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Pan‑cancer analysis 
of non‑oncogene addiction to DNA 
repair
Luis Bermúdez‑Guzmán 

Cancer cells usually depend on the aberrant function of one or few driver genes to initiate and promote 
their malignancy, an attribute known as oncogene addiction. However, cancer cells might become 
dependent on the normal cellular functions of certain genes that are not oncogenes but ensure cell 
survival (non‑oncogene addiction). The downregulation or silencing of DNA repair genes and the 
consequent genetic and epigenetic instability is key to promote malignancy, but the activation of 
the DNA‑damage response (DDR) has been shown to become a type of non‑oncogene addiction 
that critically supports tumour survival. In the present study, a systematic evaluation of DNA repair 
addiction at the pan‑cancer level was performed using data derived from The Cancer Dependency 
Map and The Cancer Genome Atlas (TCGA). From 241 DDR genes, 59 were identified as commonly 
essential in cancer cell lines. However, large differences were observed in terms of dependency scores 
in 423 cell lines and transcriptomic alterations across 18 cancer types. Among these 59 commonly 
essential genes, 14 genes were exclusively associated with better overall patient survival and 19 with 
worse overall survival. Notably, a specific molecular signature among the latter, characterized by DDR 
genes like UBE2T, RFC4, POLQ, BRIP1, and H2AFX showing the weakest dependency scores, but 
significant upregulation was strongly associated with worse survival. The present study supports the 
existence and importance of non‑oncogenic addiction to DNA repair in cancer and may facilitate the 
identification of prognostic biomarkers and therapeutic opportunities.

Although tumours develop through a multistage process driven by the acquisition of genetic and epigenetic 
abnormalities, many of them become dependent on one or few genes to promote malignancy. As many of these 
genes were originally identified as oncogenes, this attribute was named oncogene  addiction1. However, it is known 
that tumours can also become dependent on the normal cellular functions of certain genes, which themselves 
are not classical oncogenes, an attribute known as non-oncogene addiction (NOA)2.

In order to achieve uncontrolled proliferation, tumour cells rely upon the downregulation or epigenetic 
silencing of DNA Damage Repair (DDR) genes and the consequent increase in genetic and epigenetic  instability3. 
Genome instability is indeed a fundamental hallmark of  cancer4, possibly linked to oncogene-induced DNA 
 damage5. Accordingly, it has been demonstrated that DDR genes alterations are prevalent in multiple human 
cancer  types6,7. Despite the need for this genomic instability, tumours require some degree of DNA repair profi-
ciency to survive the damage induced by genotoxic stress, uncontrolled proliferation, and treatments. Thus, the 
activation of the DNA-damage response in cancer can be considered as a type of NOA that critically supports 
tumour  survival8. NOA genes are especially associated with stress maintenance functions such as DNA double-
stranded break repair, chromatid segregation, and DNA replication  regulation9. Accordingly, several DNA repair 
genes have been shown to exhibit Copy Number Variation (CNV) gain in cancer, which is positively correlated 
with upregulation of DDR  genes10.

Given the importance of both oncogene and non-oncogene addiction, different groups have developed a 
variety of approaches to identify and prioritize cancer dependencies and vulnerabilities to exploit them thera-
peutically. The Cancer Dependency Map was initially created by systematically identifying genetic dependencies 
using RNAi-based loss-of-function genetic screens in 501 cancer cell  lines11. Additionally, two large pan-cancer 
CRISPR-Cas9 screens were also independently performed with the same goal, containing data from over 1000 
screens of more than 900 cell  lines12,13. Based on both approaches, a combined CRISPR-shRNA dependency score 
was later developed, providing a more sensitive measure to identify essential  genes14. These loss-of-function 
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genetic screens have allowed investigating cellular drug mechanism-of-action in cancer cell  lines15 as well as the 
identification of potential therapeutic targets like the DNA repair helicase WRN, a synthetic lethal vulnerability 
and promising target in cancers with microsatellite  instability16.

In this study, I integrated data derived from The Cancer Dependency Map and transcriptomic data derived 
from The Cancer Genome Atlas (TCGA) to characterize the non-oncogene addiction to DNA repair across the 
pan-cancer scale. Next, I explored the relevance of DDR genes in terms of patient survival and potential thera-
peutic alternatives. Following this approach, a molecular signature of overexpressed DDR genes showing the 
weakest dependency scores was strongly associated with worse survival. The fact that cancer cells overexpress 
these genes despite the weak dependence on them (as growth promoters), suggests that they may act as late pro-
moters of cell survival. Thus, as opposed to traditional cancer drivers, this supports the existence and importance 
of non-oncogenic addiction to DNA repair in cancer. This approach may facilitate the identification of prognostic 
biomarkers and therapeutic opportunities by targeting this non-oncogene addiction.

Results
Efficacy and selectivity of DNA repair genes. One of the few comprehensive lists of human DDR 
genes was published in  200517. In order to obtain an updated list, a literature search was done and the most 
comprehensive list found was used as a starting  point6. This list comprised 276 DDR genes annotated in ten dif-
ferent DNA repair pathways, but genes involved in the nucleotide pool maintenance were excluded in this study 
as that is not truly a pathway. First, to identify the essentiality of these genes across different types of cancer 
cell lines, the efficacy and selectivity scores (θ = 0.6; CRISPR:shRNA = 60:40; see methods) were obtained from 
 shinyDepMap14. These metrics are derived from a combined CRISPR-shRNA gene dependency score based 
on the Cancer Dependency Map  dataset11. Efficacy scores represent the degree to which loss of a particular 
gene reduces cell growth in sensitive lines while selectivity represents the degree to which its essentiality varies 
across lines. After removing genes that were not found in the shinyDepMap dataset, 241 DDR genes (Supple-
mentary Table 1) were grouped in nine different DNA repair pathways and the efficacy scores for each pathway 
were compared (p = 0.02, Kruskal–Wallis rank-sum test, Fig. 1a). Although it seems that some pathways contain 
more genes with strongly negative efficacy scores, no statistically significant differences were found after Dunn’s 
Kruskal–Wallis Multiple Comparisons test. The same trend was observed for selectivity (p = 0.0004, Kruskal–
Wallis rank-sum test, Fig. 1b).

Next, as some pathways showed different behaviour in terms of efficacy and selectivity, the association 
between both metrics was determined. Genes were also grouped based on pathway annotation but only NER 
showed a statistically significant positive correlation (R = 0.29, p = 0.045, Spearman’s correlation test, Fig. 2). 
Additionally, to identify genes that are commonly essential in cancer cell lines (negative selectivity and negative 
efficacy scores), an “essentiality threshold” was set based on previous findings analyzing the whole set of human 
 genes14. Following this approach, genes with efficacy scores higher than − 0.5 and selectivity scores higher than 
0.0 were excluded. From the 241 genes initially included, only 59 were classified as commonly essential following 
these criteria (quadrant III, Fig. 2).

Figure 1.  Efficacy and selectivity of DNA repair pathways. (A) Comparison of the efficacy scores (the more 
negative, the more essential) of the 241 DNA repair genes according to their pathway annotation (some genes 
are included in more than one pathway). (B) Comparison of the selectivity scores of the 241 DNA repair genes 
according to their pathway annotation (the more positive, the more selective). Notice that some pathways 
behave differently in terms of efficacy and selectivity. DR Direct repair, TS translesion synthesis, BER Base 
Excision Repair, NHEJ Non-Homologous End Joining, FA Fanconi Anemia, OTHER DNA repair-associated 
genes, HR Homologous Recombination, MMR Mismatch Repair, NER Nucleotide Excision Repair.
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Dependency scores of commonly essential DDR genes. To explore deeper the essentiality of these 
59 DDR genes, the combined dependency scores (θ = 0.6; CRISPR:shRNA = 60:40) across 423 cancer cell lines 
were also obtained from the shinyDepMap dataset (Supplementary Table 2). Moreover, the lineage-dependent 
essentiality of 17 cell lineages was also analyzed. Only genes with at least one dependent lineage were included. 
Differences were found between these 59 genes in terms of dependency (p-value < 2.2e−16, Kruskal–Wallis rank-
sum test, Fig. 3a). Only 43 of these genes had at least one dependent lineage (Fig. 3b), meaning that all cell lines 
for that lineage must have dependency scores lower than the essentiality threshold (near − 0.5) obtained by 
analyzing all human  genes14. Notice that as expected, genes showing strongly negative dependency scores have 
more dependent lineages.

Transcriptomic alterations of commonly essential DDR genes. Since these 59 commonly essential 
DDR genes can also be essential for normal cells, the expression patterns of these genes were analyzed. For this 
purpose, the TACCO (Transcriptome Alterations in CanCer Omnibus) web  server18 was used to obtain the 
log2 fold change (log2 FC) of these genes from paired normal-tumour samples. TACCO includes the mRNAs 
and miRNA expression levels (Transcripts Per Million) of 26 types of cancer from the Broad GDAC Firehose. 
Gene expression data were obtained for 18 types of cancer (Supplementary Table 3) after establishing two con-
ditions: (1) only genes with a statistically significant log2 fold change (after p-value adjustment) were included 
and (2) only cancer types in which at least half of DDR genes meet condition 1 were included. Differences were 
also found between the 59 genes in terms of log2 FC, with some genes being downregulated and others highly 
upregulated (p-value < 2.2e−16, Kruskal–Wallis rank-sum test, Fig. 4a). Next, to have a better visualization of 
the expression levels of these 59 DDR genes across the 18 types of cancer, a heatmap was elaborated with the 
log2 FC of each gene (Fig. 4b). Three groups are observed among the cancer types with at least 10 genes being 
highly upregulated in most of them. The majority of these genes are part of several pathways or participate in 
Homologous Recombination. For many genes either there is no significant fold change (grey colour), or they are 
downregulated.

Since it was noticed that genes with strongly negative dependency scores (more important for cancer cell 
growth) were not always highly upregulated, all variables were analyzed together to further explore clustering 
patterns. The efficacy and selectivity scores were included as continuous variables. The dependency scores of the 
59 genes (for the whole set of 423 cancer cell lines) and the log2 FC (for the 18 types of cancer) were transformed 
from continuous to categorical (ordinal) variables (see methods) (Supplementary Table 4). A distance matrix 
was created based on Gower’s similarity coefficient. Three clusters were generated using the Partitioning Around 
Medoids (PAM) and hclust algorithms. The t-Distributed Stochastic Neighbor Embedding (tSNE) algorithm (per-
plexity = 10, max. iteration = 1000) and Hierarchical clustering were used for dimensionality reduction. Figure 5 

Figure 2.  Correlation between selectivity and efficacy. The scatterplots show the correlation between 
efficacy and selectivity scores of the 241 genes grouped according to pathway annotation. Only NER showed 
a statistically significant positive correlation (R = 0.29, p = 0.045, Spearman’s correlation test). Genes with an 
efficacy score higher than − 0.5 and a selectivity score higher than 0.0 were discarded and only genes under the 
“essentiality threshold” (quadrant III) were selected and classified as “commonly essential genes” (n = 59). Notice 
that genes from quadrant II also have strongly negative efficacy scores but present high selectivity (e.g., HR/BER: 
WRN).
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shows the three clusters generated based on the two clustering algorithms. Interestingly, cluster 1 consists of 
upregulated genes with strongly negative dependency and efficacy scores. On the contrary, cluster 3 consists of 
upregulated genes but they all have the weakest negative dependency and efficacy scores. Cluster 2 consists of 
genes with intermediate scores.

Commonly essential DDR genes survival analysis. To explore the clinical significance of the above 
findings, the GEPIA (Gene Expression Profiling Interactive Analysis) web  server19 was used to perform survival 
analysis based on gene expression levels. GEPIA delivers fast and customizable functionalities using The Cancer 
Genome Atlas (TCGA)  dataset20. The genes from each cluster were analyzed to determine if their expression 
was associated with worse or better overall survival in each of the three cancer groups (A, B, C) from the heat-
map above (group B was subdivided into B1 and B2 as it was much larger and heterogeneous than A and C). 
Almost all 59 genes were statistically significant associated with worse or better survival at least in one cancer 
group (Supplementary Table 5). However, only genes whose higher expression was associated with a statistically 
significant log-rank P-value and statistically significant hazard ratio (HR > 2/HR < 1) were selected for further 
analysis (Fig. 6a).

As several genes have opposite effects for two or more cancer groups, genes that were exclusively associated 
with better survival and those exclusively associated with worse survival were analyzed as separate molecular 

Figure 3.  Combined (CRISPR:shRNA) dependency scores of 59 DDR commonly essential genes across 423 
cancer cell lines. (A) The more negative dependency score, the more essential for a cell line. (B) When a gene 
has dependency scores beyond the threshold of essentiality in all the cell lines from a lineage, that lineage is 
dependent on that gene. All 17 lineages were dependent on 32 out of the 59 DDR genes.
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Figure 4.  Log2 Fold Change of the 59 commonly essential DDR genes across 18 types of cancer. (A) Only genes 
with a log2 fold change with a statistically significant adjusted p-value were considered in each type of cancer. 
Notice that the more positive log2 FC, the greater the expression compared to normal tissue (B) Three clear 
groups are observed among all cancer types with at least 10 genes annotated in multiple pathways being highly 
upregulated (red colour) in most of them. No significant fold change is coloured in grey and downregulation 
in blue. Group A: READ: Rectum adenocarcinoma; COAD: Colon adenocarcinoma; THCA: Thyroid 
carcinoma; GBM: Glioblastoma multiforme. Group B: STAD: Stomach adenocarcinoma; ESCA: Esophageal 
carcinoma; BLCA: Bladder Urothelial Carcinoma; HNSC: Head and Neck squamous cell carcinoma; CHOL: 
Cholangiocarcinoma, LIHC: Liver hepatocellular carcinoma; UCEC: Uterine Corpus Endometrial Carcinoma; 
BRCA: Breast invasive carcinoma; LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma. Group 
C: KIRC: Kidney renal clear cell carcinoma; KIRP: Kidney renal papillary cell carcinoma; PRAD: Prostate 
adenocarcinoma; KICH: Kidney Chromophobe.
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signatures. Fourteen genes were classified as “better survival” (four from cluster 1 and five from cluster 3) whereas 
nineteen genes were classified as “worse survival” (five from cluster 1 and ten from cluster 3). Despite this trend, 
no statistically significant differences were found between the number of genes contributed by clusters 1 and 3 
to each signature (p = 0.68, Fisher’s exact test; Fig. 6b). The “better survival” gene signature was analyzed in terms 
of overall survival and as expected, it was associated with better survival across the 18 cancer types included in 
this study (p = 7.4e−09; HR 0.76; pHR = 8.3e−09, n = 3244; Fig. 6c). On the contrary, the “worse survival” gene 
signature was associated with worse overall survival (p = 0; HR 2.0; pHR = 0, n = 3244; Fig. 6c). Notice that p 
values of cero must be understood as “below machine precision” (see “Methods”).

To further understand these molecular signatures, the GEPIA2 web  server21 (which is also based on TCGA 
dataset) was used to identify genes with similar expression patterns across the 18 cancer types. For each signature 
(better/worse), the Pearson’s correlation coefficient of 100 genes was obtained (range 0.65–0.80 for the “better 
survival” and 0.79–0.84 for the “worse survival”) (Supplementary Table 6). Remarkably, when these genes were 
used as a multi-gene signature to perform survival analysis based on their expression levels in the 18 cancer types, 
a higher expression of the “better 100 signature” was found to be also associated with better survival (p = 8.5e−06; 
HR 0.81; pHR = 8.8e−06; n = 3244; Fig. 7A). On the contrary, a higher expression of the “worse 100 signature” 
was associated with worse survival (p = 0; HR 2.1; pHR = 0; n = 3244; Fig. 7D).

To further characterize the genes involved in each signature, the STRING web  server22 was used to plot 
their protein–protein interaction networks. The  stringApp23, was used to import the STRING networks into 
 Cytoscape24 for network analysis. Overall, the worse survival signature network showed a much higher network 
density and centralization, as well as lower network heterogeneity (Fig. 7B,E). Additionally, the g:Profiler web 
 server25 was used for functional interpretation of these signatures according to their gene ontology (Fig. 7C,F). 
Interestingly, most of the genes from the “better survival 100 signature" are annotated in functions related to 
transcription regulation and mRNA metabolism. On the other hand, genes from the "worse survival 100 signa-
ture" are annotated in functions related to DNA replication and cell cycle (Supplementary Table 7).

Finally, considering that DDR genes have been good candidates for the synthetic lethality  approach26 and 
considering the huge impact of the worse survival signature in terms of overall survival, the  SynLethDB27 was 

Figure 5.  Clustering of the 59 DDR commonly essential genes. Gower’s similarity coefficient was used to 
calculate the distance matrix based on efficacy, selectivity, dependency scores, and log2 FC of the 59 commonly 
essential DDR genes. (A) Partitioning Around Medoids (PAM) was used as a clustering algorithm and the 
t-Distributed Stochastic Neighbor Embedding (tSNE) algorithm was used for dimensionality reduction. Note 
that the size, distance, and shape of clusters in the tSNE analysis do not always convey a meaning as clusters 
may vary upon initialization, perplexity values, and iteration. (B) Hierarchical clustering for dimensionality 
reduction based on the distance matrix calculated using Gower’s distance and the hclust algorithm.
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used to search synthetic lethal partners for the 19 genes from this signature. SynLethDB harbours a large set of 
synthetic lethality gene pairs collected from a variety of sources, including biochemical assays, computational 

Figure 6.  Survival analysis based on the expression levels of the 59 commonly essential DDR genes. (A) Genes 
whose higher expression was associated with better or worse overall survival (with a statistically significant log-
rank P-value and statistically significant hazard ratio HR > 2/HR < 1) are indicated for each cancer group. Genes 
exclusively associated with the better/worse survival signature are indicated. (B) No statistically significant 
differences were found between the number of genes contributed by clusters 1 and 3 to each signature (p = 0.68, 
Fisher’s exact test). (C) Prognostic value of the “better/worse” signatures in terms of overall survival (considering 
the 18 cancer types together).
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predictions, other related databases, and text mining. Sixteen genes presented at least one potential synthetic 
lethal partner (SLP) (statistic score ≥ 0.50). In 10 of these genes (ERCC3, BRIP1, POLQ, UBE2T, RFC2, RAD51D, 
MUS81, PCNA, RPA3, RFC4), NAE1 (NEDD8 Activating Enzyme E1 Subunit 1) was the SLP with the highest 
score, and in 6 of them, it was the only gene with a statistic score ≥ 0.50 (Fig. 8A). To further explore this finding, 
the correlation between the expression levels of these 6 genes and NAE1 was analyzed in GEPIA2. A statistically 
significant positive correlation was found in the 18 types of cancer (R = 0.52, p = 0, Spearman’s correlation test, 
Fig. 8B). In fact, higher expression of NAE1 was also found to be associated with a worse prognosis in all 18 
cancer types (p = 9e−06.; HR 1.2; pHR = 9.2e−06; n = 3244; Fig. 8C).

Discussion
The analysis of cancer dependencies and vulnerabilities aims to identify and prioritize new potential therapeutic 
targets. In this work, a Pan-cancer analysis of non-oncogene addiction to DDR genes using data derived from 
the Cancer Dependency Map and TCGA was performed. Among the 59 commonly essential DDR genes, large 
differences were found between them in terms of dependency scores across the 423 cancer cell lines. However, 
it must be considered that dependency scores are measured for cells grown in culture and are unlikely to fully 
reflect the conditions of the in vivo tumour microenvironment. Thus, results must be interpreted with caution 
and should be further addressed through different approaches.

Since some of the common essential DDR genes in cancer cells may also be essential for normal cells, the 
implications of essentiality were analyzed at the transcriptomic level from paired normal-tumour samples and 
large differences were also found. Genes with strongly negative dependency scores (cluster 1), were upregu-
lated in most cancer types suggesting that they might be essential for carcinogenesis. Some of them can even 
be considered as potential cancer drivers as previously  suggested6. Despite this, it was surprising that higher 
expression of several genes from clusters 1 and 2 (e.g., PRPF19 and ATRIP) were strongly associated with better 
overall survival in some cancer groups. This was further confirmed when the 14 genes exclusively associated 
with better survival were considered a multi-gene signature and the higher expression of this signature was also 
associated with better survival across the 18 types of cancer. This is especially interesting considering that the 
lower expression and/or alterations in DDR genes have been associated with improved survival in some cancer 
 types28–30. Nevertheless, a couple of studies have also reported that active DNA repair and higher expression of 
several DDR genes (including genes from clusters 1 and 2 from this study) were associated with better survival 
in gastric and ovarian  cancer31,32. Taken together, this better survival signature might represent promising bio-
markers for prognosis and further clinical studies should be performed to fully validate this.

Figure 7.  Characterization of the “Better/Worse 100 signature”. (A,D) Multi-gene signature survival analysis 
based on the expression of the 100 genes correlated with the “better” and “worse” survival signature (in all 18 
cancer types). (B,E) Protein–protein interaction networks of each multi-gene signature. (C,F) Gene Ontology 
enrichment analysis and visualization for each multi-gene signature. GO terms with the lowest adjusted p-value 
are indicated.
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Another surprising finding was that genes from cluster 3 (weakest dependency and efficacy scores) like 
UBE2T, POLQ, BRIP1, H2AFX, and RTEL1, were also highly upregulated. This could indicate that cancer cells 
do not depend on these genes for their growth but survival, especially considering the persistent DNA damage 
and replication stress in cancer  cells2. We can refer to this as the timing-dependent addiction, which means that 
although cancer cells have weak dependency on these genes (as growth promoters), these genes may act as late 
promoters of cell survival (given the evident overexpression). For instance, among genes from cluster 3, POLQ 
(Pol θ) might be one of the best examples of non-oncogene addiction to DNA repair (low efficacy and depend-
ency scores but highly upregulated). In fact, it has been demonstrated that cancer cells with mutations in POLQ 
synthetic lethal (DDR) genes tend to become addicted to Theta Mediated End Joining (TMEJ) for survival, 
suggesting that POLQ becomes essential upon increased levels of endogenous and unrepaired DNA  damage33.

Remarkably, the present work also demonstrated that higher expression of UBE2T, RFC4, POLQ, BRIP1, and 
H2AFX is especially associated with worse overall survival (HR > 5) in several types of cancer (Group A and D). 
Additionally, when considered as part of the worse survival signature, these genes were associated with a worse 
prognosis in the 18 cancer types. This might be also linked to the correlation found between the expression levels 
of this signature and the "worse 100 signature", which is enriched with genes involved in DNA replication and 
cell cycle, probably suggesting a more aggressive phenotype. Previous findings have reported that genes involved 
in cell cycle phases and checkpoint genes had higher essentiality percentages both in embryonic stem cells and 
in cancer cell  lines34. Additionally, it has been shown that the amplification and overexpression of several DDR 
genes across the pan-cancer scale are associated with reduced mutation burden, cell line drug resistance, and 
poor  prognosis35. In contrast, a higher somatic tumour mutational burden has been associated with better overall 
survival in several types of  cancer36. Taken together, the results from the present study support the notion that 
non-oncogene addiction to several DDR genes could reduce the tumour mutational burden and confer treatment 
resistance, suggesting an explanation for the worse overall survival associated with this signature.

The results discussed above also support previous findings reporting the key role of the DDR genes from 
cluster 3 in cancer. For instance, studying more than 10,000 TCGA pan-cancer tumours, Wu and colleagues found 
that tumours with amplifications in DDR genes like UBE2T (Ubiquitin Conjugating Enzyme E2 T) exhibited 
significantly reduced mutation burden, temozolomide resistance, and worse patient survival. In fact, UBE2T and 
BRIP1 are also in the top 10 amplified DDR genes in their  study35. RFC4 (Replication factor C subunit 4) has 
been also identified as an upregulated DDR gene across the pan-cancer  scale10. RFC4 protects colorectal cancer 
cells from X-ray-induced DNA damage and apoptosis through nonhomologous end joining (NHEJ)-mediated 
DNA  repair37 and has also been associated with poorer prognosis in this  malignancy38 and lung  cancer39.

Figure 8.  Synthetic lethality gene pairs analysis. (A) Synthetic Lethal partners (SLP) were obtained for the 19 
genes from the “worse survival” signature. Although NAE1 was the SLP with the highest statistic score in ten on 
these genes, it was the only significant SLP of six genes. (B) The expression levels of these six genes are positively 
correlated with that of NAE1 in the 18 cancer types. (C) Higher expression of NAE1 is statistically significant 
associated with worse prognosis in the 18 cancer types.
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DNA polymerase theta (Pol θ) (which is encoded by the POLQ gene) is important in the repair of genomic 
double-strand breaks (DSBs) from many  sources40. Upregulation of POLQ has been associated with poor clinical 
outcomes in breast and lung  cancer41–44. Following the same line, the present study highlights the importance of 
POLQ as a prognostic factor associated with worse survival in different types of cancer (especially Group A and 
D). Recent reports have demonstrated that POLQ inhibitors selectively kill HR-deficient tumour cells in vitro 
and in vivo45,46. Additionally, it has been demonstrated that POLQ knockdown sensitizes several tumour cell 
lines to Ionizing Radiation and causes minimal effects on normal tissue  radiosensitivity47.

RFC2, CHEK1, PCNA, and POLE2 were also associated with worse overall survival in several types of cancer 
(Group A and D). As they belong to cluster 1 (strongly negative dependency and efficacy scores and high expres-
sion levels), these genes might be more necessary for tumour growth and promotion. Upregulation of PCNA has 
been reported in several types of cancer and its inhibition is gaining more interest as a novel strategy in many 
 cancers48–50. Similarly, the knockdown of POLE2 (DNA polymerase epsilon subunit 2) has been linked to reduced 
or suppressed tumorigenesis in different types of  cancer51–53. CHEK1 (also known as Chk1 or checkpoint kinase 
1) is essential to maintain cell viability in cancer  cells54 and it has been shown that the combination of ATR and 
CHEK1 inhibitors results in cancer-specific synthetic  lethality55. Notably, CHEK1 inhibition is synthetically 
lethal with loss of B-Family DNA Polymerases like POLE2 in lung cancer and colorectal cancer  cells56. Taken 
together, inhibiting these genes from cluster 1 represents a promising therapeutic avenue in several types of 
cancer, especially focusing on the combined inhibition of CHEK1 and POLE2.

Finally, it was remarkable that NAE1 was identified as a synthetic lethal partner of ten genes from the worse 
survival signature. NAE1 is responsible for Neddylation, a post-translational modification that adds an ubiquitin-
like protein (NEDD8) to multiple substrate proteins and it has been shown that its inhibition exerts anticancer 
effects mainly by triggering cell apoptosis, autophagy, and  senescence57,58. In fact, Neddylation is beginning to be 
considered as a key factor of the DNA repair  process59. As NAE1 inhibition has been proposed as a new approach 
to treating  cancer60, these results support the potential of the combined inhibition of NAE1 and several DDR 
genes. More research will be needed to validate the implication of the molecular signatures described in this study 
and to what extent they apply to different subtypes of cancer and the complexity of their genetic backgrounds.

Methodology
All data processing steps, and statistical analyses were performed in the RStudio 1.4.1717 statistical environment 
(https:// www. rstud io. com/).

Efficacy, selectivity, and dependency of DNA repair genes. The list of DNA repair genes and their 
respective pathway annotation was obtained from one of the latest and more complete reports so  far6. The effi-
cacy and selectivity scores for the 241 genes (θ = 0.6; CRISPR:shRNA = 60%:40%; where θ is the mixing ratio 
of the two scores) were obtained from  shinyDepMap14 (https:// labsy spharm. shiny apps. io/ depmap). These val-
ues are derived from a combined CRISPR-shRNA gene dependency score based on the Cancer Dependency 
Map  dataset11 (https:// depmap. org/ portal/). Additionally, for those genes with efficacy scores lower than -0.5 
and selectivity scores lower than 0 (termed essential genes), the combined (θ = 0.6; CRISPR:shRNA = 60%:40%, 
where θ is the mixing ratio of the two scores) dependency scores across 423 cell lines were obtained. Likewise, 
the lineage-dependent essentiality of 17 cell lineages was also analyzed. For a lineage to be classified as depend-
ent, all its cell lines must have dependency values that exceed the essentiality threshold obtained by analyzing 
all available genes.

Transcriptomic alterations of commonly essential DRGs. For transcriptomic analysis, the TACCO 
(Transcriptome Alterations in CanCer Omnibus)  webserver18 (http:// tacco. life. nctu. edu. tw/) was used to iden-
tify the patterns of expression of essential DNA repair genes (efficacy < − 0.5; selectivity < 0) in 18 cancer types. 
TACCO includes the mRNAs expression levels (Transcripts Per Million) for 26 cancer types from the Broad 
GDAC Firehose (https:// gdac. broad insti tute. org/) (version stddata__2016_01_28). For this task, only the log2 
fold change (log2_FC) of those genes with statistically significant (Benjamini-Hochberg) adjusted p values were 
included. For the heatmap elaboration, the  ComplexHeatmap61 R package was used.

To find clustering patterns among DDR genes, all variables were analyzed together. The efficacy and selectivity 
scores were included for each gene as continuous variables. Based on the median dependency score of each gene 
(for the whole set of 423 cell lines), dependency scores were transformed from continuous to categorical: weakly 
negative (from 0 to − 0.5), moderate (from − 0.5 to − 1.0), and strongly negative (from − 1.0 to − 1.5). The log2 
FC was also transformed to categorical: downregulated (from 0 to − 1.25), upregulated (from 0 to 1.25), and 
highly upregulated (from 1.25 to 2.5 +). A distance matrix was created based on Gower’s similarity coefficient, as 
it is suggested for mixed-type variables. The clustering algorithm used was Partitioning Around Medoids (PAM) 
and the silhouette plot was used to determine the number of clusters. The t-Distributed Stochastic Neighbor 
Embedding (tSNE) algorithm was used for dimensionality reduction (perplexity = 10, max_iter = 1000). Hier-
archical clustering was used as an additional algorithm for dimensionality reduction based on the same Gower’s 
similarity coefficients calculated.

Survival analysis, protein networks, and gene ontology. The GEPIA (Gene Expression Profiling 
Interactive Analysis)  webserver19 (http:// gepia. cancer- pku. cn/) was used to compare the different gene clusters 
in terms of patient overall survival across the cancer groups included in this study. GEPIA is based on The Can-
cer Genome Atlas (TCGA)20 and The Genotype-Tissue Expression (GTEx)  project62. The thresholds for high/
low gene expression levels between cohorts were adjusted to 50%. Log-rank P values, hazard ratios (HR), and 
95% confidence intervals (CI) were obtained for each gene. Notably, as GEPIA calculations are run in R, some p 

https://www.rstudio.com/
https://labsyspharm.shinyapps.io/depmap
https://depmap.org/portal/
http://tacco.life.nctu.edu.tw/
https://gdac.broadinstitute.org/
http://gepia.cancer-pku.cn/
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values might be reported as cero since R does not report values lower than 2.220446e-16 (.Machine$double.eps). 
Therefore, p values of cero must be understood as “below machine precision”.

The GEPIA2 web  server21 (http:// gepia2. cancer- pku. cn/# index) was used to identify genes that have a similar 
expression pattern for each signature across all cancer types. The Search Tool for the Retrieval of Interacting 
Genes/Proteins database (STRING v11.0) web  server22 (https:// string- db. org/) was used to construct the pro-
tein–protein network associated with the better/worse 100 signature). The  stringApp23, a Cytoscape app that 
makes it easy to import STRING networks into  Cytoscape24 was used for network visualization and analysis. 
Additionally, the g:Profiler web  server25 (http:// biit. cs. ut. ee/ gprofi ler/) was used to find statistically significant 
Gene Ontology terms, pathways, and other gene functions giving a list of DDR genes.

Synthetic lethal pair analysis. The SynLethDB web  server27 (http:// synle thdb. sist. shang haite ch. edu. cn/ 
v2/#/) was used to search synthetic lethal partners given a specific gene. SynLethDB harbours a large set of 
synthetic lethality gene pairs collected from a variety of sources, including biochemical assays, other related 
databases, computational predictions, and text mining.

Received: 6 October 2021; Accepted: 23 November 2021

References
 1. Weinstein, I. B. & Joe, A. Oncogene addiction. Cancer Res. 68, 3077–3080 (2008).
 2. Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: Oncogene and non-oncogene addiction. Cell 136, 823–837 

(2009).
 3. Jeggo, P. A., Pearl, L. H. & Carr, A. M. DNA repair, genome stability and cancer: A historical perspective. Nat. Rev. Cancer 16, 

35–42 (2016).
 4. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 144, 646–674 (2011).
 5. Negrini, S., Gorgoulis, V. G. & Halazonetis, T. D. Genomic instability—An evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 

11, 220–228 (2010).
 6. Knijnenburg, T. A. et al. Genomic and molecular landscape of DNA damage repair deficiency across The Cancer Genome Atlas. 

Cell Rep. 23, 239-254.e6 (2018).
 7. Dietlein, F., Thelen, L. & Reinhardt, H. C. Cancer-specific defects in DNA repair pathways as targets for personalized therapeutic 

approaches. Trends Genet. 30, 326–339 (2014).
 8. Solimini, N. L., Luo, J. & Elledge, S. J. Non-oncogene addiction and the stress phenotype of cancer cells. Cell 130, 986–988 (2007).
 9. Hjaltelin, J. X. et al. Identification of hyper-rewired genomic stress non-oncogene addiction genes across 15 cancer types. NPJ Syst. 

Biol. Appl. 5, 27 (2019).
 10. Chae, Y. K. et al. Genomic landscape of DNA repair genes in cancer. Oncotarget 7, 23312–23321 (2016).
 11. Tsherniak, A. et al. Defining a Cancer Dependency Map. Cell 170, 564-576.e16 (2017).
 12. Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in 

cancer cells. Nat. Genet. 49, 1779–1784 (2017).
 13. Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 568, 511–516 (2019).
 14. Shimada, K., Bachman, J. A., Muhlich, J. L. & Mitchison, T. J. shinyDepMap, a tool to identify targetable cancer genes and their 

functional connections from Cancer Dependency Map data. Elife 10, e57116 (2021).
 15. Gonçalves, E. et al. Drug mechanism-of-action discovery through the integration of pharmacological and CRISPR screens. Mol. 

Syst. Biol. 16, e9405 (2020).
 16. Chan, E. M. et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature 568, 551–556 (2019).
 17. Wood, R. D., Mitchell, M. & Lindahl, T. Human DNA repair genes, 2005. Mutat. Res. Fundam. Mol. Mech. Mutagen. 577, 275–283 

(2005).
 18. Chou, P.-H. et al. TACCO, a database connecting transcriptome alterations, pathway alterations and clinical outcomes in cancers. 

Sci. Rep. 9, 3877 (2019).
 19. Tang, Z. et al. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 

45, W98–W102 (2017).
 20. The Cancer Genome Atlas Research Network et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–

1120 (2013).
 21. Tang, Z., Kang, B., Li, C., Chen, T. & Zhang, Z. GEPIA2: An enhanced web server for large-scale expression profiling and interac-

tive analysis. Nucleic Acids Res. 47, W556–W560 (2019).
 22. Szklarczyk, D. et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery 

in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).
 23. Doncheva, N. T., Morris, J. H., Gorodkin, J. & Jensen, L. J. Cytoscape StringApp: Network analysis and visualization of proteomics 

data. J. Proteome Res. 18, 623–632 (2019).
 24. Shannon, P. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 

2498–2504 (2003).
 25. Reimand, J. et al. g:Profiler—A web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 44, W83–W89 

(2016).
 26. Nickoloff, J. A., Jones, D., Lee, S.-H., Williamson, E. A. & Hromas, R. Drugging the cancers addicted to DNA repair. JNCI J. Natl. 

Cancer Inst. 109, djx059 (2017).
 27. Guo, J., Liu, H. & Zheng, J. SynLethDB: Synthetic lethality database toward discovery of selective and sensitive anticancer drug 

targets. Nucleic Acids Res. 44, D1011–D1017 (2016).
 28. Mo, X. Low expression of 12 DNA repair genes was associated with better disease-free survival in non-small cell lung cancer 

patients having adjuvant chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 98, 237 (2017).
 29. van der Doelen, M. J. et al. Impact of DNA damage repair defects on response to radium-223 and overall survival in metastatic 

castration-resistant prostate cancer. Eur. J. Cancer 136, 16–24 (2020).
 30. Teo, M. Y. et al. DNA damage response and repair gene alterations are associated with improved survival in patients with platinum-

treated advanced urothelial carcinoma. Clin. Cancer Res. 23, 3610–3618 (2017).
 31. Sun, H. et al. Identification of a prognostic signature associated with DNA repair genes in ovarian cancer. Front. Genet. 10, 839 

(2019).

http://gepia2.cancer-pku.cn/#index
https://string-db.org/
http://biit.cs.ut.ee/gprofiler/
http://synlethdb.sist.shanghaitech.edu.cn/v2/#/
http://synlethdb.sist.shanghaitech.edu.cn/v2/#/


12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23264  | https://doi.org/10.1038/s41598-021-02773-3

www.nature.com/scientificreports/

 32. Jinjia, C. et al. The use of DNA repair genes as prognostic indicators of gastric cancer. J. Cancer 10, 4866–4875 (2019).
 33. Feng, W. et al. Genetic determinants of cellular addiction to DNA polymerase theta. Nat. Commun. 10, 4286 (2019).
 34. Viner-Breuer, R., Yilmaz, A., Benvenisty, N. & Goldberg, M. The essentiality landscape of cell cycle related genes in human pluri-

potent and cancer cells. Cell Div. 14, 15 (2019).
 35. Wu, Z. et al. Copy number amplification of DNA damage repair pathways potentiates therapeutic resistance in cancer. Theranostics 

10, 3939–3951 (2020).
 36. Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 

202–206 (2019).
 37. Wang, X.-C. et al. Genome-wide RNAi screening identifies RFC4 as a factor that mediates radioresistance in colorectal cancer by 

facilitating nonhomologous end joining repair. Clin. Cancer Res. 25, 4567–4579 (2019).
 38. Xiang, J. et al. Levels of human replication factor C4, a clamp loader, correlate with tumor progression and predict the prognosis 

for colorectal cancer. J. Transl. Med. 12, 320 (2014).
 39. Chen, W., Zhu, S., Zhang, Y., Xiao, J. & Tian, D. Identification of key candidate tumor biomarkers in non-small-cell lung cancer 

by in silico analysis. Oncol. Lett. https:// doi. org/ 10. 3892/ ol. 2019. 11169 (2019).
 40. Wood, R. D. & Doublié, S. DNA polymerase θ (POLQ), double-strand break repair, and cancer. DNA Repair 44, 22–32 (2016).
 41. Lemee, F. et al. DNA polymerase up-regulation is associated with poor survival in breast cancer, perturbs DNA replication, and 

promotes genetic instability. Proc. Natl. Acad. Sci. 107, 13390–13395 (2010).
 42. Higgins, G. S. et al. Overexpression of POLQ confers a poor prognosis in early breast cancer patients. Oncotarget 1, 175–184 (2010).
 43. Shinmura, K. et al. POLQ overexpression is associated with an increased somatic mutation load and PLK4 overexpression in lung 

adenocarcinoma. Cancers 11, 722 (2019).
 44. Allera-Moreau, C. et al. DNA replication stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation 

prognoses the outcome of early/mid-stage non-small cell lung cancer patients. Oncogenesis 1, e30–e30 (2012).
 45. Zhou, J. et al. A first-in-class polymerase theta inhibitor selectively targets homologous-recombination-deficient tumors. Nat. 

Cancer 2, 598–610 (2021).
 46. Zatreanu, D. et al. Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat. Commun. 12, 

3636 (2021).
 47. Higgins, G. S. et al. A small interfering RNA screen of genes involved in DNA repair identifies tumor-specific radiosensitization 

by POLQ knockdown. Cancer Res. 70, 2984–2993 (2010).
 48. Dillehay, K. L., Lu, S. & Dong, Z. Antitumor effects of a novel small molecule targeting PCNA chromatin association in prostate 

cancer. Mol. Cancer Ther. 13, 2817–2826 (2014).
 49. Smith, S. J. et al. Molecular targeting of cancer-associated PCNA interactions in pancreatic ductal adenocarcinoma using a cell-

penetrating peptide. Mol. Ther. Oncolytics 17, 250–256 (2020).
 50. Søgaard, C. K. et al. Targeting the non-canonical roles of PCNA modifies and increases the response to targeted anti-cancer therapy. 

Oncotarget 10, 7185–7197 (2019).
 51. Li, J. et al. Knockdown of POLE2 expression suppresses lung adenocarcinoma cell malignant phenotypes in vitro. Oncol. Rep. 

https:// doi. org/ 10. 3892/ or. 2018. 6659 (2018).
 52. Zhang, C. et al. Targeting POLE2 creates a novel vulnerability in renal cell carcinoma via modulating stanniocalcin 1. Front. Cell 

Dev. Biol. 9, 622344 (2021).
 53. Zhu, Y., Chen, G., Song, Y., Chen, Z. & Chen, X. POLE2 knockdown reduce tumorigenesis in esophageal squamous cells. Cancer 

Cell Int. 20, 388 (2020).
 54. Cho, S. H., Toouli, C. D., Fujii, G. H., Crain, C. & Parry, D. Chk1 is essential for tumor cell viability following activation of the 

replication checkpoint. Cell Cycle 4, 131–139 (2005).
 55. Sanjiv, K. et al. Cancer-specific synthetic lethality between ATR and CHK1 kinase activities. Cell Rep. 14, 298–309 (2016).
 56. Rogers, R. F. et al. CHK1 inhibition is synthetically lethal with loss of B-family DNA polymerase function in human lung and 

colorectal cancer cells. Cancer Res. 80, 1735–1747 (2020).
 57. Zhou, L., Jiang, Y., Luo, Q., Li, L. & Jia, L. Neddylation: A novel modulator of the tumor microenvironment. Mol. Cancer 18, 77 

(2019).
 58. Chen, P. et al. Neddylation inhibition activates the extrinsic apoptosis pathway through ATF4–CHOP–DR5 axis in human esopha-

geal cancer cells. Clin. Cancer Res. 22, 4145–4157 (2016).
 59. Brown, J. S. & Jackson, S. P. Ubiquitylation, neddylation and the DNA damage response. Open Biol. 5, 150018 (2015).
 60. Soucy, T. A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458, 732–736 (2009).
 61. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinfor-

matics 32, 2847–2849 (2016).
 62. Lonsdale, J. et al. The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

Acknowledgements
I thank Dr Pau Creixell (CRUK CI) for thoughtful and helpful suggestions. I also thank Gabriel Jiménez-Huezo 
for the graphic design of some of the figures in this paper.

Author contributions
The author confirms sole responsibility for the following: study conception and design, data collection, analysis 
and interpretation of results, and manuscript preparation.

Competing interests 
The author declares no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 02773-3.

Correspondence and requests for materials should be addressed to L.B.-G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.3892/ol.2019.11169
https://doi.org/10.3892/or.2018.6659
https://doi.org/10.1038/s41598-021-02773-3
https://doi.org/10.1038/s41598-021-02773-3
www.nature.com/reprints


13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23264  | https://doi.org/10.1038/s41598-021-02773-3

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/

	Pan-cancer analysis of non-oncogene addiction to DNA repair
	Results
	Efficacy and selectivity of DNA repair genes. 
	Dependency scores of commonly essential DDR genes. 
	Transcriptomic alterations of commonly essential DDR genes. 
	Commonly essential DDR genes survival analysis. 

	Discussion
	Methodology
	Efficacy, selectivity, and dependency of DNA repair genes. 
	Transcriptomic alterations of commonly essential DRGs. 
	Survival analysis, protein networks, and gene ontology. 
	Synthetic lethal pair analysis. 

	References
	Acknowledgements


