, India

Yee Kai Tee,
Tunku Abdul Rahman University,

Malaysia

*Correspondence:
Jian Shu

shujiannc@163.com
Jiali Wu

13982759964@163.com
Song Su

13882778554@163.com

†These authors share first authorship

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 02 March 2021
Accepted: 20 April 2021
Published: 28 May 2021

Citation:
Tang Y, Zheng Y, Chen X, Wang W,

Guo Q, Shu J, Wu J and Su S (2021)
Identifying Periampullary Regions in
MRI Images Using Deep Learning.

Front. Oncol. 11:674579.
doi: 10.3389/fonc.2021.674579

ORIGINAL RESEARCH
published: 28 May 2021

doi: 10.3389/fonc.2021.674579
Identifying Periampullary Regions
in MRI Images Using Deep Learning
Yong Tang1†, Yingjun Zheng2†, Xinpei Chen3, Weijia Wang4, Qingxi Guo5, Jian Shu6*,
Jiali Wu7* and Song Su2*

1 School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China,
2 Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University,
Luzhou, China, 3 Department of Hepatobiliary Surgery, Deyang People’s Hospital, Deyang, China, 4 School of Information
and Software Engineering, University of Electronic Science and Technology of China, Chengdu, China, 5 Department of
Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China, 6 Department of Radiology, The Affiliated
Hospital of Southwest Medical University, Luzhou, China, 7 Department of Anesthesiology, The Affiliated Hospital of
Southwest Medical University, Luzhou, China

Background: Development and validation of a deep learning method to automatically
segment the peri-ampullary (PA) region in magnetic resonance imaging (MRI) images.

Methods: A group of patients with or without periampullary carcinoma (PAC) was
included. The PA regions were manually annotated in MRI images by experts. Patients
were randomly divided into one training set, one validation set, and one test set. Deep
learning methods were developed to automatically segment the PA region in MRI images.
The segmentation performance of the methods was compared in the validation set. The
model with the highest intersection over union (IoU) was evaluated in the test set.

Results: The deep learning algorithm achieved optimal accuracies in the segmentation of
the PA regions in both T1 and T2 MRI images. The value of the IoU was 0.68, 0.68, and
0.64 for T1, T2, and combination of T1 and T2 images, respectively.

Conclusions: Deep learning algorithm is promising with accuracies of concordance with
manual human assessment in segmentation of the PA region in MRI images. This
automated non-invasive method helps clinicians to identify and locate the PA region
using preoperative MRI scanning.

Keywords: peri-ampullary cancer, periampullary regions, MRI, deep learning, segmentation
INTRODUCTION

The peri-ampulla (PA) region refers to the area within 2cm of the main papilla of the duodenum,
including Vater ampulla, lower segment of common bile duct, opening of pancreatic duct, duodenal
papilla and duodenal mucosa nearby (1–4). This region was deep and narrow in the abdomen and
has many adjacent organs and blood vessels, so it is difficult to identify this area using conventional
imaging examinations. At the same time, the PA region was prone to a series of diseases, including
malignant tumors such as periampullary carcinoma (PAC) and benign lesions such as chronic mass
pancreatitis, the inflammatory stricture of the lower of common bile duct, or the lower of common
bile duct stone etc. (5, 6). The treatment and prognosis of these diseases vary differently, so accurate
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diagnosis of these disease has important clinical significance.
However, the imaging diagnosis of this kind of disease is based
on the determination of the specific location of PA region.

So far, among all these modern imaging techniques, magnetic
resonance imaging (MRI) is a preferable choice to detect the
diseases of the PA region for its advantages of excellent soft-
tissue contrast and fewer radiation exposures (5, 7). However, the
accuracy and specificity of MRI are still unsatisfying in the
diagnosis of the diseases. A study has reported that the specificity
of MRI was only 78.26%, while the accuracy was 89.89% in the
diagnosis of PAC (5). Similarly, our previous study also found that
MRI had only 87% accuracy in detecting PAC (8). For the disease in
PA region, misdiagnose will lead to many adverse factors for the
follow-up treatment of patients (8, 9). Therefore, it is necessary to
further improve the preoperative diagnostic accuracy of the diseases
in this special region. Meanwhile, the precise segmentation of PA
region is the first and foundation for the accurate diagnosis.

Deep learning is an emerging sub-branch of artificial
intelligence that has demonstrated transformative capabilities
in many domains (10). Technically, deep learning is a type of
neural network with multiple neural layers that is capable of
extracting abstract representations of input data like images,
videos, time series, natural languages, and texts. Recently, there is
a remarkable research advance of applying deep learning in
healthcare and clinical medicine (11–13). Deep learning has
applications in the analysis of electronic health records,
physiological data, and especially in the diagnosis of diseases
using medical imaging (14). In the analysis of medical images of
MRI, computed tomography (CT), X-ray, microscopy, and other
images, deep learning shows promising performance in tasks like
classification, segmentation, detection, and registration (15).
Recently, considerable literature has grown up in analyzing
image segmentation of different human organs using deep
learning, such as pancreas (16), liver (17, 18), heart (19), brain
(20, 21), etc. However, the PA region remains largely under-
explored in medical image analysis based on advanced deep
learning algorithms. Though the neural networks have been
applied to classify ampullary tumors, the images were taken by
endoscopic during operations rather than preoperative and non-
invasive MRI or CT scanning (22). To our best knowledge, there
is no reported work has been devoted to develop and evaluate
deep learning methods to segment the PA region in MRI images.

Therefore, in this study, we presented a deep learning method to
automatically segment the PA region in MRI images. We
retrospectively collected an MRI image dataset from different
types of PA region diseases to train, including PAC and non-
PAC patients, so that the PA region could be accurately identified
on the MRI image information of different cases. In a training-
validation approach, we developed the deep learning method in the
training set and validated the performance in the validation set. This
would provide a basis for further research on the diagnosis of PAC.
MATERIALS AND METHODS

The overall workflow of this study was illustrated in Figure 1.
First, patients were included, and the MRI images were obtained.
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Next, the PA regions were annotated in the MRI images by
experts. Based on the raw images and annotation information,
the deep learning segmentation algorithms were trained and
evaluated in training and validation datasets, respectively.
Finally, the performance was summarized and reported.

Patients Characteristics
This was a retrospective study approved by the Ethics Committee
of the Affiliated Hospital of Southwest Medical University
(No.KY2020157). A total of 504 patients who underwent MRI
examinations in the Department of Hepatobiliary and Pancreatic
Surgery of the Affiliated Hospital of Southwest Medical
University were included from June 1, 2018 to May 1, 2019. In
these people, 86 persons were diagnosed as peri-ampullary
carcinoma through pathology after surgery or endoscopy, and
the other 418 persons show no peri-ampullary lesion determined
by radiologist. All patients underwent MRI examinations. The
demographic and clinical characteristics of PAC and non-PAC
patients were shown in Table S1 and Table S2, respectively.

MRI Techniques
After 3-8 hours of fasting, patients were asked to practice their
breathing techniques. MRI was performed in all patients with a
3.0-T MR equipment (Philips Achieva, Holland, Netherlands)
with a quasar dual gradient system and a 16.0-channel phased-
array Torso coil in the supine position. Drinking water or
conventional oral medicines were not restricted. The MR scan
started with the localization scan, followed by a sensitivity-
encoding (SENSE) reference scan. The scanning sequences
were as follows: breath-hold axial dual fast field echo (dual
FFE) and high spatial resolution isotropic volume exam
(THRIVE) T1-weighted imaging (T1WI), respiratory triggered
coronal turbo spin echo (TSE) T2-weighted imaging (T2WI),
axial fat-suppressed TSE-T2WI, single-shot TSE echo-planar
imaging (EPI) diffusion-weighted imaging (DWI), and MR
cholangiopancreatography (MRCP). For the dynamic contrast
enhancement (DCE)-MRI, axial-THRIVE-T1WI were used.
15mL of contrast agent Gd-DTPA was injected through the
antecubital vein at a speed of 2mL/s. DCE-MRI was performed in
three phases, including arterial, portal, and delayed phase, and
images were collected after 20s, 60s, and 180s, respectively (10).
In result, among the 504 patients, 485 patients had THRIVE-
T1W images (n = 5,861), and 495 patients had T2 W images
(n = 2,558).

MRI Imaging Analysis
Post-processing of MRI images was performed using the
Extended MR Workspace R2.6.3.1 (Philips Healthcare) with
the FuncTool package. MRI showed typical PAC imaging
manifestations: (1) the mass was nodular or invasive; (2)
Tumour parenchyma on T1WI was equal or marginally lower
signals; (3) Tumour parenchyma on T2WI was equally or slightly
stronger signal; (4) DWI showed high signal intensity; (5) the
mass was mild or moderate enhancement after contrast and (6)
when MRCP was performed, the bile duct suddenly terminated
asymmetrically and expanded proportionally (double-duct signs
may occur when the lesion obstructed the ducts (8).
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tang et al. Identifying Periampullary Region Using AI
FIGURE 1 | Overall flowchart of this study. First, MRI images were obtained from enrolled patients and manually annotated by experts to obtain the masks for later
deep learning algorithm development. The dataset was randomly divided into subsets for algorithm training, validation, and testing, respectively. Five models were
developed and evaluated, and the UNet16 and FCNRes50 achieved the best performance.
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Pathological Examination
The pathological data from all of the cases were analyzed by two
pathologists with more than 15 years of diagnostic experience.
The pathologists were bl inded to the cl inical and
imaging findings.

Image Annotation
First, all MRI images were annotated by two experienced
radiologists using in-house software. In the annotation, one
radiologist was required to manually draw the outlines of the
PA regions in the MRI images. The outline information was used
to generate a corresponding mask image in the same size to
indicate the segmentation and of the PA region. An expert
radiologist reviewed all manual annotations to ensure the
quality of the annotations, which served as ground truths to
develop and validate deep learning algorithms (23–26).

Among the 504 patients, 485 patients had T1 images (n =
5,861), and 495 patients had T2 images (n = 2,558) were
processed separately. We developed algorithms for three cases,
namely using only T1, only T2, and combination of T1 and T2.
In a cross-validation approach, we first randomly divided the
patients into three independent cohorts, namely one training
cohort (80%), one validation cohort (10%), and one test cohort
(10%). Their images and corresponding annotated mask images
were also accordingly grouped into one training set, one
validation set, and one test set, respectively. In other words,
the MRI images and the corresponding mask images of the
training cohort were used to train deep learning algorithms, and
those images of the validation and test cohort were later used to
select and evaluate the performance of deep learning algorithms.

Deep Learning Methods
In this study, we developed deep learning algorithms using
multiple layers of convolutional neural network (CNN) to
automatically segment PA regions in MRI images. CNN is
usually utilized to extract hierarchical patterns from images in a
feedforward manner. CNN-based deep learning algorithms have
achieved remarkable performance in many computer vision
applications surpassing human experts (10). In medical image
analysis, UNet adopted a two-block structure utilizing multiple
layers of CNN (27). More specifically, the architecture consisted
of two components. Namely, one encoder transformed the high
dimensional input images into low dimensional abstract
representations, and one following decoder projected the low
dimensional abstract representations back to the high
dimensional space by reversing the encoding. Finally, generated
images were output with pixel-level label information indicating
the PA region. The detailed structures were illustrated in Figure
S1A for UNet16 and Figure S1B for FCNRes50, respectively. In
order to systematically investigate the performance of the deep
learning approach, in this study, we also considered another four
structure variations, namely ATTUNet using the attention gate
approach in UNet (27), FCNRes50 using ResNet50 as the
downsampling approach FCNRes50 combine residual network
and fully convolutional network structures to extract pixel-level
information and generate segmentation (28), UNet16 use VGG16
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as the downsampling approach (29), and SUNet using SeLu as the
nonlinear activation function instead of ReLu.

In the deep learning algorithm training stage, the MRI images
of the training cohort were input into the encoder one by one. The
output masks generated by the decoder were compared against
the corresponding ground truth to calculate the loss function,
which indicated the deviations of predicted segmentation. By
using the back-propagation technique of stochastic gradient
descent optimization, the encoder-decoder structure was
continuously optimized to minimize the loss. More technically,
the weights between neural network layers were adjusted to
improve the capability of segmentations. Once the training
started, both the encoder and decoder were all trained together.
In this manner, a satisfying deep learning neural network could
hopefully be obtained after training with enough training
samples. Meanwhile, since the input and output were both
images, this deep learning approach enjoyed significant
advantages over the conventional image analysis methods by
eliminating the exhausting feature engineering or troublesome
manual interferences. After the training stage, the trained
encoder-decoder structure was used in passive inferences to
predict PA regions in MRI images. In inferences, the weights
were kept unchanged. In the validation stage, the MRI images of
the validation set were input into the neural network, and the
corresponding mask images were obtained. The images of the test
cohort were used in evaluating the performance of the selected
best model. We systematically considered four different variations
of the UNet structures and one FCNRes50 structure to seek the
best performing deep learning structure. Deep learning
algorithms were trained, validated, and tested separately using
respective images. The five models were trained, validated, and
tested in the dataset contained both T1 and T2 images.

All programs were implemented in Python programming
language (version 3.7) with freely available open-source
packages, including Opencv-Python (version 4.1.0.25) for
image and data processing, Scipy (version 1.2.1) and Numpy
(version 1.16.2) for data management, Pytorch (version 1.1) for
deep learning framework, Cuda (version 10.1) for graphics
processing unit (GPU) support. The training and validation
were conducted in a computer installed with an NVIDIA
3090Ti deep learning GPU, 24GB main memory, and Intel(R)
Xeon(R) 2.10GHz central processing unit (CPU). It is worth
mentioning that the validation task could be done using a
conventional personal computer within an acceptable time
since the passive inference requires fewer computations.

Statistical Evaluation of Segmentation
The performance of the segmentation task for the PA region in
MRI images was quantitatively evaluated using intersection over
union (IoU) and Dice similarity coefficient (DSC). For one PA
region instance in an MRI image, the manually annotated
ground truth and the deep learning predicted segmentation
were compared at pixel-level to see how the two regions
overlapped. In general, larger values of IoU and DSC indicated
better segmentation accuracies. The average IoU and DSC were
calculated based on predictions for all images in the validation
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set. For simplicity, we used IoU as the main measurement, and
the performance of five deep learning structures was ranked
according to IoU. The predictions of T1 and T2 MRI images
were conducted separately in the same manner.
RESULTS

MRI Images
In preparing the training, validation, test datasets, we divided the
initial dataset based on patients to ensure that images from a
given patient would only appear in one dataset. In result, for T1
images (n = 5,861), the training set included 598 images from 67
PAC patients, and 4,177 images from 322 patients without PAC.
The validation set included 99 images from 8 PAC patients, and
418 images from 40 patients without PAC. The test set included
67 images from 8 PAC patients, and 439 images from 40 patients
without PAC. For T2 images (n = 2,558), the training set
included 374 images from 68 PAC patients, and 1,676 images
from 329 patients without PAC. The validation set included 44
images from 8 PAC patients, and 205 images from 41 patients
Frontiers in Oncology | www.frontiersin.org 5
without PAC. The validation set included 42 images from 8 PAC
patients, and 217 images from 41 patients without PAC. For the
dataset combined T1 and T2 MRI images (n = 8,419). The
training set included 959 images from 69 PAC patients, and
5,701 images from 335 patients without PAC. The validation set
included 176 images from 9 PAC patients, and 806 images from
42 patients without PAC. The test set included 89 images from 8
PAC patients, and 668 images from 41 patients without PAC.

Segmentation Performance
For the five segmentation deep learning structures, we followed the
same training approach in separated training, validation, and
testing. Specifically, each image formed a batch (batch size = 1),
and ten rounds were repeated (epoch = 10) to ensure the
convergence of the loss. The optimizer of all models is Adam,
with a learning rate of 0.0001. The final segmentation performance
of all five structures was presented in Table 1 for T1 images, Table
2 for T2 images, and Table 3 for T1 and T2 images, respectively.
We found that UNet16 outperformed all the rest structures with
the best performance for both of only T1 (IoU = 0.68, DSC = 0.79)
and combined T1 and T2 (IoU = 0.64, DSC = 0.74), respectively.
TABLE 1 | Segmentation performance of deep learning structures in the test T1 images ranked by mean IoU.

Model IoU DSC

Total PAC non-PAC Total PAC non-PAC

UNet16 0.68 ± 0.21 0.67 ± 0.18 0.69 ± 0.21 0.79 ± 0.21 0.78 ± 0.17 0.79 ± 0.21
FCNRes50 0.67 ± 0.24 0.65 ± 0.22 0.67 ± 0.24 0.77 ± 0.26 0.76 ± 0.23 0.77 ± 0.26
UNet 0.53 ± 0.33 0.37 ± 0.34 0.55 ± 0.32 0.62 ± 0.36 0.44 ± 0.39 0.64 ± 0.35
SUnet 0.49 ± 0.30 0.40 ± 0.31 0.50 ± 0.30 0.59 ± 0.34 0.50 ± 0.35 0.60 ± 0.33
ATTUnet 0.44 ± 0.32 0.31 ± 0.32 0.46 ± 0.32 0.53 ± 0.37 0.37 ± 0.38 0.55 ± 0.36
Ma
y 2021 | Volume 11 | Ar
UNet16 achieved the best performance.
TABLE 2 | Segmentation performance of deep learning structures in the test T2 images ranked by mean IoU.

Model IoU DSC

Total PAC non-PAC Total PAC non-PAC

FCNRes50 0.68 ± 0.20 0.66 ± 0.18 0.69 ± 0.21 0.79 ± 0.21 0.78 ± 0.16 0.79 ± 0.21
UNet16 0.67 ± 0.19 0.60 ± 0.21 0.68 ± 0.18 0.78 ± 0.19 0.72 ± 0.21 0.79 ± 0.18
ATTUnet 0.58 ± 0.26 0.51 ±0.29 0.60 ± 0.25 0.69 ± 0.27 0.61 ± 0.32 0.71 ± 0.26
SUnet 0.48 ± 0.25 0.52 ± 0.25 0.47 ± 0.25 0.60 ± 0.28 0.64 ± 0.28 0.59 ± 0.28
UNet 0.40 ± 0.30 0.35 ± 0.29 0.42 ± 0.30 0.50 ± 0.35 0.44 ± 0.34 0.51 ± 0.34
FCNRes50 achieved the best performance.
TABLE 3 | Segmentation performance of deep learning structures in the test T1 and T2 images ranked by mean IoU.

Model IoU DSC

Total PAC non-PAC Total PAC non-PAC

UNet16 0.64 ± 0.25 0.61 ± 0.18 0.65 ± 0.25 0.74 ± 0.26 0.74 ± 0.18 0.74 ± 0.27
FCNRES50 0.55 ± 0.30 0.47 ± 0.27 0.56 ± 0.30 0.64 ± 0.33 0.59 ± 0.30 0.65 ± 0.33
ATTUnet 0.45 ± 0.34 0.34 ± 0.32 0.46 ± 0.34 0.53 ± 0.38 0.42 ± 0.36 0.54 ± 0.38
SUnet 0.40 ± 0.33 0.28 ± 0.31 0.41 ± 0.33 0.48 ± 0.37 0.34 ± 0.36 0.50 ± 0.37
UNet 0.35 ± 0.35 0.21 ± 0.29 0.37 ± 0.36 0.42 ± 0.40 0.27 ± 0.34 0.43 ± 0.40
UNet16 achieved the best performance.
ticle 674579
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The performance of FCNRes50 is better than UNet16 in only T2
(IoU = 0.68, DSC = 0.79) images segmentation. As shown in the
tables, the performance of patients with PAC and patients without
PAC is calculated, respectively. Figure 2 demonstrated the
segmentation samples obtained by UNet16 for T1 images,
FCNRes50 for T2 images, and UNet16 for combined T1 and T2
images. In terms of speed, the algorithms could output the
segmentation for a given image within two seconds, which
significantly improved the efficiency of image analysis.
DISCUSSION

PAC occurs in 5% of gastrointestinal tumors, and pancreatic cancer
is the most common, followed by distal cholangiocarcinoma (2,
30). Pancreatoduodenectomy (PD) was the standard treatment for
patients with PAC (31). However, complications such as pancreatic
fistula, biliary fistula, infection, and hemorrhage often occur after
PD surgery. A previous study has shown that the incidence of
postoperative complications of PD may be as high as 30-65% (32).
For patients with benign lesions, unnecessary PD surgery could
lead to the occurrence of these surgical complications in patients, or
even death in some patients. Meanwhile, if malignant lesions are
misdiagnosed as benign lesions, it will undoubtedly delay the
treatment of patients, resulting in poor prognosis. Due to the
anatomical complexity of the periampullary region and less of
particular serum markers, the early-accurate diagnose of PAC still
remains challenging. Currently, non-invasive diagnostic methods,
Frontiers in Oncology | www.frontiersin.org 6
including ultrasound scan, CT imaging as well as MRI, have been
successfully applied to the detection and diagnosis of PAC. One
study has reported that the specificity of ultrasound scan was only
52.1%, while the accuracy was 61.61% in the diagnosis of PAC (6).
Another study has reported that the specificity of CT was only
16.7%, while the accuracy was 84.4% in the diagnosis of PAC (33).
So far, among all these modern imaging techniques, MRI has been
reported to be an optimal choice for allowing assessment of
periampullary lesions (32). However, there are still limiting
factors in the evaluation of the disease using MRI because the
PA region is small and the relatively complicated anatomy.
Moreover, the tapered area of the distal biliary and pancreatic
ducts contain little or no fluid. Physiologic contraction of the
sphincter of Oddi also makes it difficult to evaluate the PA region
(34). Recently, with the significant development in deep learning
and increasing medical needs, artificial intelligence technology has
significant advantages in improving the diagnosis of diseases.
Therefore, we proposed and developed a deep learning method
to automatically segment the PA region in MRI, which could be
further extended to future AI-based diagnosis of the disease in PA
region using AI, and also facilitate the plan of surgery and
endoscopic treatment for clinicians.

In this work, we developed deep learning structures to
automatically segment the PA region using MRI T1 and T2
images. Recently, there were abundant reported studies
developing AI algorithms for segmentation of abdominal organs
or structures including pancreas (16), liver (17, 18), spleen (35, 36),
gallbladder (37), kidney (38, 39), the local lesions of stomach (40),
FIGURE 2 | Examples of PA regions of PAC patients (top panel) and PA regions of patients without PAC (bottom panel). The first column were examples of T1 MRI
image obtained by UNet16 trained using only T1 images, the second column were examples of T2 MRI image obtained by FCNRes50 trained using only T2 images,
the third column were examples of T1 MRI image obtained by UNet16 trained using both T1 and T2 images, and the fourth column were examples of T2 MRI image
obtained by UNet16 trained using both T1 and T2 images. Blue, algorithm; red, expert.
May 2021 | Volume 11 | Article 674579
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etc. However, there is no report of PA region segmentation using
AI algorithms. To our best knowledge, this work is the first
systematic study of developing and evaluating deep learning
approaches for the segmentation of the PA regions in MRI. To
evaluate the performance of various deep learning structures, we
implemented five algorithms that appeared in deep learning
literature, including UNet (27), ATTUNet (41), FCNRes50 (28),
UNet16 (29), and SUNet. UNet was the most used deep learning
structure in medical image analysis using the encoder and decoder
components based on CNN (42). The rest variations improve the
UNet structures with attention or replace nonlinear activation
functions. This study considered these structures and compared
their performance in the same datasets.

In total, 504 patients were included in this study and 5,861 T1
images and 2,558 T2 images were collected. All images were
manually annotated by experts to delineate the PA regions in the
MRI images. By dividing patients into training and validation
cohorts, their images were split into a training set for algorithms
training and a validation set for final performance evaluation. As a
result, UNet16 achieved the best performance among the five
structures with the highest IoU of 0.68 and DSC of 0.79 for T1
images. The model with the best performance for T2 images
segmentation is FCNRes50 with an IoU of 0.68 and DSC of 0.79.
UNet16 achieved the best performance in the dataset of combined
T1 and T2. The IoU is 0.64 and the highest DSC is 0.74 which are
not better than the results obtained in the independent T1 or T2
datasets. Therefore, the results showed that UNet16 and FCNRes50
were able to accurately identify the PA region in MRI images.

However, there are still several limitations in this study. First, we
only focused on developing an AI to automated localize and
segment the PA regions in MRI of PA cancer, but did not make
a diagnosis. In the future, we would collect more data and extend
the present deep learning framework to classify and diagnose PA
cancer. Second, this is a retrospective study from a single hospital,
which may inevitably lead to selective bias for the patients. The
results need to be validated by prospective and external cohorts.
Third, the applied AI technologies in this study are still in rapid
evolution with more emerging advanced deep learning algorithms.
In the future, it’s necessary to evaluate new deep learning algorithms
in PA cancer image analysis to achieve better performance.

In conclusion, we established an MRI image dataset,
developed an MRI image data annotation system, established
an automatic deep learning the PA region image segmentation
model, and realized the location of the PA region.
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segmentation. Images and ground truth masks were input into the network to
obtain the predicted segmentation.
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